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Abstract. First the characteristic of monotonicity of any Banach lattice X is expressed
in terms of the left limit of the modulus of monotonicity of X at the point 1. It is also
shown that for Köthe spaces the classical coefficient of monotonicity is the same as the
characteristic of monotonicity corresponding to another modulus of monotonicity δ̂m,E .
The characteristic of monotonicity of Orlicz function spaces and Orlicz sequence spaces
equipped with the Luxemburg norm, are calculated. In the first case the characteristic
is expressed in terms of the generating Orlicz function only, but in the sequence case
the formula is not so direct. Three examples show why in the sequence case so direct
formula is rather impossible. Some other auxiliary and complemented results are also
presented. By the result of Betiuk-Pilarska and Prus [2] which establish that Banach
lattices X with ε0,m(X) < 1 and weak orthogonality property have the weak fixed point
property our results are related to the fixed point theory [15].

1. Preliminaries

Let us denote S+(X) = S(X) ∩X+, where S(X) is the unit sphere of a Banach lattice

X (for its definition see [3], [14] and [21]) and X+ is the positive cone of X.

A Banach lattice X is said to be strictly monotone (X ∈ (SM)) if for all x, y ∈ X+

such that y ≤ x and y 6= x, we have ‖y‖ < ‖x‖. A Banach lattice X is said to be

uniformly monotone (X ∈ (UM)) if for any ε ∈ (0, 1) there is δ(ε) ∈ (0, 1) such that

‖x− y‖ ≤ 1− δ(ε) whenever 0 ≤ y ≤ x, ‖x‖ = 1 and ‖y‖ ≥ ε (see [3]).

For a given Banach lattice X, the function δm,X : [0, 1]→ [0, 1] defined by

δm,X(ε) = inf{1− ‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ ≥ ε}
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is said to be the lower modulus of monotonicity of X. It is easy to show that (see [7])

δm,X(ε) = inf{1− ‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ = ε}

= 1− sup{‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ ≥ ε}

= 1− sup{‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ = ε}.

The lower modulus of monotonicity δm,X is a convex function on the interval [0, 1] (see

[18]) (so δm,X is continuous on the interval [0, 1) and nondecreasing on ε ∈ [0, 1] as well).

It is also clear that δm,X(ε) ≤ ε for any ε ∈ [0, 1]. Obviously, X is uniformly monotone if

and only if δm,X(ε) > 0 for every ε ∈ (0, 1]. It is easy to see that a Banach lattice X is

strictly monotone if and only if δm,X(1) = 1.

The number ε0,m(X) ∈ [0, 1] defined by

ε0,m(X) = sup{ε ∈ (0, 1) : δm,X(ε) = 0} = inf{ε ∈ (0, 1) : δm,X(ε) > 0}

is said to be the characteristic of monotonicity of X. Obviously, a Banach lattice X is

uniformly monotone if and only if ε0,m(X) = 0.

We can also define another characteristic of monotonicity of X, namely

ε̃0,m(X) = sup{ε > 0: ηm,X(ε) = 0} = inf{ε > 0: ηm,X(ε) > 0},

where ηm,X is the upper modulus of monotonicity defined for all ε > 0 by the formula

ηm,X(ε) = inf{‖x+ y‖ − 1: x, y ∈ S+(X), ‖x‖ = 1, ‖y‖ ≥ ε}

= inf{‖x+ y‖ − 1: x, y ∈ S+(X), ‖x‖ = 1, ‖y‖ = ε}

(see [19] and [20]). It is clear by the triangle inequality for the norm that ηm,X(ε) ≤ ε for

all ε > 0. Obviously, a Banach lattice X is uniformly monotone if and only if ηm,X(ε) > 0

for all ε > 0 or equivalently if ε̃0,m(X) = 0.

Let us also recall relationships between two moduli of monotonicity δm,X and ηm,X as

well as relationships between the characteristic of monotonicity ε0,m(X) and ε̃0,m(X).

For arbitrary ε ∈ (0, 1) the following inequalities hold true (see [19]):

(1)
δm,X(ε/(1 + ε))

1− δm,X(ε/(1 + ε))
≤ ηm,X(ε) ≤ δm,X(ε)

1− δm,X(ε)
.

Notice that inequalities (1) are equivalent to the following ones

ηm,X(ε)

1 + ηm,X(ε)
≤ δm,X(ε) ≤ ηm,X(ε/(1− ε))

1 + ηm,X(ε/(1− ε))

for any ε ∈ (0, 1). In [7], Theorem 1, it has been shown that

(2) ε0,m(X) ≤ ε̃0,m(X) ≤ 2ε0,m(X).

It is easy to show that the upper estimate of the characteristic of monotonicity ε̃0,m(X) of

a Banach lattice X given above can be improved. Namely, since ‖x+y‖ ≥ max(‖x‖, ‖y‖)
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for any couple x, y ≥ 0, we have ηm,X(ε) > 0 for all ε > 1, whence we get ε̃0,m(X) ≤ 1.

Therefore

ε0,m(X) ≤ ε̃0,m(X) ≤ min{1, 2ε0,m(X)}

for any Banach lattice X.

For more informations on the monotonicity properties and coefficient of monotonicity

in some Köthe spaces we refer to [7], [8], [9], [11], [12], [13], [18], [19] and [20].

2. Some general results

In this part of the paper we give a few general results. First we will present a new

formula for the characteristic of monotonicity ε0,m(X) and we will introduce another

modulus of monotonicity and characteristic of monotonicity for Köthe spaces. Obtained

results will be useful in the last part of the paper in order to calculate the characteristic

of monotonicity in Orlicz spaces. Finally we will investigate ε̃0,m(X).

2.1. A new formula for the characteristic of monotonicity ε0,m(X).

Theorem 2.1. For any normed lattice X the following equality is true

(3) ε0,m(X) = 1− δm,X(1−),

where δm,X(1−) = lim
ε→1−

δm,X(ε). Moreover,

(4) δm,X(1− δm,X(ε)) = 1− ε

for arbitrary ε ∈ (ε0,m(X), 1] if ε0,m(X) < 1 as well as also in the case when ε = ε0,m(X) =

1.

Proof. If ε0,m(X) = 1, then by definition of ε0,m(X), we have δm,X(ε) = 0 for any ε ∈ (0, 1),

whence we get 1− δm,X(1−) = 1.

Let now ε0,m(X) < 1, ε ∈ (ε0,m(X), 1) and η ∈ (0, 1− δm,X(ε)). Then for any x ∈ S(X)

and y ∈ X satisfying 0 ≤ y ≤ x, ‖y‖ = ε and ‖x− y‖ ≥ 1− δm,X(ε)− η we have

ε = ‖y‖ = ‖x− (x− y)‖

≤ 1− δm,X(‖x− y‖)

≤ 1− δm,X(1− δm,X(ε)− η).

Since δm,X is a continuous function on the interval [0, 1), by δm,X(ε) > 0 and arbitrariness

of η ∈ (0, 1− δm,X(ε)), we get

(5) ε ≤ 1− δm,X(1− δm,X(ε)).

Letting ε→ 1− we have

1 ≤ 1− δm,X(1− δm,X(1−)),

that is, δm,X(1− δm,X(1−)) ≤ 0, whence

δm,X(1− δm,X(1−)) = 0.
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Therefore, ε0,m(X) ≥ 1−δm,X(1−). Letting ε↘ ε0,m(X) in (5), we get opposite inequality,

which ends the proof of inequality (3).

Now we will show that equality (4) holds true. Suppose first that ε ∈ (ε0,m(X), 1).

Since δm,X is a nondecreasing function on the interval [0, 1], by inequality (5), defining

t = 1− δm,X(ε), we get

1− δm,X(ε) ≥ 1− δm,X(1− δm,X(1− δm,X(ε))) = 1− δm,X(1− δm,X(t)).(6)

Simultaneously, since δm,X is strictly increasing on the interval (ε0,m(X), 1], by equality

(3), we have

ε0,m(X) = 1− δm,X(1−) < 1− δm,X(ε) = t < 1

for any ε ∈ (ε0,m(X), 1). In consequence, inequality (5) holds also for t in place of ε,

which means that

1− δm,X(1− δm,X(t)) ≥ 1− δm,X(ε).(7)

Combining inequalities (6) and (7), we get the equality

1− δm,X(1− δm,X(t)) = 1− δm,X(ε).

Since ε, t ∈ (ε0,m(X), 1) and δm,X is strictly increasing on this interval, we get the equality

δm,X(t) = 1− ε, which is just equality (4) for ε ∈ (ε0,m(X), 1).

Let now ε = 1. Since δm,X(1−) ≤ δm,X(1), by inequality (3), we get 1 − δm,X(1) ≤
1 − δm,X(1−) = ε0,m(X), whence δm,X(1 − δm,X(1)) = 0. Indeed, if δm,X is continuous

at 1, then δm,X(1−) = δm,X(1) and so 1 − δm,X(1) = 1 − δm,X(1−) = ε0,m(X), whence

δm,X(1− δm,X(1)) = δm,X(ε0,m(X)) = 0. If δm,X is not continuous at 1, then δm,X(1−) <

δm,X(1) and so 1−δm,X(1) < 1−δm,X(1−) = ε0,m(X), whence, by the definition of ε0,m(X),

we have δm,X(1− δm,X(1)) = 0. Therefore equality (4) holds also in this case. �

Remark 2.1. In equality (3), δm,X(1−) cannot be replaced by δm,X(1). In Examples

2.1 and 2.2 we will present Banach lattices X for which δm,X(ε) = 0 for any ε ∈ [0, 1) and

δm,X(1) = 1.

Example 2.1. Let us first consider the space Lp = Lp([0, 1],Σ,m) with 1 ≤ p < ∞
over the Lebesgue measure space ([0, 1],Σ,m). If x ∈ S+ (Lp) and A ∈ Σ is such that

‖xχA‖p = ε ∈ [0, 1], then we have

1 = ‖x‖pp =
∥∥xχ[0,1]\A

∥∥p
p

+ ‖xχA‖pp .

Hence for y = xχA, we get ‖y‖p = ε and ‖x− y‖p =
∥∥xχ[0,1]\A

∥∥
p

= (1− εp)1/p, whence

1 − ‖x− y‖p = 1 − (1− εp)1/p. In consequence δm,Lp(ε) ≤ 1 − (1− εp)1/p. In order to

show the opposite inequality, let us take arbitrary 0 ≤ y ≤ x ∈ Lp, ‖x‖p = 1, ‖y‖p ≥ ε.
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Then

1 = ‖x‖pp =

1∫
0

xp(t)dµ(t) =

1∫
0

[(x− y) + y]p (t)dµ(t)

≥
1∫
0

(x− y)p (t)dµ(t) +

1∫
0

yp(t)dµ(t) = ‖x− y‖pp + ‖y‖pp ,

whence

‖x− y‖p ≤ (1− ‖y‖pp)
1
p ≤ (1− εp)

1
p .

This means that 1−‖x− y‖p ≥ 1− (1− εp)
1
p , whence by arbitrariness of x and y, we get

δm,Lp(ε) ≥ 1− (1− εp)
1
p . Therefore we have δm,Lp(ε) = 1− (1− εp)1/p for every ε ∈ [0, 1].

Let us define X = ⊕Lpn , the `1−direct sum of the spaces Lpn , where pn ≥ 1 for any

n ∈ N and pn ↗ ∞ as n → ∞, equipped with the norm ‖x‖ =
∑∞

n=1 ‖xn‖pn
for any

x = (xn)∞n=1 ∈ X with xn ∈ Lpn for any n ∈ N. Since any space Lpn is order linearly

isometrically embedded into X, where the embedding operator is defined by

Lpn 3 xn 7−→ (0, 0, ..., 0, xn, 0, 0, ...)

with xn on the nth place, for any ε ∈ [0, 1) we have

0 ≤ δm,X(ε) ≤ δm,Lpn (ε) = 1− (1− εpn)1/pn ↘ 0

as n → ∞, and consequently, δm,X(ε) = 0 for any ε ∈ [0, 1). Simultaneously, the space

X is strictly monotone as the `1−direct sum of uniformly monotone spaces Lpn with

1 ≤ pn <∞ for any n ∈ N. Therefore δm,X(1) = 1 and δm,X(1−) = 0.

Example 2.2. Let now L0 = L0([0,∞)) be the space of all (equivalence classes of)

Lebesgue measurable real-valued functions defined on the interval [0,∞). For any x ∈ L0

we define its distribution function µ by

µx(λ) = m{t ∈ [0, γ) : |x(t)| > λ}

(see [1], [17] and [21]) and the nonincreasing rearrangement x∗ of x as

x∗(t) = inf{λ ≥ 0: µx(λ) ≤ t}

(under the convention inf ∅ =∞).

Let ω : [0,∞) → R+ be a nonincreasing, locally integrable function called a weight

function. We say that the weight function is regular, if there exists η > 0 such that∫ 2t

0
ω(t)dt ≥ (1 + η)

∫ t
0
ω(t)dt for any t ∈ [0,∞) (see [9] and [10]).

For any weight function ω, we define the Lorentz space by the formula

Λω = {x ∈ L0 : ‖x‖ =

∫ ∞
0

x∗(t)ω(t)dt <∞}.

Now we will show that for any Lorentz space Λω such that the weight function is not

regular but
∫∞

0
ω(t)dt = ∞ (for example ω(t) = min(1, 1/t) for t ∈ [0,∞)), we have

δm,Λω(1−) = 0 < 1 = δm,Λω(1)
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In fact, since Λω is strictly monotone (see Proposition 4.1 in [5]) we have δm,Λω(1) = 1.

Simultaneously, since ω is not regular, there exists an increasing sequence (tn)∞n=1 in the

interval [0,∞) such that

(8)

∫ 2tn

0

ω(t)dt ≤
(

1 +
1

n

)∫ tn

0

ω(t)dt.

We can find a decreasing sequence of positive numbers (un)∞n=1 such that∫ 2tn

0

unω(t)dt = 1

for any n ∈ N. For xn := unχ[0,2tn) and yn := unχ[0,tn) (n ∈ N), we get 0 ≤ yn ≤ xn,

‖xn‖ = 1 and, by inequality (8), n
n+1
≤ ‖yn‖ ≤ 1. Since (xn − yn)∗ = y∗, we also have

that n
n+1
≤ ‖xn − yn‖ ≤ 1 for any n ∈ N. Therefore δm,Λω(ε) = 0 for any ε ∈ [0, 1).

Problem 1. In the above examples it has been shown that there are Banach lattices

for which δm,X(1−) < δm,X(1) and ε0,m(X) = 1, i.e. δm,X(1−) = 0. It is natural to ask if

there exist spaces, for which 0 < δm,X(1−) < δm,X(1).

From Theorem 2.1 and the definition of the modulus δm,X (see the preliminaries) we

have the following

Corollary 2.1. For arbitrary Banach lattice X the following formulas hold true

ε0,m(X) = lim
ε→1−

(sup {‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ ≥ ε})

= lim
ε→1−

(sup {‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ = ε}) .

2.2. Modulus and characteristic of monotonicity in Köthe spaces. Denote by

(T,Σ, µ) a positive, complete and σ−finite measure space and by L0 = L0(T,Σ, µ) the

space of all (equivalence classes of) real-valued and Σ−measurable functions defined on T .

For two functions x, y ∈ L0 we write x ≤ y if x(t) ≤ y(t) µ−a.e. in T . By E = (E,≤, ‖·‖E)

we denote a Köthe space over the measure space (T,Σ, µ), that is, E is a Banach subspace

of L0 which satisfies the following conditions (see [14] and [21]):

(i) If |x| ≤ |y|, y ∈ E and x ∈ L0, then x ∈ E and ‖x‖E ≤ ‖y‖E .
(ii) There exists a function x ∈ E which is strictly positive µ−a.e. in T .

In Köthe spaces the definition of the characteristic of monotonicity can be simplified using

another modulus. Using the new formula for the characteristic of monotonicity of Köthe

spaces it should be easier to calculate this coefficient in concrete class of Köthe spaces. We

will see this advantage of the new formula in the class of Orlicz sequence spaces endowed

with the Luxemburg norm. Let us define for E the modulus δ̂m,E : [0, 1] → [0, 1] by the

formula

δ̂m,E(ε) = inf {1− ‖x− xχA‖E : x ≥ 0, ‖x‖E = 1, A ∈ Σ, ‖xχA‖E ≥ ε} .

Obviously, the modulus δ̂m,E is nondecreasing with respect to ε ∈ [0, 1] and δm,X(ε) ≤
δ̂m,E(ε) ≤ ε for any ε ∈ [0, 1]. It is also possible to prove similarly as for the modulus
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δm,X in [7] that

δ̂m,E(ε) = inf {1− ‖x− xχA‖E : x ≥ 0, ‖x‖E = 1, A ∈ Σ, ‖xχA‖E = ε}

= 1− sup {‖x− xχA‖E : x ≥ 0, ‖x‖E = 1, A ∈ Σ, ‖xχA‖E ≥ ε}

= 1− sup {‖x− xχA‖E : x ≥ 0, ‖x‖E = 1, A ∈ Σ, ‖xχA‖E = ε} .

The characteristic of monotonicity ε̂0,m(E) corresponding to the modulus δ̂m,E is defined

by

ε̂0,m(E) = sup
{
ε ∈ [0, 1) : δ̂m,E(ε) = 0

}
= inf

{
ε ∈ [0, 1) : δ̂m,E(ε) > 0

}
.

We have the following

Proposition 2.1. For arbitrary Köthe space E the following formula holds true

ε̂0,m(E) = sup

{
lim sup
n→∞

∥∥∥xnχA′n∥∥∥E : (xn) ⊂ S+(E), (An) ⊂ Σ, ‖xnχAn‖E → 1

}
.

Proof. Let us denote

α̃(E) = sup

{
lim sup
n→∞

∥∥∥xnχA′n∥∥∥E : (xn) ⊂ S+(E), (An) ⊂ Σ, ‖xnχAn‖E → 1

}
.

First, we will show that ε̂0,m(E) ≤ α̃(E). In order to do it, assume that ε̂0,m(E) > 0 and

ε ∈ [0, ε̂0,m(E)). Then δ̂m,E(ε) = 0 and so

sup
{
‖xχA‖E : x ≥ 0, ‖x‖E = 1, A ∈ Σ, ‖xχA′‖E = ε

}
= 1.

Then there are a sequence (xn) in S+(E) and a sequence (An) in Σ such that
∥∥∥xnχA′n∥∥∥E = ε

and ‖xnχAn‖E → 1. Therefore ε ≤ α̃(E), whence ε̂0,m(E) ≤ α̃(E).

In order to prove the opposite inequality assume that ε̂0,m(E) < 1 and ε ∈ (ε̂0,m(E), 1],

i.e.

(9) sup
{
‖xχA‖E : x ≥ 0, ‖x‖E = 1, A ∈ Σ, ‖xχA′‖E ≥ ε

}
< 1

because of δ̂m,E(ε) > 0. We will show that α̃(E) ≤ ε. Otherwise we would have α̃(E) > ε

and then there are a sequence (xn) in S+(E) and a sequence of sets (An) in Σ such that

‖xnχAn‖E → 1 and
∥∥∥xnχA′n∥∥∥E > ε for n large enough. Hence we have

sup
{
‖xχA‖E : x ≥ 0, ‖x‖E = 1, A ∈ Σ, ‖xχA′‖E ≥ ε

}
= 1,

which contradicts inequality (9). Therefore, α̃(E) ≤ ε and in consequence, by the arbi-

trariness of ε ∈ (ε̂0,m(E), 1], we conclude that α̃(E) ≤ ε̂0,m(E). �

Now we will show that both characteristics of monotonicity ε0,m(E) and ε̂0,m(E) are

equal in Köthe spaces. In order to prove this fact we will prove first the result that will

be helpful to prove this equality.

Lemma 2.1. If E is a Köthe space then for any positive ε and δ satisfying the condition

ε+ δ < 1 the inequality δm,E(ε+ δ) ≥ δδ̂m,E(ε) holds true.
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Proof. Let ε, δ ∈ (0, 1) be such that ε + δ < 1 and δ̂m,E(ε) > 0. Assume that 0 ≤ y ≤ x,

‖x‖E = 1 and ‖y‖E ≥ ε+ δ. Let us define

A = {t ∈ T : y(t) < δx(t)} .

Then ‖yχA‖E ≤ ‖δx‖E = δ. Since ε + δ ≤ ‖y‖E ≤ ‖yχA‖E + ‖yχA′‖E we get that

‖yχA′‖E ≥ ε. Therefore

‖x− y‖E ≤ ‖x− yχA′‖E ≤ ‖x− δxχA′‖E = ‖(1− δ)x+ δx− δxχA′‖E
≤ (1− δ) ‖x‖E + δ ‖x− xχA′‖E ≤ (1− δ) + δ

(
1− δ̂m,E(ε)

)
= 1− δδ̂m,E(ε).

Hence for all 0 ≤ y ≤ x such that ‖x‖E = 1, ‖y‖E ≥ ε+ δ, we have that 1− ‖x− y‖E ≥
δδ̂m,E(ε), whence δm,E(ε+ δ) ≥ δδ̂m,E(ε). �

Theorem 2.2. For arbitrary Köthe space E we have the equality

ε0,m(E) = ε̂0,m(E).

Proof. Since δm,E(ε) ≤ δ̂m,E(ε) for all ε ∈ [0, 1], we have

(10) ε̂0,m(E) ≤ ε0,m(E).

In order to get the inequality ε̂0,m(E) ≥ ε0,m(E), we need to consider separately two cases;

namely the case when ε0,m(E) < 1 and the case when ε0,m(E) = 1.

Case 1. Assume that ε0,m(E) < 1. By virtue of inequality (10), we have ε̂0,m(E) < 1

and δ̂m,E(ε) > 0 for all ε ∈ (ε̂0,m(E), 1). By Lemma 2.1, we have

δm,E(ε1) ≥ (ε1 − ε)δ̂m,E(ε) > 0

for all ε and ε1 such that ε̂0,m(E) < ε < ε1 < 1. Therefore, we obtained that δm,E(ε1) > 0

for any ε1 ∈ (ε̂0,m(E), 1). Hence

ε0,m(E) := inf{ε1 : δm,E(ε1) > 0} ≤ ε̂0,m(E).

Case 2. Assume now that ε0,m(E) = 1. We will prove that ε̂0,m(E) = 1. Assume for the

contrary that ε̂0,m(E) < 1. Then, similarly as in Case 1, we get that δm,E(ε1) > 0 for all

ε1 ∈ (ε̂0,m(E), 1), whence ε0,m(E) ≤ ε̂0,m(E) < 1, a contradiction. Therefore ε0,m(E) = 1

implies that ε̂0,m(E) = 1. �

Now, we will prove the following

Corollary 2.2. For arbitrary Köthe space X the following formulas are true

ε0,m(E) = ε̂0,m(E) = lim
ε→1−

sup
{
‖xχA′‖E : x ∈ S+(E), A ∈ Σ, ‖xχA‖E ≥ ε

}
(11)

= lim
ε→1−

sup
{
‖xχA′‖E : x ∈ S+(E), A ∈ Σ, ‖xχA‖E = ε

}
.
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Proof. Note that for any ε ∈ (0, 1),

sup

{
lim sup
n→∞

∥∥∥xnχA′n∥∥∥E : (xn) ⊂ S+(E), (An) ⊂ Σ, ‖xnχAn‖E → 1

}
≤ sup

{
‖xχA′‖E : x ∈ S+(E), A ∈ Σ, ‖xχA‖E ≥ ε

}
.

Hence, by Proposition 2.1 and the arbitrariness of ε ∈ (0, 1), we get

(12) ε̂0,m(E) ≤ lim
ε→1−

sup
{
‖xχA′‖E : x ∈ S+(E), A ∈ Σ, ‖xχA‖E ≥ ε

}
.

Simultaneously, by Corollary 2.1 and Theorem 2.2,

lim
ε→1−

sup
{
‖xχA′‖E : x ∈ S+(E), A ∈ Σ, ‖xχA‖E ≥ ε

}
(13)

≤ lim
ε→1−

(sup {‖x− y‖ : 0 ≤ y ≤ x, ‖x‖ = 1, ‖y‖ ≥ ε}) = ε0,m(E) = ε̂0,m(E).

Combining (12) and (13), we get inequality (11). �

Problem 2. We have δm,X(ε) ≤ δ̂m,E(ε) ≤ ε, ε0,m(E) = ε̂0,m(E) (that is, δm,X(ε) =

δ̂m,E(ε) = 0 for any ε ∈ [0, ε0,m(E)) and limε→1− δm,X(ε) = limε→1− δ̂m,E(ε). It fol-

lows from Example 2.1 that δm,X(ε) = δ̂m,E(ε) for any ε ∈ [0, 1] for the space E =

Lp([0, 1],Σ,m). So, it is natural to ask if these two modulus are equal in arbitrary Köthe

spaces?

2.3. Characteristic of monotonicity ε̃0,m(X) of a Banach lattice X. Analogously

as for ε0,m(X) (see Theorem 5 in [7]) we get the following

Proposition 2.2. For arbitrary Banach lattice X the following formula holds true

ε̃0,m(X) = sup{lim sup
n→∞

‖zn − xn‖ : 0 ≤ xn ≤ zn, ‖xn‖ = 1, ‖zn‖ → 1}.

Proof. Let us denote

α(X) = sup{lim sup
n→∞

‖zn − xn‖ : 0 ≤ xn ≤ zn, ‖xn‖ = 1, ‖zn‖ → 1}.

First, we will show that ε̃0,m(X) ≤ α(X). In order to do it, assume that ε > 0 and let

ηm,X(ε) = 0, i.e.

inf{‖z‖ : 0 ≤ x ≤ z, ‖x‖ = 1, ‖z − x‖ = ε} = 1.

There are sequences (xn)∞n=1 ⊂ S+(X) and (zn)∞n=1 ⊂ X+ such that ‖xn‖ = 1, 0 ≤ xn ≤ zn,

‖zn − xn‖ = ε for any n ∈ N and ‖zn‖ → 1. Hence, for arbitrary ε > 0 such that

ηm,X(ε) = 0, we have

ε ≤ sup{lim sup
n→∞

‖zn − xn‖ : 0 ≤ xn ≤ zn, ‖xn‖ = 1, ‖zn‖ → 1} = α(X).

Therefore

(14) ε̃0,m(X) ≤ α(X).

Now, we will show the opposite inequality. In order to do this, assume that ε > 0 and

ηm,X(ε) > 0, i.e.

(15) inf{‖z‖ : 0 ≤ x ≤ z, ‖x‖ = 1, ‖z − x‖ ≥ ε} > 1.
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Then α(X) ≤ ε. Indeed, in the opposite case it would be α(X) > ε, and then there were

sequences (xn)∞n=1 ⊂ S+(X) and (zn)∞n=1 ⊂ X+ such that 0 ≤ xn ≤ zn for all n ∈ N,

‖zn‖ → 1 and ‖zn − xn‖ > ε for n ∈ N large enough. Hence we get

inf{‖z‖ : 0 ≤ x ≤ z, ‖x‖ = 1, ‖z − x‖ ≥ ε} = 1,

which contradicts inequality (15). Therefore, α(X) ≤ ε whenever ε > 0 and ηm,X(ε) > 0.

Consequently, α(X) ≤ ε̃0,m(X), which together with (14) ends the proof. �

3. Characteristics of monotonicity in Orlicz spaces

In the last part of our paper we will present formulas for the characteristic of mono-

tonicity in Orlicz function spaces and Orlicz sequence spaces. Let us start with some basic

notions.

A map Φ : R → [0,∞] is said to be an Orlicz function if Φ is a nonzero function that

is convex, even, vanishing and continuous at zero, left continuous on R+, which means

that limu→b(Φ)− Φ(u) = Φ(b(Φ)) (for the definition of b(Φ) see below). Given any Orlicz

function Φ we define on L0 = L0(T,Σ, µ), where µ is nonatomic, a convex modular by

the formula

IΦ(x) =

∫
T

Φ(x(t))dµ

(see [4], [16], [22], [23], [24], [25]). The Orlicz function space LΦ = LΦ(T,Σ, µ) generated

by an Orlicz function Φ is defined as

LΦ = {x ∈ L0 : IΦ(λx) < +∞ for some λ > 0}.

We equipped this space with the Luxemburg norm

‖x‖Φ = inf
{
λ > 0: IΦ

(x
λ

)
≤ 1
}
.

In the sequence case, that is, when T = N, Σ = 2N and µ(A) = card(A) for any A ⊂ N,

we define on `0 = `0(N, 2N, µ) a convex modular IΦ, by

IΦ(x) =
∞∑
n=1

Φ (x(n)) .

The Orlicz sequence space `Φ we define analogously as LΦ and also consider with the

Luxemburg norm.

We say that an Orlicz function Φ satisfies condition ∆2 for all u ∈ R+ (at infinity) [at

zero] if there is K > 0 such that the inequality Φ(2u) ≤ KΦ(u) holds for all u ∈ R (for all

u ∈ R satisfying |u| ≥ u0 with some u0 > 0 such that Φ(u0) <∞) [for all u ∈ R satisfying

|u| ≤ u0 with some u0 > 0 such that Φ(u0) > 0]. We write then Φ ∈ ∆2(R+) (Φ ∈ ∆2(∞))

[Φ ∈ ∆2(0)], respectively. Let us note that Φ ∈ ∆2(0) implies that Φ vanishes only at

zero and Φ ∈ ∆2(∞) implies that Φ(u) <∞ for all u ∈ R.

We will use two well known parameters for the Orlicz function Φ: a(Φ) := sup{u >
0: Φ(u) = 0} and b(Φ) := sup{u > 0: Φ(u) <∞}.
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3.1. The characteristic of monotonicity ε0,m(LΦ) of Orlicz function spaces. We

start with the following

Lemma 3.1. Assume that Φ is an Orlicz function with a(Φ) > 0 and satisfying the

condition ∆2(∞) and let c ∈ (a(Φ),+∞). Then for any ε ∈ (0, 1) there exists δ(ε) ∈ (0, 1)

such that if x ∈ LΦ, |x(t)| ≥ c for µ−a.e. t ∈ T and IΦ(x) ≤ δ(ε) then ‖x‖Φ ≤ ε.

Proof. Since Φ ∈ ∆2(∞), so there are u0 > a(Φ) and K ≥ 2 such that Φ(2u) ≤ KΦ(u)

for any u ≥ u0. We can assume that c < u0. Since the interval [c, u0] is compact and the

function Φ(2u)
Φ(u)

is continuous on this interval, we have that L := sup
{

Φ(2u)
Φ(u)

: u ∈ [c, u0]
}
<

∞. In consequence, Φ(2u) ≤ max (K,L) Φ(u) for all u ≥ c. Let us denote the right

hand side derivative of Φ by ϕ. Since for any t ≥ c, tϕ(t) ≤ Φ(2t) ≤ γΦ(t), where

γ := max (K,L), we have

M := sup
t≥c

tϕ(t)

Φ(t)
<∞.

Therefore, taking any u ≥ c and α ≥ 1, we have∫ αu

u

ϕ(t)

Φ(t)
dt ≤

∫ αu

u

M

t
dt,

whence

Φ(αu) ≤ αMΦ(u).

In consequence, if 0 < β ≤ 1 and u ≥ 0 are such that βu ≥ c, we have

Φ(u) = Φ

(
1

β
(βu)

)
≤ 1

βM
Φ(βu),

whence

Φ(βu) ≥ βMΦ(u).

Therefore, if x ∈ LΦ and ε are as in the formulation of the Lemma, then assuming

IΦ(x) ≤ εM < 1, we have

εM ≥ IΦ(x) = IΦ

(
‖x‖Φ

x

‖x‖Φ

)
≥ ‖x‖MΦ IΦ

(
x

‖x‖Φ

)
= ‖x‖MΦ ,

whence ‖x‖Φ ≤ ε. In such a way we proved our lemma with δ(ε) := εM . �

Lemma 3.2 ([7], Lemma 4). Let µ(T ) <∞ and Φ ∈ ∆2(∞). Then for any ε ∈ (0, 1)

there is p(ε) ∈ (0, 1) such that if 1 ≥ ‖xn‖Φ ≥ 1− p(ε), then IΦ(x) ≥ 1− ε.

Theorem 3.1 ([7], Theorem 6). If µ(T ) <∞, Φ ∈ ∆2(∞) and a(Φ) > 0, then

δm,LΦ(1) = 1− a(Φ)

c(Φ)
,

where c(Φ) is the nonnegative constant satisfying the equality Φ(c(Φ))µ(T ) = 1.

Theorem 3.2. Let LΦ be an Orlicz function space. If µ(T ) < ∞, then the following

statements hold true:

(i) If Φ ∈ ∆2(∞) and a(Φ) = 0, then ε0,m(LΦ) = 0.
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(ii) If Φ ∈ ∆2(∞) and a(Φ) > 0, then ε0,m(LΦ) = a(Φ)
c(Φ)

, where c(Φ) is the nonnegative

constant satisfying the equality Φ(c(Φ))µ(T ) = 1.

(iii) If Φ /∈ ∆2(∞), then ε0,m(LΦ) = 1.

Proof. (i). If Φ ∈ ∆2(∞) and a(Φ) = 0, then the Orlicz space LΦ is uniformly monotone

(see [19]), so ε0,m(LΦ) = 0.

(ii). By Theorems 2.1 and 3.1, we have

(16) ε0,m(LΦ) ≥ a(Φ)

c(Φ)
.

Now, we will show that for any θ ∈ (0, 1) there exists σ(θ) ∈ (0, 1) (close enough to 1)

such that if 0 ≤ y ≤ x ∈ S+(LΦ) and ‖y‖Φ ≥ σ(θ), then

(17) ‖x− y‖Φ ≤ (1 + θ)
a(Φ)

c(Φ)
+ θ.

Then, by Corollary 2.1 and equality (16), we will get ε0,m(LΦ) = a(Φ)
c(Φ)

.

For any fix θ ∈ (0, 1), by Lemma 3.1, we can find δ(θ) ∈ (0, 1) such that ‖z‖Φ ≤ θ for

any z such that IΦ(z) ≤ δ(θ) and |z(t)| ≥ (1 + θ)a(Φ) for µ-a.e. t ∈ T . Next, by Lemma

3.2, we can find p(δ(θ)) ∈ (0, 1) such that IΦ(x) ≥ 1− δ(θ) whenever ‖z‖Φ ≥ 1− p(δ(θ)).
Denote σ(θ) = 1− p(δ(θ)).

Now for any fixed x and y such that 0 ≤ y ≤ x ∈ S+(LΦ) and ‖y‖Φ ≥ σ(θ) we define

the set

Ax,y = {t ∈ T : x(t)− y(t) > (1 + θ)a(Φ)} .

Since Φ is superadditive on R+, we have

1 = IΦ(x) = IΦ((x− y) + y) ≥ IΦ(x− y) + IΦ(y),

whence, by ‖y‖Φ ≥ σ(θ), we get

IΦ(x− y) ≤ 1− IΦ(y) ≤ 1− (1− δ(θ)) = δ(θ).

In consequence

IΦ

(
(x− y)χAx,y

)
≤ δ(θ)

and, by virtue of Lemma 3.1,

(18)
∥∥(x− y)χAx,y

∥∥
Φ
≤ θ.

Simultaneously, 0 ≤ (x− y)χA′x,y
≤ (1 + θ)a(Φ)χA′x,y

≤ (1 + θ)a(Φ)χT , whence

(19)
∥∥∥(x− y)χA′x,y

∥∥∥
Φ
≤ (1 + θ)a(Φ) ‖χT‖Φ = (1 + θ)

a(Φ)

c(Φ)
.

Combining (18) and (19), we get (17), and the proof is finished.

(iii). Recall also that if Φ /∈ ∆2(∞), then the Orlicz space LΦ contains an order iso-

morphically isometric copy of l∞ (see [6] and [26]), whence δm,LΦ(1) = 0 and consequently

ε0,m(LΦ) = 1. �
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Proceeding analogously as in proof of Theorem 3.2 (i) and (iii), we get the following

Theorem 3.3. Let LΦ be an Orlicz function space. If µ(T ) = ∞, then ε0,m(LΦ) = 0

whenever Φ ∈ ∆2(R) and ε0,m(LΦ) = 1 otherwise.

3.2. Characteristic of monotonicity of Orlicz sequence spaces. We start with a

result that will be important for proving the main result of this section.

Theorem 3.4. If the Orlicz function Φ satisfies the condition ∆2(0) and Φ(b(Φ)) ∈(
1
2
, 1
)
, then

δm,`Φ(1) = 1− sup {‖x‖Φ : IΦ(x) = 1− Φ(b(Φ))} .

Proof. Let us take arbitrary x such that IΦ(x) = 1− Φ(b(Φ)) and define

y = (b(Φ), |x(1)|, |x(2)|, ...) and z = (b(Φ), 0, ...).

Then 0 ≤ z ≤ y, ‖z‖Φ = ‖y‖Φ = 1 and ‖y − z‖Φ = ‖x‖Φ. Therefore,

δm,`Φ(1) ≤ 1− ‖y − z‖Φ = 1− ‖x‖Φ ,

and by the arbitrariness of x, we have

δm,`Φ(1) ≤ 1− sup {‖x‖Φ : IΦ(x) = 1− Φ(b(Φ))} .

In order to prove the opposite inequality it is enough to show that the inequality

(20) ‖y − z‖Φ ≤ sup {‖x‖Φ : IΦ(x) = 1− Φ(b(Φ))}

holds for any couple of elements y and z such that 0 ≤ z ≤ y and ‖z‖Φ = ‖y‖Φ = 1.

First assume that y(i) < b(Φ) for every i ∈ N. Since there is at most only one coordinate

i0 satisfying Φ−1
(

1
2

)
< y(i0) < b(Φ), we can find λ > 1 such that λy(i) ≤ Φ(b(Φ)) for any

i ∈ N. Hence applying the assumption that Φ ∈ ∆2(0) we get that IΦ(λy) <∞, whence

IΦ(y) = 1. Since 0 ≤ z ≤ y, then in a similar way as for y we obtain that IΦ(z) = 1. Since

Φ ∈ ∆2(0), we have a(Φ) = 0, whence we get that z(i) = y(i) for any i ∈ N. Therefore

‖y − z‖Φ = 0 and inequality (20) is true.

Let now there exists n ∈ N, for which y(n) = b(Φ). Since ‖z‖Φ = 1 and 0 ≤ z ≤ y,

we get z(n) = b(Φ). Let us denote by ȳ the element y if IΦ(y) = 1 or the element

(y(1), y(2), ..., y(n− 1), b(Φ), ȳ(n+ 1), y(n+ 2), ...), where ȳ(n+ 1) is chosen in such a way

that IΦ(ȳ) = 1. Then

‖y − z‖Φ =
∥∥(y − z)χN\{n}

∥∥
Φ
≤
∥∥yχN\{n}

∥∥
Φ
≤
∥∥ȳχN\{n}

∥∥
Φ

≤ sup {‖x‖Φ : IΦ(x) = 1− Φ(b(Φ))} ,

which finishes the proof. �

For the sake of completeness we give proofs of Lemmas 3.3 and 3.4 because we do not

know the papers in which they were also proved for degenerated Orlicz functions, that is,

for Orlicz functions Φ with Φ(b(Φ)) < 1.
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Lemma 3.3. Let Φ ∈ ∆2(0) and Φ−1
(

1
2

)
≤ a < b(Φ). Then IΦ(xm) → 1 provided

that ‖xm‖Φ → 1 for any sequence (xm) such that xm ∈ B(`Φ) and |xm(n)| < a for all

m,n ∈ N.

Proof. Assume that there exists a sequence (xm) in B(`Φ) such that ‖xm‖Φ → 1, |xm(n)| ≤
a for any m,n ∈ N and IΦ(xm) does not tend to 1 as n → ∞. Passing to a subsequence

if necessary we can assume that there exists δ > 0 such that IΦ(xm) ≤ 1 − δ for all

m ∈ N. Since Φ ∈ ∆2(0) we can find η > 1 such that η ≤ b(Φ)
a

and Φ(ηu) ≤ 1
1−δΦ(u) for

u ∈ [0, a]. Therefore IΦ(ηxm) ≤ 1
1−δIΦ(xm) = 1, whence we have ‖xm‖Φ ≤

1
η
< 1, which

is a contradiction. �

Lemma 3.4. Assume that Φ ∈ ∆2(0). Then for an arbitrary sequence (xm) such that

IΦ(xm)→ 0, we have ‖xm‖Φ → 0.

Proof. Let us take an arbitrary but fixed sequence (xm) such that IΦ(xm) → 0. We will

show that IΦ(λxm)→ 0 for arbitrary λ > 0, whence we obtain that ‖xm‖Φ → 0 (see [24]).

Take an arbitrary but fixed λ > 0 and ε > 0 and let n be the smallest natural number

such that λ ≤ 2n. Since Φ ∈ ∆2(0), there exists K > 0 such that Φ(2u) ≤ KΦ(u) for

u ≤ b(Φ)
2

. By IΦ(xm)→ 0 we can find m0 ∈ N such that

IΦ(xm) ≤ min

{
Φ

(
b(Φ)

2n+1

)
,
ε

Kn

}
for m ≥ m0. Hence |xm(n)| ≤ b(Φ)

2n+1 for any n ∈ N and m ≥ m0, and finally

IΦ(λxm) ≤ IΦ(2nxm) ≤ KnIΦ(xm) ≤ Kn ε

Kn
= ε

for m ≥ m0, which ends the proof. �

Theorem 3.5. Let `Φ be an Orlicz sequence space. Then the following statements are

true:

(i) If Φ /∈ ∆2(0) or Φ(b(Φ)) ≤ 1
2
, then ε0,m(`Φ) = 1.

(ii) If Φ ∈ ∆2(0) and 1
2
< Φ(b(Φ)) < 1, then

ε0,m(`Φ) = sup {‖x‖Φ : IΦ(x) = 1− Φ(b(Φ))} .

(iii) If Φ ∈ ∆2(0) and Φ(b(Φ)) ≥ 1, then ε0,m(`Φ) = 0.

Proof. (i). If Φ /∈ ∆2(0), then the Orlicz sequence space `Φ contains an order isomor-

phically isometric copy of `∞ (see [6] and [26]), whence δm,`Φ(1) = 0 and consequently

ε0,m(`Φ) = 1. Assume now that Φ(b(Φ)) ≤ 1
2
. Defining

x = (b(Φ), b(Φ), 0, 0, ...) and y = (b(Φ), 0, 0, 0, ...),

we have that 0 ≤ y ≤ x and x, y ∈ S+(`Φ). Moreover x − y = (0, b(Φ), 0, 0, ...), so

‖x− y‖ = 1. Consequently δm,`Φ(1) = 0, so ε0,m(`Φ) = 1.
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(ii). In the first part of the proof we will show that there exists ε0 ∈ (0, 1) such that

the inequality

sup
{
‖xχA′‖Φ : x ∈ S+(`Φ), A ⊂ N, ‖xχA‖Φ ≥ ε

}
(21)

≤ sup {‖x‖Φ : IΦ(x) = 1− Φ(ε · b(Φ))} .

is true for every ε ∈ [ε0, 1). In order to do this, let a = Φ−1
(
max

(
1
2
, 5

4
Φ(b(Φ))− 1

4

))
.

Then obviously Φ−1
(

1
2

)
≤ a < b(Φ). By virtue of Lemma 3.3, we can find ε1 ∈ (0, 1) such

that IΦ(x) ≥ Φ(b(Φ)) if ‖x‖Φ ≥ ε1, for every x ∈ B(`Φ) satisfying |x(i)| ≤ a for any i ∈ N.

Let us define the constant ε2 ∈ (0, 1) by the equality ε2 · b(Φ) = a. Since Φ ∈ ∆2(0), we

can also find ε3 from the interval (0, 1) such that the inequality

(22) Φ
(u
ε

)
≤
(

1 +
1

2

)
Φ(u)

holds for ε ∈ [ε3, 1) and u ∈ [0, a]. Finally, we put ε0 = max(ε1, ε2, ε3).

Take now arbitrary ε ∈ [ε0, 1). We will show that IΦ(xχA′ ) ≤ 1 − Φ(ε · b(Φ)) for any

x ∈ S+(`Φ) and any set A ⊂ N such that ‖xχA‖Φ ≥ ε, whence we will obtain inequality

(21). We need to consider two cases.

Let |x(i)| ≤ a for every i ∈ N. Then the definition of ε0 (ε0 ≥ ε1) yields that IΦ(xχA) ≥
Φ(b(Φ)). Hence IΦ(xχA′ ) ≤ 1− Φ(b(Φ)) < 1− Φ(ε · b(Φ)).

Assume now that there exists exactly one n ∈ N such that x(n) ∈ (a, b(Φ)]. Since

IΦ(xχN\{n}) ≤ 1− Φ(x(n)) < 1− Φ(a) ≤ 1

2
< Φ(b(Φ)),

by the definition of ε0 (ε0 ≥ ε1), we get
∥∥xχN\{n}

∥∥
Φ
< ε, whence n ∈ A. We have to

consider two different subcases.

First, if x(n) ∈ (a, ε · b(Φ)), then x(n)
ε
< b(Φ). Hence, by ‖xχA‖ ≥ ε, we get

Φ

(
x(n)

ε

)
+

∑
i∈A\{n}

Φ

(
x(i)

ε

)
≥ 1

and consequently ∑
i∈A\{n}

Φ

(
x(i)

ε

)
≥ 1− Φ

(
x(n)

ε

)
> 1− Φ(b(Φ)).

Since x(i) ≤ a for any i ∈ N\ {n}, by the definition of ε0 (ε0 ≥ ε3) and inequality (22),

we obtain ∑
i∈A\{n}

Φ (x(i)) ≥ 2

3
(1− Φ(b(Φ))) .

Therefore

IΦ(xχA) = Φ(xn) +
∑

i∈A\{n}

Φ(x(i)) ≥ Φ(a) +
2

3
(1− Φ(b(Φ)))

≥
(

5

4
Φ(b(Φ))− 1

4

)
+

(
2

3
− 2

3
Φ(b(Φ))

)
≥ Φ(b(Φ)),

whence IΦ(xχA′ ) ≤ 1− Φ(b(Φ)) < 1− Φ(εb(Φ)).
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Let now x(n) ∈ [ε · b(Φ), b(Φ)). Then

(23) IΦ(xχA′ ) = 1− IΦ(xχA) ≤ 1− Φ(x(n)) ≤ 1− Φ(εb(Φ)).

It is worth noticing that in the above inequality we can obtain the equality for A = {n}
and x(n) = ε · b(Φ).

In the second part of the proof we will show that

(24) lim
ε→1−

sup {‖x‖Φ : IΦ(x) = 1− Φ(ε · b(Φ))} = sup {‖x‖Φ : IΦ(x) = 1− Φ(b(Φ))} ,

whence, by virtue of inequality (21) and Corollary 2.2, we will get

(25) ε0,m(`Φ) = ε̂0,m(`Φ) ≤ sup {‖x‖Φ : IΦ(x) = 1− Φ(b(Φ))} .

Since, by Theorem 3.4, we have the opposite inequality to (25), the proof will be finished.

Let ε ∈ [ε0, 1). Then for arbitrary x satisfying IΦ(x) = 1 − Φ(ε · b(Φ)) we can find y

such that 0 ≤ y ≤ x and IΦ(y) = 1− Φ(b(Φ)). By superadditivity of the Orlicz function

Φ, we can write

Φ(x(n)) = Φ(x(n)− y(n) + y(n)) ≥ Φ(x(n)− y(n)) + Φ(y(n))

for n ∈ N, whence

IΦ(x− y) ≤ IΦ(x)− IΦ(y) = Φ(b(Φ))− Φ(ε · b(Φ)).

Since Φ is left continuous at b(Φ), by Lemma 3.4, there is σ(ε) > 0 such that ‖x− y‖Φ ≤
σ(ε), whence ‖x‖Φ ≤ ‖y‖Φ + σ(ε). Consequently

(26) sup {‖x‖Φ : IΦ(x) = 1− Φ(ε · b(Φ))} ≤ sup {‖x‖Φ : IΦ(x) = 1− Φ(b(Φ))}+ σ(ε).

Assuming now that ε→ 1− and applying again Lemma 3.4 we have that σ(ε)→ 0, which

gives (24).

(iii). It is well known that the condition Φ ∈ ∆2(0) implies that a(Φ) = 0, which

together with the condition Φ(b(Φ)) ≥ 1 gives that `Φ is uniformly monotone (see [19]),

that is, ε0,m(`Φ) = 0. �

Remark 3.1. Formulas given in Theorems 3.4 and 3.5(ii), respectively, are not com-

pletely constructive because they are not expressed in terms of the generating Orlicz

function only. However, finding better i.e. ”more evident” formulas will be probably very

difficult because these formulas can have different forms depending on the Orlicz function

Φ. We will illustrate this phenomena in some examples below.

In Example 3.1 we will show that for some Orlicz functions Φ

sup {‖x‖Φ : IΦ(x) = 1− Φ(b(Φ))} =
Φ−1(1− Φ(b(Φ)))

b(Φ)
.
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Example 3.1. Assume that Φ(u) = un for u ∈ [0, b(Φ)] and Φ(u) = ∞ for u ∈
(b(Φ),∞), where n ∈ N and b(Φ) ∈

(
n

√
1
2
, 1
)

. Let us take arbitrary x such that IΦ(x) =

1− Φ(b(Φ)) = 1− (b(Φ))n. We will consider two cases separately.

First assume that µ(suppx) = 1, i.e. |x| = Φ−1(1− Φ(b(Φ)))ei = n
√

(1− (b(Φ))n)ei for

some i ∈ N. Then

IΦ

(
x

Φ−1(1−Φ(b(Φ)))
b(Φ)

)
=

(
n
√

1− (b(Φ))n
)n

(
n
√

1−(b(Φ))n
)n

(b(Φ))n

= (b(Φ))n < 1.

Simultaneously, for λ < Φ−1(1−Φ(b(Φ)))
b(Φ)

, we have that |x(i)|
λ

> b(Φ), whence IΦ

(
x
λ

)
=∞ and

consequently ‖x‖Φ = Φ−1(1−Φ(b(Φ)))
b(Φ)

.

Assume now that µ(suppx) ≥ 2. Then there exists δx > 0 such that |x(i)| ≤
Φ−1 (1− Φ(b(Φ)))− δx = n

√
1− (b(Φ))n − δx for any i ∈ suppx. Then

IΦ

(
x

Φ−1(1−Φ(b(Φ)))
b(Φ)

)
=

∑
i∈suppx

|x(i)|n

(
n
√

1−(b(Φ))n
)n

(b(Φ))n

=
(1− (b(Φ))n) · (b(Φ))n

1− (b(Φ))n
< 1.

Since Φ ∈ ∆2(0), there exists λ < Φ−1(1−Φ(b(Φ)))
b(Φ)

such that IΦ

(
x
λ

)
< 1, so ‖x‖Φ <

Φ−1(1−Φ(b(Φ)))
b(Φ)

.

In the next example we will find an Orlicz function Φ, for which

sup {‖x‖Φ : IΦ(x) = 1− Φ(b(Φ))} =
Φ−1(1−Φ(b(Φ))

2
)

Φ−1(1
2
)

.

Example 3.2. Let

Φ(u) =


u for u ∈

[
0, 5

50

)
5u− 2

5
for u ∈

[
5
50
, 12

50

]
∞ for u > 12

50
.

Then b(Φ) = 12
50

, Φ
(

12
50

)
= 8

10
, Φ−1

(
1− Φ

(
12
50

))
= Φ−1

(
2
10

)
= 6

50
, Φ−1

(
1−Φ( 12

50
)

2

)
= 1

10
and

Φ−1
(

1
2

)
= 9

50
, so

Φ−1
(

1−Φ( 12
50

)

2

)
Φ−1

(
1
2

) =
5

9
.

For x such that µ(supp(x)) = 2 and |x(i)| = 1
10

for i ∈ supp(x), we have that IΦ(x) =

1− Φ
(

12
50

)
= 2

10
and IΦ

(
x
5
9

)
= 5

(
9
5
· 1

10

)
− 2

5
= 1, whence ‖x‖Φ = 1.

Notice also that if |x| = 6
50
ei for some i ∈ N, then IΦ(x) = 2

10
and ‖x‖Φ = 1

2
< 5

9
.

Finally, let us take arbitrary x such that IΦ(x) = 2
10

, µ(supp(x)) ≥ 2 and |x(i)| 6= 1
10

for

some i ∈ supp(x). It is easy to see that we can find j ∈ supp(x) for which |x(j)| < 1
10

.
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Moreover, Φ(u) ≥ u for any u ≥ 0. Hence, denoting by ϕ(t) the right hand-side derivative

of the Orlicz function Φ, we have

IΦ

(
x
5
9

)
=

∑
i∈supp(x)

Φ

(
9

5
x(i)

)

=
∑

i∈supp(x)

(
Φ

(
9

5
x(i)

)
− Φ(x(i))

)
+

∑
i∈supp(x)

Φ(x(i))

=
∑

i∈supp(x)

9
5
x(i)∫
x(i)

ϕ(t)dt+ 0, 2 <
∑

i∈supp(x)

9
5
x(i)∫
x(i)

5dt+ 0, 2

= 5

(
9

5
− 1

)∑
xi + 0, 2 ≤ 1.

This inequality and Φ ∈ ∆2(0) imply that ‖x‖Φ <
5
9
.

In the last example we will show that for some Orlicz functions Φ,

sup {‖x‖Φ : IΦ(x) = 1− Φ(b(Φ))} > max

Φ−1(1− Φ(b(Φ))

b(Φ)
, sup
n≥2

Φ−1
(

1−Φ(b(Φ))
n

)
Φ−1

(
1
n

)
 .

Example 3.3. Let

Φ(u) =


u for u ∈

[
0, 11

100

]
5u− 44

100
for u ∈

(
11
100
, 20

100

]
6u− 64

100
for u ∈

(
20
100
, 24

100

]
∞ for u > 24

100
.

Then b(Φ) = 24
100

, Φ (b(Φ)) = 8
10

and Φ−1
(
1− Φ

(
24
100

))
= Φ−1

(
2
10

)
= 16

125
, so

Φ−1
(
1− Φ

(
24
100

))
b(Φ)

=
8

15
.

Since
1−Φ( 24

100)
n

≤ 1
10

for n ≥ 2, we have

Φ−1

(
1− Φ

(
24
100

)
n

)
=

1− Φ
(

24
100

)
n

=
2

10n

for n ≥ 2. Obviously Φ−1
(

1
n

)
= 1

n
for n ≥ 10, whence

Φ−1

(
1−Φ( 24

100)
n

)
Φ−1

(
1
n

) =
2

10
.

for the same n. By Φ−1
(

1
n

)
< 2

10
for n = 2, ..., 9, we get Φ−1

(
1
n

)
= 100+44n

500n
for the same

n. Thus for such n (i.e. for n = 2, ..., 9) we get

Φ−1
(

1−Φ( 24
100

)

n

)
Φ−1

(
1
n

) =
2

10n
100+44n

500n

=
25

25 + 11n
≤ 25

47
.
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Finally,

max

Φ−1
(
1− Φ( 24

100
)
)

b(Φ)
, sup
n≥2

Φ−1
(

1−Φ( 24
100

)

n

)
Φ−1

(
1
n

)
 =

8

15
.

Simultaneously, for x such that |x| = 11
100
ei + 9

100
ej for some i, j ∈ N, we obtain that

IΦ(x) = 2
10

and ‖x‖Φ = 11
208

, so sup
{
‖x‖Φ : IΦ(x) = 1− Φ

(
24
100

)}
> 8

15
.
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and Orlicz-Lorentz spaces, Houston Journal of Mathematics, Vol. 22(3) (1996), 639-663.
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