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Abstract

We consider the steady motion of an incompressible fluid whose viscosity depends on the pressure
and the shear rate. The system is completed by suitable boundary conditions involving non-
homogeneous Dirichlet, Navier’s slip and inflow/outflow parts. We prove the existence of weak
solutions and show that the resulting level of the pressure is fixed by the boundary conditions. The
problem is motivated by particular applications from tribology.
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1. Introduction

When mathematically describing the flow of an incompressible viscous fluid, a common hypoth-
esis is that the viscous forces are a linear function of the velocity gradient and are independent
of other variables, namely the pressure. Such assumption is inherent with the model of the so-
called Newtonian fluid governed by the Navier–Stokes system. A number of generalizations have
been made in order to capture phenomena that are observed in various fluids at various operat-
ing conditions and cannot be covered by the Newtonian model. Two such features are addressed
in this paper: the shear-thinning, where the viscosity decreases with the shear rate, and the
pressure-thickening, where it increases with the pressure. It is worth noting that the assumption of
pressure-independent viscous forces was recognised already by Stokes [42] to be valid only within
a limited range of pressures. Note also that while changes of the viscosity due to the pressure can
be severe, density variations can remain insignificant by comparison, so that the assumption of
incompressibility is not violated.

There is a particular distinction of the pressure-thickening models, which partly inspired our
study. It is a well-known property of the equations describing the motion of incompressible fluids
that the pressure is determined to within a constant. As fas as only the pressure gradient is involved
in the governing equations, this constant does not play important role. However, as soon as the
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Figure 1: Three examples of journal bearing problem setting.

pressure affects the viscosity, the level of the pressure is conjugate to the whole solution, including
the velocity field. Therefore, the system of PDEs has to be completed by an additional constraint
fixing the level of pressure. Such constraint—usually attracting no particular attention—becomes
an important part of the model.

In previous theoretical studies, such as [15, 19, 28], the mean value of the pressure over the
domain (or its non-trivial subdomain) was prescribed as an input parameter. A difficulty of this
approach lies in the fact that the pressure mean value is not a proper quantity from the practical
point of view, i.e. there is no hint on what value should be prescribed for a particular application.
In [29], we showed that the pressure level is fixed in a natural way in the case that suitable
boundary conditions, allowing flow through the boundary, are given. In the present paper we keep
this approach.

To motivate the model presented hereafter, let us advert to the following applications, all
concerned with the flow of a lubricant inside a journal bearing. Both the shear-thinning and the
pressure-thickening are of particular importance to the lubrication theory,1 see e.g. [1, 5, 6, 22,
30, 40] or the book by Szeri [43] and the references given therein. The problem setting can follow
several situations; we took the liberty to choose three examples.

Finite journal bearing
A three-dimensional setting is depicted in Fig. 1a. The fluid is enclosed in between the cylin-

drical journal and the inner surface of cylindrical bearing; the flow is induced by the rotation of the
journal around its axis, while the bearing is held steady. Usually, the no-slip (non-homogeneous
Dirichlet) boundary condition is prescribed on the solid surfaces:

vvv = 000 on ΓB and vvv = vvvD , vvvD ·nnn = 0 on ΓJ , (1.1a)

denoting by vvv the velocity of the fluid, vvvD the velocity of the solid surface and nnn the unit outward
normal vector to the boundary. The ends of the bearing are immersed in a lubricant pool and it

1The theory presented below, however, is far from aiming the full complexity of the journal bearing lubrication
problem: we do not consider thermal effects, cavitation of the fluid, elastic response of the solid boundaries, to name
some of the phenomena that are deliberately neglected.
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is assumed that the entire area Ω between the cylinders is filled with the lubricant (such that no
free-boundary is involved). The flow at the interface between the domain Ω and the reservoir can
be approximated by prescribing

−Tnnn ·nnn+ 1
2 |vvv|

2 = h and − (Tnnn)τττ = 000 on ΓP . (1.1b)

Here wwwnnn := (www · nnn)nnn and wwwτττ := www −wwwnnn for any vector www defined on the boundary ∂Ω. T stands
for the Cauchy stress tensor, h is the value of total pressure at the boundary ΓP . As will be shown
later, h ≡ h(xxx) determines the level of pressure in the resulting flow. Other formulas than (1.1b)1

could be considered2.

Slip flow and a supply channel
In Fig. 1b, a two-dimensional setting (established as the long-bearing approximation) is illus-

trated. Here we relax the assumption of that the fluid adheres to the solid boundary and—instead
of (1.1a)—we prescribe the non-homogeneous Navier slip boundary condition

vvv ·nnn = 0 and − (Tnnn)τττ = α (vvv − vvvD)τττ , α ≥ 0 on ΓJ ∪ ΓB, (1.2a)

vvvD being again the velocity of the solid surface, vvvD · nnn = 0. The assumption of slip or no-slip
at the boundary is a complex issue in the continuum mechanics of viscous fluids and the precise
circumstances determining the validity of these assumptions are subject to an unceasing concern,
see e.g. [21, 34].

Boundary ΓP approximates a thin channel through the bearing body (supplying the area by
the lubricant); similarly as in the previous example we prescribe

−Tnnn ·nnn+ 1
2 |vvv|

2 = h(xxx) and − (Tnnn)τττ = αvvvτττ , α ≥ 0 on ΓP . (1.2b)

Again, h represents the total pressure on ΓP and determines the resulting pressure level.

Porous bearing
Slightly different setting is shown in Fig. 1c. Both the journal and the bearing bodies consist of

a porous material, permitting some flow both through the surface and in the tangential direction,
see e.g. [20, 38]. Here, avoiding to couple the flow in Ω with the flow in the porous media, we
merely approximate the porous wall by a suitable boundary condition. Keeping the example even
more simple, we imagine a reservoir with a known pressure h(xxx) on the opposite side of the porous
wall. We consider a boundary condition of the following type:

−Tnnn ·nnn = h(xxx) + (c1 + c2 |uuu|+ c3 |uuu|2)uuu ·nnn ,
− (Tnnn)τττ = (c̃1 + c̃2 |uuu|+ c̃3 |uuu|2)uuuτττ ,

}
on ΓJ ∪ ΓB, (1.3a)

(1.3b)

2Let us note that a special assumption (B2) will be imposed (see page 6) in order to show the mathematical
self-consistency of the model. It excludes for instance

−Tnnn ·nnn = h(xxx)

to be considered, see also [29]. Since ΓP is an artificial boundary, the choice of proper boundary condition is not
obvious in general, see e.g. the discussion in [23].
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with ci, c̃i ≥ 0, i = 1, 2, 3. Here uuu = vvv − vvvD denotes the velocity relative to the motion of the wall.
The constants reflect the geometrical and permeability characteristics of the porous wall.

Eq. (1.3a) can be found in the literature as the filtration boundary condition, usually with
c1 > 0 and c2 = c3 = 0; this corresponds to the Darcy equation, which governs the flow in the
porous media (see [10, 39]) under the assumption of small velocity—the assumption well met in
the most of practical applications. Since the theory presented below is not restricted to slow flows,
the boundary conditions have to reflect that as well. Due to (B2) (page 6), either c2, c̃2 ≥ 1

2 or
c3 > 0 will be required in (1.3) for our analysis. This is, however, perfectly consistent with the
physics as these terms correspond to well estabished corrections to Darcy equation due to inertial
effects, namely the Forchheimer equation, see [10, 18].

Similarly, the relation (1.3b) with only the linear term present is well known as Beavers–
Joseph(–Saffman–Jones) condition for flows past porous media based on experimental observations,
see [11, 25, 35, 41]. This is, again, used for relatively slow flows, see e.g. [37]. Here, the higher-
order terms in (1.3b) appear consistently with (1.3a). Note that a permeable boundary condition
complemented with the no-slip assumption in the tangential direction is sometimes formulated;
that case is not covered in this paper, cf. [29].

Boundary conditions modelling the presence of porous wall, which would involve shear-thinning
and pressure-thickening fluids as well as the inertial effects are, up to our best knowledge, not
treated in the literature. Concerning the flow within the porous medium, we refer to the re-
cent works [26, 39], where both the fluids with shear rate- and pressure-dependent viscosity are
considered; but only slow velocities relative to the porous medium are assumed, however.

The assumption (B2), requiring the presence of higher-order terms in (1.2b)1 and (1.3), allows
to control the kinetic energy coming to the system due to flow through its boundary. In practical
applications, the modeller might know a priori (e.g. due to a special setting of the problem) that
the overall added kinetic energy is limited. In such case, (B2) seems not to be required any more.

The focus of this paper is in the question of mathematical self-consistency of the model de-
scribing the flow of a lubricant, namely the existence of a weak solution to the governing system
of equations. The paper is organised as follows. In Section 2 we specify the governing equations,
briefly review previous results and present the necessary tools. The existence of a weak solution—
the main result of the paper—is then proved in Section 3. The uniqueness is finaly discussed in
Section 4.

2. Definition of the problem and the main result

We investigate the steady flow of an incompressible homogeneous viscous fluid in a bounded
domain Ω ⊂ Rd with the Lipschitz boundary, d = 2 or 3, governed by the following system of
PDEs:

div(vvv ⊗ vvv)− div T = fff
divvvv = 0

}
in Ω, (2.1)

where vvv, fff , T is the velocity, the body force and the Cauchy stress tensor, respectively. The
following constitutive relation is considered:

T = −pI + S , where S ≡ S(p,D(vvv)) = 2 ν(p, |D(vvv)|2)D(vvv) , (2.2)

with p the kinematic pressure, ν(p, |D(vvv)|2) the kinematic viscosity and D(vvv) = 1
2(∇vvv +∇vvvT ) the

symmetric part of the velocity gradient.
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While the mathematical consistency of models with shear rate-dependent viscosity—in par-
ticular those linked to the power-law model—have been studied systematically for some decades,
a theory involving the pressure-thickening fluids has been developed only recently. For a thorough
survey and more references see [32, 33] (for unsteady flows) and [19] (for steady flows), more recent
accomplishments can be found in [15–17, 24]. The theory is based on the monotone operators
approach and is bottomed on the structure of the viscous stress described below.

We use the following notation: W1,r(Ω), Lp(Ω) for the Sobolev and the Lebesgue space, re-
spectively, ‖ · ‖1,r and ‖ · ‖p for their standard norms. Lp0(Ω) denotes the subspace of Lp(Ω) of
functions with zero mean value. Bold symbols stand for their vector-valued analogues. The Hölder
conjugate index is denoted p′ := p

p−1 , while p∗ := (d−1)p
d−p relates to the space of traces imbedding:

tr(W1,p(Ω)) ↪→ Lp
∗
(∂Ω). We often omit the trace operator, writing e.g. vvv = vvvD on ∂Ω.

2.1. Structural assumptions
We consider S with the following properties:

(A1) For a given r ∈ (1, 2), there are positive constants C1 and C2 such that for all B, D ∈ Rd×d
sym

and all p ∈ R:

C1(1 + |D|2)
r−2

2 |B|2 ≤ ∂S(p,D(vvv))
∂D

· (B⊗B) ≤ C2(1 + |D|2)
r−2

2 |B|2 ,

where (B⊗B)ijkl = BijBkl.

(A2) For all D ∈ Rd×d
sym and for all p ∈ R:∣∣∣∣∂S(p,D(vvv))

∂p

∣∣∣∣ ≤ γ0(1 + |D|2)
r−2

4 ≤ γ0 ,

with γ0 > 0 specified in (3.1)2 below.

We state some implications of (A1) and (A2). It was proven in [31, Lemma 1.19 of Chapter 5],
that for every p ∈ R and D ∈ Rd×d

sym :

|S(p,D)| ≤ C2

r − 1
(1 + |D|)r−1 , (2.3a)

S(p,D) : D ≥ C1

2r
(|D|r − 1) . (2.3b)

Next, defining

I1,2 := |D1 −D2|2
ˆ 1

0

(
1 + |D1 + s(D2 −D1)|2

) r−2
2 ds ,

one can show that (see e.g. [15, Lemma 1.4])

C1

2
I1,2 ≤

(
S(p1,D1)− S(p2,D2)

)
: (D1 −D2) +

γ2
0

2C1
|p1 − p2|2 , (2.4a)

|S(p1,D1)− S(p2,D2)| ≤ C2

√
I1,2 + γ0|p1 − p2| , (2.4b)

‖1 + |D1|+ |D2|‖r−2
r ‖D1 −D2‖2r ≤

ˆ
Ω
I1,2 dxxx (2.4c)
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for all p1, p2 ∈ R and D1,D2 ∈ Rd×d
sym.

The structure of (A1) and (A2) manifests a dominant (for large D and p) shear-thinning
behavior, while changes of the viscosity due to the pressure are restrained. This appears as a natural
requirement of the approach we use; cf. [16].

Most of the engineering literature relies on the exponential pressure–viscosity relation by
Barus [9]

ν = ν0 exp(α0 p), ν0, α0 > 0 (2.5)

based on the experimental evidence; see [3, 13] or [4, 7, 8]. It is worth mentioning that no existence
theory that would cover the viscosity of the above form is available at the moment. However, one
can consider for example a model of the following type

ν = ν0

(
ν1 + ν2|D(vvv)|2 + exp(2α0

r−2 p
+)
) r−2

2
, p+ := max(0, p) ,

which approximates (2.5) in some limited range of parameters p, D(vvv). For suitable constants
νi > 0, i = 0, 1, 2, the latter is covered by (A1)–(A2); see e.g. [32].

2.2. Boundary conditions
This paper generalizes the result by Franta et al. [19], which was formulated for flows subject

to the homogeneous Dirichlet boundary condition; note that in such setting a non-trivial flow
can only be induced by non-potential body forces fff . The non-homogeneous Dirichlet boundary
condition was studied in [28]. In [29], the homogeneous Dirichlet and inflow/outflow conditions
were considered and it was shown that such setting makes the level of pressure fixed. Here we show
that the latter two studies can be extended to cover the three examples from Section 1.

Let the domain boundary consist of three parts: ∂Ω = ΓD ∪ ΓN ∪ ΓP , |ΓP | > 0, on which we
prescribe (cf. (1.1)–(1.3)):

vvv = vvvD , vvvD ·nnn = 0 on ΓD , (2.6a)

vvv ·nnn
(−Tnnn)τττ

= 0
= α (vvv − vvvD)τττ , α ≥ 0

}
on ΓN , (2.6b)

−Tnnn = ggg(vvv − vvvD) on ΓP . (2.6c)

The following assumptions concerning3 (2.6a) and (2.6c) are made:

(B1) There exists a constant γ ≥ 3 such that the mapping ggg(·) : Lγ(ΓP )→ Lγ
′
(ΓP ) is continuous

and bounded.

(B2) With some4 B1, B2 ∈ R and Bc ≥ 0,

〈ggg(uuu),uuu〉ΓP ≥ −
1
2

ˆ
ΓP

(uuu ·nnn)|uuu+ vvvD|2 dxxx−B1 ‖uuu‖r∗,ΓP −B2 +Bc ‖uuu‖γγ,ΓP (2.7)

for all uuu ∈ Lγ(ΓP ) ∩ Lr
∗
(ΓP ); remind that r∗ := (d−1)r

d−r . Moreover, if γ > r∗ then we require
the coercivity: Bc > 0.

3We could also consider more general form of (2.6b)2 and pose assumptions analogous to (B1)-(B3). For
simplicity of notation we confine ourselves to the Navier slip (2.6b)2.

4Terms with B1, B2 represent any terms of lower order than ‖uuu‖r1,r. Similarly, Bc ‖uuu‖γγ,ΓP
could be replaced by

any coercive function of ‖uuu‖γ,ΓP . See also Lemma 2.3.
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(B3) If γ ≥ r∗, then ggg is uniformly5 monotone:

〈ggg(www)− ggg(zzz),www − zzz〉ΓP ≥ m(‖www − zzz‖γ,ΓP ) , (2.8)

for all www 6= zzz ∈ Lγ(ΓP ). Here m : R+ → R+ is a continuous function such that lim
x↘0

m(x) = 0.

(BD) The function vvvD in (2.6) is realized by the trace of a function uuu0 with the following properties:

uuu0 ∈W1,r(Ω) ∩ L∞(Ω) , divuuu0 = 0 a.e. in Ω,
uuu0 = vvvD , vvvD ·nnn = 0 on ∂Ω.

In the existence proof we will need6a specific extension of vvvD, based on the following lemma, proved
in [28, Lemma 3 and Corollary 4].

Lemma 2.1. Let Ω ⊂ Rd be a domain with Lipschitz boundary, r > 2 − 1
d . Let ΦΦΦ ∈ W1,r(Ω) ∩

L∞(Ω), ΦΦΦ ·nnn = 0 on ∂Ω. Then for each H > 0 there exists λH ≥ 1 and ΦΦΦH ∈W1,r(Ω) such that

divΦΦΦH = 0 a.e. in Ω,

trΦΦΦH = trΦΦΦ on ∂Ω,

‖ΦΦΦH‖1,r ≤ HλH ,
‖ΦΦΦH‖q ≤ Hλr−2

H , q = dr
(d+1)r−2d .

2.3. Weak formulation
We define the following function space

W1,r
b.c.(Ω) :=

{
uuu ∈W1,r(Ω) ; truuu

∣∣
ΓD

= 000 , truuu ·nnn
∣∣
ΓN

= 0 , truuu
∣∣
ΓP
∈ Lγ(ΓP )

}
and for all uuu,ϕϕϕ ∈W1,r

b.c.(Ω) we write:

〈bbb(uuu),ϕϕϕ〉 := α

ˆ
ΓN

uuuτττ ·ϕϕϕτττ dxxx+ 〈ggg(uuu),ϕϕϕ〉ΓP .

Given fff ∈W1,r(Ω)∗, we consider the following weak formulation:

Definition 2.2 (Problem (P)). A pair (vvv, p) is said to be a weak solution of Problem (P) if and
only if uuu := (vvv − uuu0) ∈W1,r

b.c.(Ω), p ∈ Lr
′
(Ω), divvvv=0 a.e. in Ω and

ˆ
Ω

div(vvv ⊗ vvv) ·ϕϕϕdxxx+
ˆ

Ω
S(p,D(vvv)) : D(ϕϕϕ) dxxx−

ˆ
Ω
p divϕϕϕdxxx+ 〈bbb(uuu),ϕϕϕ〉 = 〈fff,ϕϕϕ〉 (2.9)

for all ϕϕϕ ∈W1,r
b.c.(Ω).

5For the sake of simplicity, the uniform monotonicity is assumed here. The readers can verify themselves, that
the monotonicity of ggg would also allow to show the existence of a weak solution, with help of the Minty trick.

6The procedure of finding a suitable extension of vvvD and the splitting vvv = uuu+uuu0 used below is, in fact, necessary
only in order to handle the Dirichlet boundary condition, i.e. only if |ΓD| > 0. Indeed, assumption (BD) can be
reformulated requiring only uuu0 = vvvD on ΓD, with uuu0 arbitrary on ΓN ∪ ΓP . But then, vvv − vvvD in (2.6b) and (2.6c)
would not be the same as uuu but, instead, would become uuu + uuu0 − vvvD, cf. (2.9). We prefer the above formulation of
(BD) so as to simplify the notation in what follows.
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Note that, in accordance with [19, 28], we will make the restriction r > 3d
d+2 (see (3.1)1 below),

so that the equation (namely the convective term) can be tested by the solution; due to (2.3a),
(B1) and (BD), all integrals in (2.9) are finite. The previous theory has been extended to include
smaller values of r, see [14] (and the short note [27], eventually). Note that r > 3d

d+2 ⇔ r∗ > 3.
Before stating the main theorem, we present the following variant of the Korn inequality:

Lemma 2.3 (Korn’s inequality). Remind that α,Bc ≥ 0 and γ ≥ 3. Let at least one of the
following apply:

i) |ΓD| > 0,
ii) |ΓN | > 0 and ΓN is not a part of boundary of any rotational body in Rd,

iii) |ΓN | > 0 and α > 0,
iv) |ΓP | > 0 and Bc > 0.

Then, with some cK ≡ cK(Ω,ΓD,ΓN ,ΓP , r), the following inequality holds for any uuu ∈W1,r
b.c.(Ω):

‖uuu‖r1,r ≤ cK‖D(uuu)‖rr + α ‖uuuτττ‖22,ΓN +Bc‖uuu‖γγ,ΓP . (2.10)

Proof. The case i) with ΓD = ∂Ω, namely the inequality

c(Ω, p) ‖uuu‖1,p ≤ ‖D(uuu)‖p , for any uuu ∈W1,p
0 (Ω), p ∈ (1,+∞),

can be found e.g. in [31, Theorem 1.10 on p. 196]. Its proof, in fact, covers even i) and ii) as
formulated above; it is merely to notice that a vector field of the form uuu = aaa + bbb × xxx contradicts
‖uuu‖p = 1 under either of the assumptions uuu = 000 on ΓD, or uuu ·nnn = 0 on ΓN , with ΓD, ΓN as above.
The inequality

c(Ω, p) ‖uuu‖1,p ≤ ‖D(uuu)‖p + ‖uuu‖2,∂Ω , for any uuu ∈W1,p(Ω), p ∈ (1,+∞),

is then stated e.g. in [15, Lemma 1.11], but its proof again covers7 also iii) and iv).

We also recall some properties of the Bogovskii operator (see [36, Lemma 3.17] or [2, 12]) and
state its corollary (proved in [29]).

Lemma 2.4 (Bogovskii’s operator). Let t ∈ (1,∞). Then there exists a continuous linear
operator B : Lt0(Ω)→W1,t

0 (Ω) such that for all f ∈ Lt0(Ω):

div(Bf) = f a.e. in Ω,
‖Bf‖1,t ≤ Cdiv(Ω, t)‖f‖t.

}
(2.11)

Lemma 2.5. Let t ∈ (1,∞), s ∈ 〈1,∞〉, and |ΓP | > 0. Then there exists a continuous bounded
linear operator B̃ : Lt(Ω)→W1,t

b.c.(Ω) such that for all f ∈ Lt(Ω):

div(B̃f) = f a.e. in Ω,
‖B̃f‖1,t ≤ C̃div(Ω,ΓP , t)‖f‖t,
‖B̃f‖s,ΓP ≤ C ′div(Ω,ΓP , s)

∣∣´
Ωf
∣∣ .

 (2.12)

7And, for any |Γ| > 0, Γ ⊂ ∂Ω not lying on boundary of any rotational body, one can also see that
c(Ω,Γ, p) ‖uuu‖1,p ≤ ‖D(uuu)‖p + ‖uuu ·nnn‖2,Γ.
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3. Existence of a weak solution

Theorem 3.1 (Well-posedness of (P)). Let fff ∈ W1,r(Ω)∗ and (A1), (A2) hold for the vis-
cosity, (B1)–(B3) and (BD) hold for the boundary data, with

3d
d+ 2

< r < 2 and γ0 <
1

C̃div(Ω,ΓP , 2)

C1

C1 + C2
(3.1)

and the Korn’s inequality (2.10) hold. Then there exists a weak solution (vvv, p) := (uuu+uuu0, p) to (P).
Moreover, the pressure is uniquely determined by the velocity.

The basic structure of the proof derives from that by Franta et al. [19]: In 3.1, we define
an approximate problem (Pε), establish the energy estimates and show the existence of a weak
solution to (Pε) via Galerkin approximations. In 3.2, we show estimates for the pressure pε which
are uniform with respect to ε and find the sequences εn ↘ 0, {(vvvεn, pεn)} weakly converging to a
limit (vvv, p). In 3.3, the strong convergence of pεn and D(vvvεn) is shown and (vvv, p) is identified as the
weak solution to problem (P).

3.1. Approximate problem (Pε)
We relax the incompressibility constraint and look for a pair (vvvε, pε) := (uuuε +uuu0, p

ε) such that
(uuuε, pε) ∈W1,r

b.c.(Ω)×W1,2(Ω), ε > 0, satisfying

ε

ˆ
Ω
∇pε · ∇ξ dxxx+ ε

ˆ
Ω
pε ξ dxxx+

ˆ
Ω

(divvvvε)ξ dxxx = 0 for all ξ ∈W1,2(Ω) , (3.2a)

together with
ˆ

Ω
div(vvvε ⊗ vvvε) ·ϕϕϕdxxx− 1

2

ˆ
Ω

(divvvvε)uuuε ·ϕϕϕdxxx−
ˆ

Ω
pε divϕϕϕdxxx

+
ˆ

Ω
S(pε,D(vvvε)) : D(ϕϕϕ) dxxx+ 〈bbb(uuuε),ϕϕϕ〉 = 〈fff,ϕϕϕ〉 for all ϕϕϕ ∈W1,r

b.c.(Ω) . (3.2b)

Due to (2.3a), (B1), (BD) and (3.1)1, all integrals are finite. Note that (contrary to the case
studied in [19]) equation (3.2a) does not determine the mean value of the pressure

ffl
Ω p

ε dxxx, since
vvvε ·nnn|ΓP is not prescribed a priori.

We show that (vvvε, pε) can be found as a limit of the Galerkin approximations (vvvN , pN ) defined
as follows:

pN :=
N∑
k=1

cNk αk and vvvN := uuu0 + uuuN , uuuN :=
N∑
k=1

dNk aaak for N = 1, 2, . . . ,

where {αk}∞k=1 and {aaak}∞k=1 are bases of W1,2(Ω) and W1,r
b.c.(Ω), respectively, and where cccN :=

(cN1 , . . . , c
N
N ) and dddN := (dN1 , . . . , d

N
N ) solve the equation

P (cccN , dddN ) = 000 . (3.3)

The mapping P : R2N → R2N is defined as follows:

Pk(cccN , dddN ) := ε

ˆ
Ω
∇pN · ∇αk dxxx+ ε

ˆ
Ω
pN αk dxxx+

ˆ
Ω

(divvvvN )αk dxxx , k = 1, . . . , N , (3.4a)
9



PN+l(cccN , dddN ) :=
ˆ

Ω
div(vvvN ⊗ vvvN ) · aaal dxxx−

1
2

ˆ
Ω

(divvvvN )uuuN · aaal dxxx−
ˆ

Ω
pN div(aaal) dxxx

+
ˆ

Ω
S(pN ,D(vvvN )) : D(aaal) dxxx+ 〈bbb(uuuN ), aaal〉 − 〈fff,aaal〉 , l = 1, . . . , N . (3.4b)

We realize that

P (cccN , dddN ) · (cccN , dddN ) = ε‖pN‖21,2 +

=: Iconv︷ ︸︸ ︷ˆ
Ω

div(vvvN ⊗ vvvN ) · uuuN dxxx− 1
2

ˆ
Ω

(divvvvN ) |uuuN |2 dxxx

+
ˆ

Ω
S(pN ,D(vvvN )) : D(uuuN ) dxxx+ 〈bbb(uuuN ),uuuN 〉 − 〈fff,uuuN 〉 . (3.5)

Using Green’s theorem, we observe:

Iconv =
1
2

ˆ
ΓP

(uuuN ·nnn)|vvvN |2 dxxx− 1
2

ˆ
ΓP

(uuuN ·nnn)|vvvD|2 dxxx−
ˆ

Ω
(vvvN ⊗ uuu0) : ∇uuuN dxxx. (3.6)

Due to the imbeddings and trace operator properties and r > 3d
d+2ˆ

Ω
|vvvN ||uuu0||∇uuuN |dxxx ≤ c1 (‖uuuN‖21,r‖uuu0‖q + ‖uuuN‖1,r‖uuu0‖2q) , with q := dr

(d+1)r−2d ,

1
2

ˆ
ΓP

|uuuN ||vvvD|2 dxxx ≤ 1
2
‖uuuN‖r∗,ΓP ‖vvvD‖

2
2r∗
r∗−1

,ΓP
≤ c2 ‖uuuN‖1,r ,

with c1 and c2 depending only on Ω, r and vvvD. From (B2) we obtain (with c3 ≡ c3(B1, B2,Ω, r))

1
2

ˆ
ΓP

(uuuN ·nnn)|vvvN |2 dxxx+ 〈bbb(uuuN ),uuuN 〉 ≥ α ‖uuuτττ‖22,ΓN +Bc ‖uuuN‖γγ,ΓP − c3 (‖uuuN‖1,r + 1) .

Using (2.3a) and (2.3b), we observe
ˆ

Ω
S(pN ,D(vvvN )) : D(uuuN ) dxxx ≥ C1

2r
‖D(uuuN )‖rr−c4 (‖uuu0‖r1,r+‖uuu0‖1,r‖uuuN‖r−1

1,r +‖uuu0‖r−1
1,r ‖uuu

N‖1,r+1) ,

the constant c4 depending on C1, C2,Ω, r. Finally, using Korn’s inequality (2.10), we conclude

P (cccN , dddN ) · (cccN , dddN ) ≥ ε‖pN‖21,2 + 1
2 Bc‖uuu

N‖γγ,ΓP + d ‖uuuN‖r1,r − c5

(
‖uuuN‖1,r + 1

)
− c6

(
‖uuu0‖q‖uuuN‖21,r + ‖uuu0‖2q‖uuuN‖1,r + ‖uuu0‖r1,r + ‖uuu0‖1,r‖uuuN‖r−1

1,r + ‖uuu0‖r−1
1,r ‖uuu

N‖1,r
)
,

Note that d, c5 and c6 depend neither on N , ε nor on the choice of the extension uuu0. The
difficultylies in the negative term involving ‖uuuN‖21,r, while the positive term d ‖uuuN‖r1,r is of lower
order. Therefore, we set E > 0 (large enough) and H > 0 (small enough) arbitrary numbers
satisfying

d
2 e

r − c5 (e+ 1) ≥ 0 for any e ≥ E, (3.7)
d
2 E

r − c6

(
HE2 +H2E +Hr +HEr−1 +Hr−1E

)︸ ︷︷ ︸
=:F

≥ 0 (3.8)

From Lemma 2.1 it follows that there is a function ΦΦΦH that can be used instead of uuu0, satisfying
‖ΦΦΦH‖1,r ≤ HλH and ‖ΦΦΦH‖q ≤ Hλr−2

H for certain λH ≥ 1. In the sequel we use this function and
denote it again by uuu0. We distinguish two cases:
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(i) If ‖uuuN‖1,r = EλH , then we have:

P (cccN , dddN ) · (cccN , dddN ) ≥ ε‖pN‖21,2 + 1
2Bc ‖uuu

N‖γγ,ΓP
+ d

2 (EλH)r − c5 (EλH + 1) + λrH
(
d
2 E

r − c6 F
)
≥ 0 .

(ii) If ‖uuuN‖1,r < EλH , then

P (cccN , dddN ) · (cccN , dddN ) ≥ ε ‖pN‖21,2 + 1
2Bc ‖uuu

N‖γγ,ΓP − c5 (EλH + 1)− λrH c6 F .

There certainly exists a number G > 0 such that the last expression is non-negative provided
that ε ‖pN‖21,2 ≥ G.

From (i) and (ii) we see that
P (cccN , dddN ) · (cccN , dddN ) ≥ 0

for any (cccN , dddN ) ∈ R2N such that max{‖uuu
N‖1,r
EλH

,
ε ‖pN‖21,2

G } = 1. Consequently, due to the Brouwer
theorem, there exists a solution (cccN , dddN ) to (3.3) such that

ε‖pN‖21,2 + ‖uuuN‖γ,ΓP + ‖uuuN‖1,r ≤ C . (3.9)

Note that either γ < r∗, allowing to use W1,r(Ω) ↪→ Lγ(ΓP ), or Bc > 0. Here and in what follows,
C > 0 stands for a generic constant, independent of N and ε. Using (2.3a) we obtain the estimate

‖S(pN ,D(vvvN ))‖r′ ≤ C. (3.10)

Due to (3.9), (3.10) and the boundedness of ggg, there is a subsequence of {(vvvN , pN )} (denoted by
the same symbol) and a pair (vvvε, pε) such that

uuuN ⇀uuuε =: vvvε − uuu0 weakly in W1,r(Ω) and in Lγ(ΓP ) , (3.11a)

pN ⇀ pε weakly in W1,2(Ω) , (3.11b)

S(pN ,D(vvvN )) ⇀ Sε weakly in Lr
′
(Ω)d×d , (3.11c)

ggg(uuuN ) ⇀ gggε weakly in Lγ
′
(ΓP ) , N →∞. (3.11d)

Moreover, the compact embeddings yield:

uuuN → uuuε strongly in Ls(Ω) for all s: 1 ≤ s < rd
d−r , (3.12a)

pN → pε strongly in L2(Ω) , N →∞. (3.12b)

If γ < r∗, (B1), (3.11a) and the compact imbedding give immediately

ggg(uuuN )→ ggg(uuuε) strongly in Lγ
′
(Γp) , N →∞.

In the following, we will treat only the case γ ≥ r∗. The fact that r > 3d
d+2 , (3.11a) and (3.12a) are

sufficient to show that
ˆ

Ω
div(vvvN ⊗ vvvN ) ·ϕϕϕdxxx− 1

2

ˆ
Ω

(divvvvN )uuuN ·ϕϕϕdxxx

−→
ˆ

Ω
div(vvvε ⊗ vvvε) ·ϕϕϕdxxx− 1

2

ˆ
Ω

(divvvvε)uuuε ·ϕϕϕdxxx , N →∞,

11



for all ϕϕϕ ∈W1,r
b.c.(Ω). Thus, we can pass to the limit in the Galerkin system (3.3) and obtain (3.2a)

together with
ˆ

Ω
div(vvvε ⊗ vvvε) ·ϕϕϕdxxx− 1

2

ˆ
Ω

(divvvvε)uuuε ·ϕϕϕdxxx−
ˆ

Ω
pε divϕϕϕdxxx

+
ˆ

Ω
Sε : D(ϕϕϕ) dxxx+ α

ˆ
ΓN

uuuετττ ·ϕϕϕdxxx+ 〈gggε,ϕϕϕ〉ΓP = 〈fff,ϕϕϕ〉 for all ϕϕϕ ∈W1,r
b.c.(Ω) . (3.13)

Similarly as in [19], we prove the strong convergence of uuuN . From (2.4a) and (2.4c) with (p1, p2,D1,D2) :=
(pN , pε,D(vvvN ),D(vvvε)), it follows that

C1

2
‖D(uuuN )−D(uuuε)‖2r ≤

ˆ
Ω

[S(pN ,D(vvvN ))− S(pε,D(vvvε))] : (D(vvvN )−D(vvvε)) dxxx

+
γ2

0

2C1
‖pN − pε‖22 . (3.14)

Using (3.14), (2.8), (3.11) and (3.12b) we observe:

lim sup
N→∞

(
C1

2
‖D(uuuN )−D(uuuε)‖2r +m(‖uuuN − uuuε‖γ,ΓP )

)
≤ lim sup

N→∞

(ˆ
Ω
S(pN ,D(vvvN )) : D(vvvN ) dxxx+ 〈ggg(uuuN ),uuuN 〉ΓP

)
−
ˆ

Ω
Sε : D(vvvε) dxxx− 〈gggε,uuuε〉.

This can be further estimated from above, with help of (3.3), (3.12), weak lower semi-continuity
of ‖pN‖1,2 and (3.13), by

〈fff,uuuε〉 − ε‖pε‖21,2 −
ˆ

Ω
div(vvvε ⊗ vvvε) · uuuε dxxx+

1
2

ˆ
Ω

(divvvvε)|uuuε|2 dxxx

−
ˆ

Ω
Sε : D(uuuε) dxxx− 〈gggε,uuuε〉ΓP = 0 .

Therefore, and due to (3.12b), there hold the almost everywhere convergence

D(uuuN )→ D(uuuε) a.e. in Ω, uuuN → uuuε a.e. on ΓP
and pN → pε a.e. in Ω, N →∞.

Vitali’s theorem and the continuity of ggg allow us to identify the limits as follows:
ˆ

Ω
S(pN ,D(vvvN )) : D(ϕϕϕ) dxxx →

ˆ
Ω
S(pε,D(vvvε)) : D(ϕϕϕ) dxxx =

ˆ
Ω
Sε : D(ϕϕϕ) dxxx ,

〈ggg(uuuN ),ϕϕϕ〉ΓP → 〈ggg(uuuε),ϕϕϕ〉ΓP = 〈gggε,ϕϕϕ〉ΓP , N →∞,

for every ϕϕϕ ∈W1,r
b.c.(Ω).

3.2. Uniform estimates for the pressure pε and weak convergence
We proved that for every ε > 0 there is a pair (vvvε, pε) which satisfies (3.2) and the following

estimates:
ε‖pε‖21,2 + ‖uuuε‖γ,ΓP + ‖uuuε‖1,r + ‖S(pε,D(vvvε))‖r′ ≤ C . (3.15)
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Let us recall Lemma 2.5 and test (3.2b) with ϕϕϕε := B̃(|pε|r′−2pε). Note that

‖ϕϕϕε‖1,r ≤ C̃div(Ω,ΓP , r)‖pε‖r
′/r
r′ ,

‖ϕϕϕε‖γ,ΓP ≤ C
′
div(Ω,ΓP , γ)‖pε‖r

′/r
r′/r.

Then, using (2.3a), Hölder’s inequality, boundedness of bbb and (3.15), we obtain:

‖pε‖r′r′ =
ˆ

Ω
div(vvvε ⊗ vvvε) ·ϕϕϕε, dxxx− 1

2

ˆ
Ω

(divvvvε)uuuε ·ϕϕϕε dxxx

+
ˆ

Ω
S(pε,D(vvvε)) : D(ϕϕϕε) dxxx+ 〈bbb(uuuε),ϕϕϕε〉 − 〈fff,ϕϕϕε〉

≤ C ‖vvvε‖21,r ‖ϕϕϕε‖1,r +
C2

r − 1
‖1 + |D(vvvε)|‖r−1

r ‖ϕϕϕε‖1,r + ‖fff‖W1,r(Ω)∗‖ϕϕϕε‖1,r

+ ‖bbb(uuuε)‖γ′,ΓP ‖ϕϕϕ
ε‖γ,ΓP ≤ C ‖pε‖r

′/r
r′ .

Since r > 1, this implies
‖pε‖r′ ≤ C . (3.16)

Again, we find a sequence εn ↘ 0 and a pair (vvv, p) such that

uuuεn ⇀uuu := vvv − uuu0 weakly in W1,r(Ω) and in Lγ(ΓP ) , (3.17a)

pεn⇀ p weakly in Lr
′
(Ω) , (3.17b)

S(pεn,D(vvvεn)) ⇀ S weakly in Lr
′
(Ω)d×d , (3.17c)

ggg(uuuεn) ⇀ ggg weakly in Lγ
′
(ΓP ) , (3.17d)

uuuεn→ uuu strongly in Ls(Ω) for all s: 1 ≤ s < dr

d− r
. (3.17e)

Note that (3.17a) and (3.15) together with (3.2a) yield:

divvvv = 0 a.e. in Ω . (3.18)

We can then pass to the limit in (3.2b), obtaining
ˆ

Ω
div(vvv ⊗ vvv) ·ϕϕϕdxxx+

ˆ
Ω
S : D(ϕϕϕ) dxxx−

ˆ
Ω
pdivϕϕϕdxxx

+ α

ˆ
ΓN

uuu ·ϕϕϕdxxx+ 〈ggg,ϕϕϕ〉ΓP = 〈fff,ϕϕϕ〉 for all ϕϕϕ ∈W1,r
b.c(Ω) . (3.19)

Finally, we use Vitali’s theorem and the continuity of ggg to show thatˆ
Ω
S(pεn,D(vvvεn)) : D(ϕϕϕ) dxxx →

ˆ
Ω
S(p,D(vvv)) : D(ϕϕϕ) dxxx =

ˆ
S : D(ϕϕϕ) dxxx,

〈ggg(uuuεn),ϕϕϕ〉ΓP → 〈ggg(uuu),ϕϕϕ〉ΓP = 〈ggg,ϕϕϕ〉ΓP , εn ↘ 0

for all ϕϕϕ ∈W1,r
b.c(Ω). In this respect we are going to prove the convergence

D(uuuεn)→ D(uuu) a.e. in Ω, uuuεn→ uuu a.e. on ΓP and pεn→ p a.e. in Ω (3.20)

in the next part.
13



3.3. The almost everywhere convergence
Taking ϕϕϕ := uuuεn− uuu in (3.2b), ξ := pεn in (3.2a), using (3.17) and (3.18), we observe that

lim sup
εn↘0

(ˆ
Ω

[S(pεn,D(vvvεn))− S(p,D(vvv))] : (D(vvvεn)−D(vvv)) dxxx+ 〈ggg(uuuεn)− ggg(uuu),uuuεn− uuu〉ΓP
)

= lim sup
εn↘0

(ˆ
Ω
S(pεn,D(vvvεn)) : D(uuuεn) dxxx+ 〈ggg(uuuεn),uuuεn〉ΓP

)
−
ˆ

Ω
S : D(uuu) dxxx− 〈ggg,uuu〉ΓP ≤ 0 ,

which together with (2.4a) and (2.8) yields (denoting by o(1) a sequence vanishing as εn ↘ 0):

m(‖uuuεn− uuu‖γ,ΓP ) +
C1

2
Y n ≤ γ2

0

2C1
‖pεn− p‖22 + o(1) . (3.21)

Here we denote

Y n :=
ˆ

Ω

ˆ 1

0

(
1 + |D(vvvεn) + s(D(vvv)−D(vvvεn))|2

) r−2
2 |D(vvvεn)−D(vvv)|2 dsdxxx .

Next, we set ϕϕϕn := B̃(pεn− p), so that ‖ϕϕϕn‖1,2 ≤ C̃div(Ω,ΓP , 2)‖pεn− p‖2. Since (pεn− p) ⇀ 0
weakly in Lr

′
(Ω), it follows that ϕϕϕn ⇀ 0 weakly in W1,r(Ω) and ϕϕϕn → 0 strongly in Lγ(ΓP ).

Testing (3.2b) with ϕϕϕn we obtain:

ˆ
Ω
pεn(pεn− p) dxxx =

ˆ
Ω

div(vvvεn⊗ vvvεn) ·ϕϕϕn dxxx− 1
2

ˆ
Ω

(divvvvεn) (uuuεn ·ϕϕϕn) dxxx

+
ˆ

Ω
S(pεn,D(vvvεn)) : D(ϕϕϕn) dxxx+ α

ˆ
ΓN

uuuεn ·ϕϕϕn dxxx+ 〈ggg(uuuεn),ϕϕϕn〉ΓP − 〈fff,ϕϕϕ
n〉 ,

from which it follows that

‖pεn− p‖22 =
ˆ

Ω
[S(pεn,D(vvvεn))− S(p,D(vvv))] : D(ϕϕϕn) dxxx+ o(1) .

This implies, using (2.4b), (3.17) and (3.21), that

‖pεn− p‖22 ≤ C2

√
Y n‖D(ϕϕϕn)‖2 + γ0‖pεn− p‖2‖D(ϕϕϕn)‖2 + o(1)

≤ γ0C̃div(Ω,ΓP , 2)
(

1 +
C2

C1

)
‖pεn− p‖22 + o(1) ,

which leads to: (
1− γ0C̃div(Ω,ΓP , 2)

(
1 +

C2

C1

))
‖pεn− p‖22 ≤ o(1) .

Due to assumption (3.1)2, (3.21) and (2.4c), we finally observe that

‖pεn− p‖2 → 0, ‖D(uuuεn)−D(uuu)‖r → 0 and ‖uuuεn− uuu‖γ,ΓP → 0 ,

which implies (3.20) and completes the proof of the existence part of Theorem 3.1.
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4. Remarks on uniqueness

Remark 4.1 (Pressure is fixed by velocity). Let (vvv, p1) and (vvv, p2) be weak solutions to (P).
Then, under the assumptions of Theorem 3.1, p1 = p2.

Proof. From (2.4b) we observe that∣∣∣∣ˆ
Ω

(S1 − S2) : D(ϕϕϕ) dxxx
∣∣∣∣ ≤ γ0‖p1 − p2‖2‖D(ϕϕϕ)‖2 for all ϕϕϕ ∈W1,r

b.c(Ω).

Then we take the weak formulation (2.9) for the pairs (vvv, p1), (vvv, p2), subtract them, take a test
function ϕϕϕ := B̃(p1 − p2) and obtain:

‖p1 − p2‖22 ≤ γ0C̃div(Ω,ΓP , 2)‖p1 − p2‖22.

Since by asumption γ0C̃div(Ω,ΓP , 2) < 1, we conclude that p1 = p2.

Remark 4.2. Note that, in contrast to the homogeneous Dirichlet case, Theorem 3.1 does not
guarantee boundedness of every weak solution to (P). This insufficiency is due to the presence of
the convective term, the non-homogeneous Dirichlet contidion together with the fact that r < 2.
Consequently, we are not able to prove uniqueness of solutions (but for small solutions and small
data).

Remark 4.3 (Uniqueness for Stokes-like system). However, the main difficulty does not lie
in the structure of S itself: Let us consider the system

−div S +∇p = fff, divvvv = 0, in Ω (PS)

and the boundary term
ggg = ggg(xxx) on ΓP .

The readers can verify themselves, that the weak solution to (PS) exists and is unique even for
large data.

5. Conclusion

The class of fluids whose viscosities depend on pressure and shear rate was studied, supple-
mented by mixed non-homogeneous boundary conditions. Existence of weak solutions was shown
under suitable assumptions, without restriction of the size of the data. The proof follows the
ideas of Franta et al. [19], extending the theory to the non-homogeneous Dirichlet, Navier and
inflow/outflow boundary conditions. Compared to the homogeneous Dirichlet case, the presented
setting proves much more useful for modelling real world problems—applications to the journal
bearing lubrication problem were discussed in particular. Moreover the choice of boundary condi-
tions provides a natural constraint that determines the level of pressure, which otherwise has to
be fixed by an additional input parameter, inconvenient for practical use.
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