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Abstract. In this paper we provide the conditions on the pair (ω1, ω2) which
ensures the boundedness of the maximal operator and Calderón-Zygmund singu-
lar integral operators from one generalized Morrey spaceMp,ω1 to anotherMp,ω2 ,
1 < p < ∞, and from the space M1,ω1 to the weak space WM1,ω2 . As applica-
tions, by these results we get some estimates for uniformly elliptic operators on
generaized Morrey spaces.

1. Introduction

The theory of boundedness of classical operators of real analysis, such as max-
imal operator and singular integral operators etc, from one weighted Lebesgue
space to another one is well studied by now. These results have good applications
in the theory of partial differential equations. However, in the theory of partial
differential equations, along with weighted Lebesgue spaces, general Morrey-type
spaces also play an important role.

Let f ∈ Lloc
1 (Rn). The maximal operator M is defined by

Mf(x) = sup
t>0

1

|B(x, t)|

∫
B(x,t)

|f(y)|dy,

where |B(x, t)| is the Lebesgue measure of the ball B(x, t).

Definition 1.1. Let k(x) : Rn\{0} → R. We call k(x) a Calderón-Zygmund
kernel (C-Z kernel) if
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(i) k ∈ C∞(Rn\{0});
(ii) k(x) is homogeneous of degree − n;

(iii)

∫
Σ

k(x)dσξ = 0, where Σ = {x ∈ Rn : |x| = 1} is the unit sphere in Rn.

Theorem 1.2 ([9]). Let k be a real measurable function in Rn × (Rn\{0}) such
that

(i) k(x, z) is a C-Z kernel for a.a. x ∈ Rn;

(ii) max
|j|≤2n

‖(∂j/∂zj)k(x, z)‖L∞(Rn×Σ) = M < ∞.

For ε > 0 set

Tεf(x) :=

∫
|x−y|>ε

k(x, x− y)f(y)dy.

Then there exists Tf ∈ Lp(Rn) such that

lim
ε→0+

‖Tεf − Tf‖Lp(Rn) = 0

and, moreover, there exists a positive constant C such that

‖Tf‖Lp(Rn) ≤ C‖f‖Lp(Rn).

Morrey spaces Mp,λ were introduced by C. Morrey in 1938 [14] and defined as
follows. For 0 ≤ λ ≤ n, 1 ≤ p ≤ ∞, f ∈Mp,λ if f ∈ Lloc

p (Rn) and

‖f‖Mp,λ
≡ ‖f‖Mp,λ(Rn) = sup

x∈Rn, r>0
r−

λ
p ‖f‖Lp(B(x,r)) < ∞,

where B(x, r) is the open ball centered at x of radius r. Note thatMp,0 = Lp(Rn)
and Mp,n = L∞(Rn). If λ < 0 or λ > n, then Mp,λ = Θ, where Θ is the set of
all functions equivalent to 0 on Rn.

These spaces appeared to be quite useful in the study of the local behaviour
of solutions to partial differential equations, apriori estimates and other topics in
the theory of partial differential equations.

We also denote by WMp,λ the weak Morrey space of all functions f ∈ WLloc
p (Rn)

for which

‖f‖WMp,λ
≡ ‖f‖WMp,λ(Rn) = sup

x∈Rn, r>0
r−

λ
p ‖f‖WLp(B(x,r)) < ∞,

where WLp denotes the weak Lp-space.
F. Chiarenza and M. Frasca [8] studied the boundedness of the maximal oper-

ator M in these spaces. Their results can be summarized as follows:

Theorem 1.3. Let 1 ≤ p < ∞ and 0 < λ < n. Then for 1 < p < ∞ M is
bounded from Mp,λ to Mp,λ and for p = 1 M is bounded from M1,λ to WM1,λ.
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G.D.Fazio and M.A.Ragusa [9] studied the boundedness of the Calderón-Zygmund
singular integral operators in Morrey spaces, and their results imply the following
statement for Calderón-Zygmund operators T .

Theorem 1.4. Let 1 ≤ p < ∞, 0 < λ < n. Then for 1 < p < ∞ Calderón-
Zygmund singular integral operator T is bounded from Mp,λ to Mp,λ and for
p = 1 T is bounded from M1,λ to WM1,λ.

Note that in the case of the classical Calderón-Zygmund singular integral op-
erators Theorem 1.4 was proved by J. Peetre [18]. If λ = 0, the statement of
Theorem 1.4 reduces to Theorem 1.2 for Lp(Rn) (see also [6], [21]).

In the present work, we study the boundedness of maximal operator M and
Calderón-Zygmund singular integral operators T from one generalized Morrey
space Mp,ω1 to another Mp,ω2 , 1 < p < ∞, and from the space M1,ω1 to the
weak space WM1,ω2 . As applications, by these results we get some estimates for
uniformly elliptic operators on generaized Morrey spaces.

By A . B we mean that A ≤ CB with some positive constant C independent
of appropriate quantities. If A . B and B . A, we write A ≈ B and say that A
and B are equivalent.

2. Generalized Morrey spaces

For the sake of completeness we recall the definition of the spaces and some
properties of the spaces we are going to use.

If in place of the power function rλ in the definition of Mp,λ we consider any
positive measurable weight function ω(x, r), then it becomes generalized Morrey
space Mp,ω.

Definition 2.1. Let ω(x, r) be a positive measurable weight function on Rn ×
(0,∞) and 1 ≤ p < ∞. We denote by Mp,ω the generalized Morrey space, the
space of all functions f ∈ Lloc

p (Rn) with finite quasinorm

‖f‖Mp,ω(Rn) = sup
x∈Rn,r>0

ω(x, r)−
1
p‖f‖Lp(B(x,t)).

Definition 2.2. We say that (ω1, ω2) belong to the class Zp,n, p ∈ [0,∞), if there
is a constant C such that, for any x ∈ Rn and for any t > 0(∫ ∞

t

(
ess infr<s<∞ ω1(x, s)

rn

) 1
p dr

r

)p

≤ C
ω2(x, t)

tn
, if p ∈ (0,∞) (2.1)

and

ess sup
t<r<∞

ess infr<s<∞ ω1(x, s)

rn
≤ C

ω2(x, t)

tn
, if p = 0. (2.2)
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Definition 2.3. We say that (ω1, ω2) belong to the class Z̃p,n, p ∈ [0,∞), if there
is a constant C such that, for any x ∈ Rn and for any t > 0,(∫ ∞

t

(
ω1(x, r)

rn

) 1
p dr

r

)p

≤ C
ω2(x, t)

tn
, if p ∈ (0,∞) (2.3)

and

ess sup
t<r<∞

ω1(x, r)

rn
≤ C

ω2(x, t)

tn
, if p = 0. (2.4)

Note that Z̃p,n ⊂ Zp,n for p ∈ [0,∞).
The following property for the class Zp,n, p ∈ [0,∞) is valid.

Lemma 2.4. Let 0 < p < ∞. Then

Zp,n ⊂ Z0,n.

Proof. Let p ∈ (0,∞). Assume that (ω1, ω2) ∈ Zp,n. Then for any s ∈ (t,∞)

ω2(x, t)

tn
&

(∫ ∞

t

(
ess infr<τ<∞ ω1(x, τ)

rn

) 1
p dr

r

)p

&

(∫ ∞

s

(
ess infr<τ<∞ ω1(x, τ)

rn

) 1
p dr

r

)p

& ess inf
s<τ<∞

ω1(x, τ)

(∫ ∞

s

dr

r
n
p
+1

)p

≈
ess infs<τ<∞ ω1(x, τ)

sn
.

Thus
ω2(x, t)

tn
& ess sup

t<s<∞

ess infs<τ<∞ ω1(x, τ)

sn
.

It proves that

Zp,n ⊂ Z0,n.

�

Remark 2.5. Let ω(t) = tn. Then (ω, ω) ∈ Z0,n, but (ω, ω) 6∈ Zp,n for any
p ∈ (0,∞).

T. Mizuhara [13], E. Nakai [16] and V. S. Guliyev [10] (see also [11]) generalised
Theorem 1.4 and obtained sufficient conditions on functions ω1 and ω2 ensuring
the boundedness of M and T fromMp,ω1 toMp,ω2 . In [16] the following statement
was proved, containing the result in [13].
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Theorem 2.6. Let 1 ≤ p < ∞. Moreover, let w be a positive measurable function
satisfying the following conditions: there exists c > 0 such that

0 < r ≤ t ≤ 2r ⇒ c−1w(r) ≤ w(t) ≤ cw(r) (2.5)

and (ω, ω) ∈ Z̃1,n.
Then for 1 < p < ∞ the operators M and T are bounded from Mp,w to Mp,w

and for p = 1 M and T are bounded from M1,w to WM1,w.

The following statement, containing the results in [13], [16] was proved in [10]
(see also [11]).

Theorem 2.7. Let 1 ≤ p < ∞ and (ω1, ω2) ∈ Z̃p,n(Rn). Then for 1 < p < ∞
the operator T is bounded from Mp,ω1 to Mp,ω2 and for p = 1 the operator T is
bounded from M1,w to WM1,w.

In [1]-[5], [10] and [11] the boundedness of the maximal operator and the sin-
gular integral operators in local and global Morrey-type spaces has been inves-
tigated. Note that the global Morrey-type space is a more general space than
generalized Morrey space.

3. Boundedness of the maximal operator in generalized Morrey
spaces

Let M(0,∞) be the set of all Lebesgue-measurable functions on (0,∞) and
M+(0,∞) its subset consisting of all nonnegative functions on (0,∞). We denote
by M+(0,∞; ↑) the cone of all functions in M+(0,∞) which are non-decreasing
on (0,∞) and

A =

{
ϕ ∈ M+(0,∞; ↑) : lim

t→0+
ϕ(t) = 0

}
.

Let u be a continous and non-negative function on (0,∞). We define the supremal
operator Su on g ∈ M(0,∞) by

(Sug)(t) := ‖u g‖L∞(t,∞), t ∈ (0,∞).

The following Theorem was proved in [4].

Theorem 3.1. Let v1, v2 be non-negative measurable functions satisfying 0 <
‖v1‖Lθ(t,∞) < ∞ for any t > 0 and u be a continuous non-negative function on
(0,∞)

Then the operator Su is bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on the cone
A if and only if ∥∥∥v2Su

(
‖v1‖−1

L∞(·,∞)

)∥∥∥
L∞(0,∞)

< ∞. (3.1)
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Sufficient conditions on ω for the boundedness of M in generalized Morrey
spaces Mp,ω(Rn) have been obtained in [1], [2], [4], [5], [13], [16].

The following lemma is true.

Lemma 3.2. Let 1 < p < ∞. Then for any ball B = B(x, r) in Rn the inequality

‖Mf‖Lp(B(x,r)) . ‖f‖Lp(B(x,2r)) + r
n
p sup

t>2r
t−n‖f‖L1(B(x,t)) (3.2)

holds for all f ∈ Lloc
p (Rn).

Moreover, the inequality

‖Mf‖WL1(B(x,r)) . ‖f‖L1(B(x,2r)) + rn sup
t>2r

t−n‖f‖L1(B(x,t)) (3.3)

holds for all f ∈ Lloc
1 (Rn).

Proof. Let 1 < p < ∞. It is obvious that for any ball B = B(x, r)

‖Mf‖Lp(B) ≤ ‖M(fχ(2B))‖Lp(B) + ‖M(fχRn\(2B))‖Lp(B).

By the continuity of the operator M : Lp(Rn) → Lp(Rn), 1 < p < ∞ we have

‖M(fχ(2B))‖Lp(B) . ‖f‖Lp(2B).

Let y be an arbitrary point from B. If B(y, t)∩{Rn\(2B)} 6= ∅, then t > r. Indeed,
if z ∈ B(y, t) ∩ {Rn\(2B)}, then t > |y − z| ≥ |x− z| − |x− y| > 2r − r = r.

On the other hand B(y, t) ∩ {Rn\(2B)} ⊂ B(x, 2t). Indeed, z ∈ B(y, t) ∩
{Rn\(2B)}, then we get |x− z| ≤ |y − z|+ |x− y| < t + r < 2t.

Hence

M(fχRn\(2B))(y) = sup
t>0

1

|B(y, t)|

∫
B(y,t)∩{Rn\(2B)}

|f(y)|dy

≤ 2n sup
t>r

1

|B(x, 2t)|

∫
B(x,2t)

|f(y)|dy

= 2n sup
t>2r

1

|B(x, t)|

∫
B(x,t)

|f(y)|dy.

Therefore, for all y ∈ B we have

M(fχRn\(2B))(y) ≤ 2n sup
t>2r

1

|B(x, t)|

∫
B(x,t)

|f(y)|dy. (3.4)

Thus

‖Mf‖Lp(B) . ‖f‖Lp(2B) + |B|
1
p

(
sup
t>2r

1

|B(x, t)|

∫
B(x,t)

f(y)dy

)
Let p = 1. It is obvious that for any ball B = B(x, r)

‖Mf‖WL1(B) ≤ ‖M(fχ(2B))‖WL1(B) + ‖M(fχRn\(2B))‖WL1(B).

By the continuity of the operator M : L1(Rn) → WL1(Rn) we have

‖M(fχ(2B))‖WL1(B) . ‖f‖L1(2B).
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Then by (3.4), we get the inequality (3.3).
�

Lemma 3.3. Let 1 < p < ∞. Then for any ball B = B(x, r) in Rn, the inequality

‖Mf‖Lp(B(x,r)) . r
n
p sup

t>2r
t−

n
p ‖f‖Lp(B(x,t)), (3.5)

holds for all f ∈ Lloc
p (Rn).

Moreover, the inequality

‖Mf‖WL1(B(x,r)) . rn sup
t>2r

t−n‖f‖L1(B(x,t)) (3.6)

holds for all f ∈ Lloc
1 (Rn).

Proof. Let 1 < p < ∞. Denote by

M1 : = |B|
1
p

(
sup
t>2r

1

|B(x, t)|

∫
B(x,t)

|f(y)|dy

)
,

M2 : = ‖f‖Lp(2B).

Applying Hölder’s inequality, we get

M1 . |B|
1
p

(
sup
t>2r

1

|B(x, t)|
1
p

(∫
B(x,t)

|f(y)|pdy

) 1
p

)
.

On the other hand,

|B|
1
p

(
sup
t>2r

1

|B(x, t)|
1
p

(∫
B(x,t)

|f(y)|pdy

) 1
p

)

& |B|
1
p

(
sup
t>2r

1

|B(x, t)|
1
p

)
‖f‖Lp(2B) ≈ M2.

Since by Lemma 3.2
‖Mf‖Lp(B) ≤M1 +M2,

we arrive at (3.5).
Let p = 1. The inequality (3.6) directly follows from (3.3).

�

Theorem 3.4. Let p ∈ [1,∞) and (ω1, ω2) ∈ Z0,n(Rn). Then for p > 1 M
is bounded from Mp,ω1 to Mp,ω2 and for p = 1 M is bounded from M1,ω1 to
WM1,ω2.

Proof. By Lemma 3.3 and Theorem 3.1 we get

‖Mf‖Mp,ω2 (Rn) . sup
x∈Rn,r>0

ω2(x, r)−
1
p r

n
p

(
sup
t>r

t−
n
p ‖f‖Lp(B(x,t))

)
. sup

x∈Rn,r>0
ω1(x, r)−

1
p‖f‖Lp(B(x,t)) = ‖f‖Mp,ω1 (Rn),
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if p ∈ (1,∞) and

‖Mf‖WM1,ω2 (Rn) . sup
x∈Rn,r>0

ω2(x, r)−1rn

(
sup
t>r

t−n‖f‖L1(B(x,t))

)
. sup

x∈Rn,r>0
ω1(x, r)−1‖f‖L1(B(x,t)) = ‖f‖M1,ω1 (Rn),

if p = 1. �

Corollary 3.5. Let p ∈ [1,∞] and ω : (0,∞) → (0,∞) is an increasing function.

Assume that the mapping t 7→ ω(t)
tn

is almost decreasing (there exists a constant

c such that for s < t, we have ω(s)
sn ≥ cω(t)

tn
). Then there exists a constant C > 0

such that

‖Mf‖Mp,ω(Rn) ≤ C‖f‖Mp,ω(Rn), if 1 < p ≤ ∞,

and

‖Mf‖WM1,ω(Rn) ≤ C‖f‖M1,ω(Rn).

4. Singular integrals and Hardy operator

In this section we are going to use the following statement on the boundedness
of the Hardy operator

(Hg)(t) :=
1

t

∫ t

0

g(r)dr, 0 < t < ∞.

Theorem 4.1. ([7]) The inequality

ess sup
t>0

w(t)Hg(t) ≤ c ess sup
t>0

v(t)g(t) (4.1)

holds for all non-negative and non-increasing g on (0,∞) if and only if

A := sup
t>0

w(t)

t

∫ t

0

ds

ess sup0<y<s v(y)
< ∞, (4.2)

and c ≈ A.

Sufficient conditions on ω for the boundedness of T in generalized Morrey
spaces Mp,ω(Rn) have been obtained in [3], [10], [11], [13], [16].

The following Lemma has been proved in [10]. For the sake of completeness
we give the proof.

Lemma 4.2. Let p ∈ [1,∞), f ∈ Lloc
p (Rn) and for any x0 ∈ Rn∫ ∞

1

t−
n
p
+1‖f‖Lp(B(x0,t))dt < ∞.
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Then Calderón-Zygmund singular integral Tf(x) exists for a.a. x ∈ Rn and for
any x0 ∈ Rn, r > 0 and p ∈ (1,∞)

‖Tf‖Lp(B(x0,r)) ≤ C r
n
p

∫ ∞

2r

t−
n
p
+1‖f‖Lp(B(x0,t))dt, (4.3)

where constant C > 0 does not depend on x0, r and f .
Moreover, for any x0 ∈ Rn and r > 0

‖Tf‖WL1(B(x0,r)) ≤ C rn

∫ ∞

2r

t−n+1‖f‖L1(B(x0,t))dt, (4.4)

where constant C > 0 does not depend on x0, r and f .

Proof. Let p ∈ (1,∞). For arbitrary x0 ∈ Rn, set B = B(x0, r) for the ball
centered at x0 and of radius r. Write f = f1 + f2 with f1 = fχ2B and f2 =
fχRn\(2B). Since f1 ∈ Lp(Rn), Tf1(x) exists for a.a. x ∈ Rn and from the
boundedness of T in Lp(Rn) ([9]) it follows that:

‖Tf1‖Lp(B) ≤ ‖Tf1‖Lp(Rn) ≤ C‖f1‖Lp(Rn) = C‖f‖Lp(2B),

where constant C > 0 is independent of f.
Let us prove that the non-singular integral Tf2(x) exists for all x ∈ B.
It’s clear that x ∈ B, y ∈ Rn\(2B) implies 1

2
|x0− y| ≤ |x− y| ≤ 3

2
|x0− y|. We

get

|Tf2(x)| ≤ 2n

∫
Rn\(2B)

|f(y)|
|x0 − y|n

dy.

By Fubini’s theorem we have∫
Rn\(2B)

|f(y)|
|x0 − y|n

dy ≈
∫

Rn\(2B)

|f(y)|
∫ ∞

|x0−y|

dt

tn+1
dy

≈
∫ ∞

2r

∫
2r≤|x0−y|<t

|f(y)|dy
dt

tn+1

.
∫ ∞

2r

∫
B(x0,t)

|f(y)|dy
dt

tn+1

Applying Hölder’s inequality, we get∫
Rn\(2B)

|f(y)|
|x0 − y|n

dy .
∫ ∞

2r

‖f‖Lp(B(x0,t))
dt

t
n
p
+1

.

Therefore Tf2(x) exists for all x ∈ B. Since Rn =
⋃

r>0 B(x0, r), we get existence
of Tf(x) for a.a. x0 ∈ Rn.

Moreover, for all p ∈ [1,∞) the inequality

‖Tf2‖Lp(B) . r
n
p

∫ ∞

2r

‖f‖Lp(B(x0,t))
dt

t
n
p
+1

. (4.5)
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is valid. Thus

‖Tf‖Lp(B) . ‖f‖Lp(2B) + r
n
p

∫ ∞

2r

‖f‖Lp(B(x0,t))
dt

t
n
p
+1

.

On the other hand,

‖f‖Lp(2B) ≈ r
n
p ‖f‖Lp(2B)

∫ ∞

2r

dt

t
n
p
+1

. r
n
p

∫ ∞

2r

‖f‖Lp(B(x0,t))
dt

t
n
p
+1

.

Thus

‖Tf‖Lp(B) . r
n
p

∫ ∞

2r

‖f‖Lp(B(x0,t))
dt

t
n
p
+1

.

Let p = 1. From the weak (1,1) boundedness of T ([9]) it follows that:

‖Tf1‖WL1(B) ≤ ‖Tf1‖WL1(Rn) ≤ C‖f1‖L1(Rn) = C‖f‖L1(2B),

where the constant C > 0 is independent of f.
Then by (4.5) we get the inequality (4.4). �

Theorem 4.3. Let p ∈ [1,∞) and (ω1, ω2) ∈ Zp,n. Then Calderón-Zygmund
singular integral Tf(x) exists for a.a. x ∈ Rn and for p > 1 the operator T is
bounded from Mp,ω1(Rn) to Mp,ω2(Rn) and for p = 1 the operator T is bounded
from M1,ω1(Rn) to WM1,ω2(Rn). Moreover, for p > 1

‖Tf‖Mp,ω2
. ‖f‖Mp,ω1

,

and for p = 1

‖Tf‖WM1,ω2
. ‖f‖M1,ω1

.

Proof. By Lemma 4.2 and Theorem 4.1 we have for p > 1

‖Tf‖Mp,ω2 (Rn) . sup
x∈Rn, r>0

ω2(x, r)−
1
p r

n
p

∫ ∞

r

‖f‖Lp(B(x,t))
dt

t
n
p
+1

≈ sup
x∈Rn, r>0

ω2(x, r)−
1
p r

n
p

∫ r
−n

p

0

‖f‖
Lp(B(x,t−

p
n ))

dt

= sup
x∈Rn, r>0

ω2(x, r−
p
n )−

1
p
1

r

∫ r

0

‖f‖
Lp(B(x,t−

p
n ))

dt

. sup
x∈Rn,r>0

ω1(x, r−
p
n )−

1
p‖f‖

Lp(B(x,r−
p
n ))

= ‖f‖Mp,ω1 (Rn)
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and for p = 1

‖Tf‖WM1,ω2 (Rn) . sup
x∈Rn, r>0

ω2(x, r)−1rn

∫ ∞

r

‖f‖L1(B(x,t))
dt

tn+1

≈ sup
x∈Rn, r>0

ω2(x, r)−1rn

∫ r−n

0

‖f‖L1(B(x,t−n))dt

= sup
x∈Rn, r>0

ω2(x, r−
1
n )−1 1

r

∫ r

0

‖f‖
L1(B(x,t−

1
n ))

dt

. sup
x∈Rn,r>0

ω1(x, r−
1
n )−1‖f‖

L1(B(x,r−
1
n ))

= ‖f‖M1,ω1 (Rn).

�

Corollary 4.4. Let p ∈ [1,∞) and (ω1, ω2) ∈ Z̃p,n(Rn). Then for p > 1 T is
bounded from Mp,ω1(Rn) to Mp,ω2(Rn) and for p = 1 T is bounded from M1,ω1

to WM1,ω2.

Note that Theorem 2.7 and Corollary 4.4 coincide.

5. Estimates for uniformly elliptic operators on generaized
Morrey spaces

In this section we consider uniformly elliptic operators

L = −
n∑

i,j=1

∂i (aij(x)∂j) + V (x)

with non-negative potentials V on Rn (n ≥ 3) which belong to certain reverse

Hölder class. We show several estimates for V L−1, V
1
2∇L−1 and ∇2L−1 on

generalized Morrey spaces under certain assumptions on aij(x), V and p. Our
results generalize some results of K. Kurata and S. Sugano [12].

For the Schrödinger operators −∆ + V (x) with nonnegative polynomials V ,
several authors ([20], [23], [24]) studied Lp boundedness for 1 < p < ∞ of

∇(−∆ + V )−
1
2 , (−∆ + V )−

1
2∇, and ∇(−∆ + V )−1∇, V

1
2∇(−∆ + V )−1, and

∇2(−∆ + V )−1. In particular, J. Zhong [24] proved that if V is a non-negative

polynomial, ∇2(−∆ + V )−1, ∇(−∆ + V )−
1
2 , and ∇(−∆ + V )−1∇ are Calderón-

Zygmund operators. Recently, Z. Shen [19] generalized these results. He proved

that ∇(−∆+V )−
1
2 , (−∆+V )−

1
2∇, and ∇(−∆+V )−1∇ are Calderón-Zygmund

operators, if V belongs to the reverse Hölder class Bn (see Definition 6.1), which
includes non-negative polynomials and allows some non-smooth potentials. More-
over, Z. Shen also showed Lp boundedness for V (−∆+V )−1, and ∇2(−∆+V )−1

when V ∈ Bn/2 and V
1
2∇(−∆ + V )−1 when V ∈ Bn.
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In this section we consider uniformly elliptic operators

L = L0 + V (x) = −
n∑

i,j=1

∂i (aij(x)∂j) + V (x)

with certain non-negative potentials V on Rn (n ≥ 3), where aij(x) is a measur-
able function satisfying the conditions:

(A1) There exists a constant λ ∈ (0, 1] such that

aij(x) = aji(x), λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ λ−1|ξ|2, x, ξ ∈ Rn;

(A2) There exist constants α ∈ (0, 1] and K > 0 such that

‖aij‖Cα(Rn) ≤ K.

Throughout this section we use the following notation:

∂j = ∇j = ∇xj
=

∂

∂xj

, |∇u(x)|2 =
n∑

j=1

|∇ju(x)|2

The purpose of this section is to show boundedness of the operators T1 = V L−1,
T2 = V

1
2∇L−1 and T3 = ∇2L−1 from one generalized Morrey space Mp,ω1 to

another Mp,ω2 . Although it is known T1 and T3 are Calderón-Zygmund operators
for the case L = −∆ + V with non-negative polynomials V , it is not known
that whether Tj (j = 1, 2, 3) are Calderón-Zygmund operators or not under the
general condition V ∈ B∞. We show, under the same conditions as in [19]

for V , boundedness of T1 = V L−1 and T2 = V
1
2∇L−1 on generalized Morrey

spaces Mp,ω(Rn). Actually, we used pointwise estimates of Tkf(x), k = 1, 2, by
the Hardy-Littlewood maximal function (see [12], Theorem 1.3). We also show
boundedness of T3 = ∇2L−1 on generalized Morrey spaces under the additional
assumption

(A3) There exist a constant α ∈ (0, 1] such that

aij ∈ C1+α(Rn), aij(x + z) = aij(x), for all x ∈ Rn, for all z ∈ Zn,

and
n∑
i

∂i (aij(x)) = 0, j = 1, . . . , n.

Here L−1 is the integral operator with the fundamental solution (or the minimal
Green function (see e. g. [15])) of L as its integral kernel. We can also define L−1f
for f ∈ C∞

0 (Rn) as the unique solution of Lu = f on certain generalized Morrey
space M2,ω(Rn), and can see it is a bounded operator on certain generalized
Morrey spaces M2,ω(Rn) (see e. g. [20]).
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Definition 5.1. Let V (x) ≥ 0.
(1) A nonnegative locally Lq integrable function V on Rn is said to belong to

the reverse Hölder class Bq (1 < q < ∞) if there exists C > 0 such that the
reverse Hölder inequality(

1

|B|

∫
B

V (x)qdx

) 1
q

≤ C

|B|

∫
B

V (x)dx

holds for every ball B in Rn.
(2) We say V ∈ B∞, if there exists a constant C > 0 such that

‖V ‖L∞(B) ≤
C

|B|

∫
B

V (x)dx

holds for every ball B in Rn.

Clearly, B∞ ⊂ Bq for 1 < q < ∞. But it is important that the Bq class has a
property of ”self-improvement”; that is, if V ∈ Bq, then V ∈ Bq+ε for some ε > 0
(see [17]).

K. Kurata and S. Sugano [12] proved the following pointwise estimate for T1 and
T2 which generalize the results in [24], Lemma 3.2 to uniformly elliptic operators
with general potentials V ∈ B∞.

Theorem A. Suppose that A(x) satisfies (A1) for T1, (A1)− (A2) for T2, and
V ∈ B∞. Then there exist positive constants Ck, k = 1, 2 such that

|Tkf(x)| ≤ Mf(x), f ∈ C∞
0 (Rn), k = 1, 2.

Hence Theorem A and Theorem 3.4 in Section 2 imply

Corollary 5.2. Let A(x) and V (x) satisfy the same assumptions as in Theorem
A.

(1) Suppose 1 < p < ∞, and (ω1, ω2) ∈ Z0,n. Then V L−1 and V
1
2∇L−1 are

bounded from Mp,ω1 to Mp,ω2.
(2) Suppose 1 < p < ∞, (ω1, ω2) ∈ Z0,n and (A3) for A(x). Then ∇2L−1 is

bounded from Mp,ω1 to Mp,ω2.

Theorem B. (1) Suppose A(x) satisfies (A1) and V ∈ Bq, q > n/2. Then
there exist a positive constant C such that

|T ∗
1 f(x)| ≤ CM

(
|f |q′

)1/q′
(x), f ∈ C∞

0 (Rn),

where 1/q + 1/q′ = 1.
(2) Suppose A(x) satisfies (A1) − (A2). When V ∈ Bq with n > q > n/2 we

have
|T ∗

2 f(x)| ≤ CM
(
|f |p1

)1/p1(x), f ∈ C∞
0 (Rn),

where 1/p1 = 1 + (1/n)− (3/2q).
When V ∈ Bq with q > n we have

|T ∗
2 f(x)| ≤ CM

(
|f |p1

)1/p1(x), f ∈ C∞
0 (Rn),
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where 1/p1 = 1− (1/2q).
Hence Theorem B and Theorems 3.4 and 4.3 imply

Corollary 5.3. (1) Suppose A(x) satisfies (A1). Suppose V ∈ Bq with q > n/2,
and (ω1, ω2) ∈ Z0,n and q′ < p < ∞. Then T1 is bounded from Mp,ω1 to Mp,ω2.

(2) Suppose A(x) satisfies (A1) − (A2). Suppose V ∈ Bq with n/2 < q < n,
p1 < p < ∞, 1/p1 = 1 + (1/n)− (3/2q) and (ω1, ω2) ∈ Z0,n. Then T ∗

2 is bounded
from Mp,ω1 to Mp,ω2.

(3) Suppose A(x) satisfies (A1)− (A2). Suppose V ∈ Bq with q > n, p1 < p <
∞, 1/p1 = 1 − (1/2q) and (ω1, ω2) ∈ Z0,n. Then T ∗

2 is bounded from Mp,ω1 to
Mp,ω2.

(4) Suppose A(x) satisfies (A1)− (A3), 1 < p < ∞ and (ω1, ω2) ∈ Zp,n. Then
∇2L−1 is bounded from Mp,ω1 to Mp,ω2.
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