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Abstract

We use Hormander’s results on the method of the stationary phase
to elaborate a technique of obtaining systems of algebraic equations,
that can help the computation of the parameters defining the maxi-
mum entropy representing density of a finite set of moments.
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1 Statement of the problem

Fix n, m > 1 and let R" be the n-dimensional Euclidian space, endowed with
the Lebesgue measure dt, where t = (t1,...,t,) denotes the variable in R™.

Let A=A, ={a€Z : |a] <2m}, where |a| = oy + - -+ a, for any
multiindex «. Given an arbitrary set v = (7,) of numbers v, (a € A), the
truncated problem of moments under consideration here requires to establish
if there are nonnegative, absolutely continuous measures ;= fdt > 0 on R"
such that

tf(t)dt =v0 (a€ A). (1)
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Thus we consider absolutely continuous representing measures f dt, with
nonnegative density f from L'(R™) — the space of all classes of Lebesgue
measurable functions that Lebesgue integrable on R™. Set a := card A.

In a previous work [| we characterized the existence of such representing
densities by the solvability of the following system

/ e Soca ot gt =~ (€ A) (@)

of a equations with ¢ unknowns z,, (a € A). Therefore if our problem (1) has
any absolutely continuous solution pu = f dt, then it will necessarily have also
a solution of the form from above. The concrete form of (2) then should allow
to study the existence of (or approximate) the vector x = (z4)aca € R?, see
for instance [?], [3] and [J.

For powers moment problems, it is known [|, [] that if there exists an
integrable representing density of the form f, = exp (>, .4 Zalta) on the
whole space R", then knowing a large set of its moments, namely all ~,,
a € A+ A, provides the values of z, (o € A) by solving a compatible and
determined linear system (?7). Note the following example. Let n = 1 and
Yo, Y1, V2 € R. Set uy(t) = t* (o = 0,1,2). In this case one can use (2) to
compute x,, by hand. Namely, assume that f,.(t) := exp (xg+x1t +29t?), t €
R is integrable and satisfies (2). Since f, € L'(R), then x5 < 0. Hence by the
Leibniz—Newton formula we have [ fldt =0 and [(tf.(¢))'dt = 0, where f’
denotes the derivative of f. It follows x1v9+2x27; = 0 and yo+z171+22972 =
0. Then @1 = yond ™', 29 = —12d™" and zo = In(yo/ [ exp (z1t + 22t?)dt),
where d := 9y — 73. Hence f.(t) = Cexp [—(t — 5)?/d] is a multiple of the
Gauss distribution of mean s = =, /2 and dispersion d. Thus we get the well-
known fact that the maximum entropy probability density of given mean
and dispersion is the normal one, see [11] for instance. Similar computations
providing x in terms of the known data 7,, o € A can be done also when
A={a=(w,...,a,) €ZY} | a1 + -+ - + @, < 2} (this moment problem has
been solved in [8] by different methods).

Namely, f, maximizes the Boltzmann’s integral — [ fIn fdm amongst all
the absolutely continuous measures ;. = fm > 0 satisfying the equalities (1).

To briefly recall the significance of the maximum entropy solution [7], [11],
[12], let V' : (2, A, P)Rightarrow(T, m) be a random variable with values in
T and absolutely continuous repartition PoV~! = y = fm, where (22, A, P)
is a probability field. Let T be finite with m :=the normalized cardinal
measure. The average of the minimum amount of information necessary
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to determine the position of V' in T proves then to be equal to Shannon’s
entropy

Hﬁwz—ém&ﬂwwmmw<=—Zy@m&ﬂm,

teT

see for instance [11]. In general, if T' is endowed with some arbitrary non-
negative measure m, then the corresponding degree of randomness of V' is
measured by

H(V) ::—/anfonP (:—/Tflnfdm).

Suppose that the repartition f of V' is unknown, but we can find the mean
values of some quantities u,, a € A depending on V. The available data on
V' are thus given by the knowledge of the numbers

%:L%memweﬁmwmmw»mem

The problem is now to choose the most reliable f by using all this (and only
this) information. The repartition f, of the highest degree of randomness
allowed by the conditions (1) is then the natural choice for f, see for instance
[11], [12] for details. Note also in this sense the very interesting result from
below.

Theorem 0 [7] Let n:=1 and T := [a,b] C R. Let V be a random variable
with uniform distribution on T'. If Vi, Vs, ... are independent copies of V,
then the conditional probability of V' given the observation

l{:_lzua(\/i):% (e A k=1,2,...)

converges to f., as kRightarrowoo.

Therefore in certain moment—type problems it could be of interest to approx-
imate f., (that is, z € R%).

The main concern of the present paper is then to find a way of computing
/ approximating the vector x = (z,), in the equation (2) from
above.



2 Main results

Let p be a polynomial of degree 2m in n variables t = (¢y,...,t,), with real
coefficients x;,
p(t) = Z x;t',
i€zn Ji|<2m

s.t. p(t) < —cl|t]|* + ¢ for all t € R", where ¢, ¢ > 0.

Set # = (z;); € RN, where N := card {i : |i] < 2m}.
Let g; = g;(x) be defined by

gi = / en® gy (il < 2m)
and set g = (g;); € RY. Thus g = g(z).

Our problem is then to find a suitable way (analytic, numerical etc) of ex-
pressing z in terms of g; x = x(g) =7

Our Main theorem is the following.

Theorem There exist N — 1 nontrivial polynomial functions fi, of N — 1
variables, the coefficients of which depend on g, s.t. the sets T := (x;)iz0
satisfy

fi(@)=0,..., fv=1(T) = 0.

Lemma 1 Let C' C R"™ be a closed convexr cone and L, M C R™ be linear
subspaces with L C M and dim M/L =1 s.t. L+ CNM # M. Let f be
a linear functional on L s.t. fx > 0 for every nonzero x € C N L. Then
there exists a linear extension F of f to M s.t. Fax > 0 for every nonzero
reCnNM.

Proof. We can suppose that C N M ¢ L (in particular, C N M # ). Fix
also a unit vector v € M, orthogonal to L. By a compactness argument,
there is a constant a > 0 s.t.

d(z,C) > al|z|| (x € L, fr <0), (3)



for otherwise we can find a sequence of unit vectors z, € L with fz, < 0
s.t. d(zy,C) — 0 as k — oo, and hence, a subsequence convergent to a unit
vector x € C'N L with fx <0, contrary to the hypotheses.

Let C :=1i(C' N M). We prove that C N L = ). Suppose there exists a
vector v € C with v € L. Let ¢y € (CN M)\ L. Then the inner product
(c1,u) # 0. Since v is in the relative interior C of the set C' N M and ¢; €
CNM, by [Theorem I1.6.4, [?]] we can find an € > 0 s.t. ¢ : = —ec; + (1+¢€)v
isin CNM. Since v € L and ul L, we have (¢, u) = —€¢(cy, u). The number
(ca,u) is then # 0 and has opposite sign to (ci,u). Write ¢; = (¢, u)u + h;
where h; € L for i = 1,2. Then (¢;,u)u € (CNM)+ L. It follows, due to the
signs of the coefficients, that both u, —u € CNM+L, and so R-u € CNM~+1L,
whence M = R-u+ L C C N M + L, that is contrary to the hypotheses
L+CNM#M.

Since C N L = (), one of the half-spaces associated to the hyperplane L
in M must contain C entirely, for if C contained points z and y in the two
opposing half-spaces, some point of the line segment between x and y would
be in L, that is impossible. The corresponding closed half-space of M must
then contain the closure

C=1(CNM)=CnM=CnM.

Then there is a unit vector o € M, namely one of the vectors u or —u
orthogonal to L in M, s.t. (¢, zo) > 0 for all c € C'N M. Extend f by taking
Fxo > ||f|]la™!. Then for any ¢ € C'N M, the orthogonal decomposition

c=Xrg+h (AMNeR, hel)

gives 0 < (c,79) = M|zo]|> + 0 = A. To prove that Fc > 0 with strict
inequality if ¢ # 0, consider two cases.

If fh > 0, we obtain Fec = AFxy+ fh > 0, and Fc¢ # 0 unless both
A, fh =0 which means ¢ = h € CN L and fh = 0 that implies ¢ = 0 by our
hypotheses.

If fh <0, by (3) we have

[FRL < ISR < [1fla™ d(h, ©) < [[flla™ b = el < I flla™"A,
whence Fc = AFzy+ fh > (Fzo— || flla™*)A > 0, with strict inequality be-

cause F'c = 0 only when A = 0 in which case ¢ = h € C'N L Rightarrow fh >
0 that is impossible when fh < 0.



For any multiindex 7 = (4y,...,4,) € Z" we write as usual ¢! = 4;!---4,!,
li| =iy + -+ i, and 2’ = 2 --- 2% for a variable x = (z1,...,2,). Also,
1 < jmeansi; < ji, ..., 1, < Jn. Let degp denote the degree of a polynomial
p. Let p, denote the homogeneous part of maximal degree of p.

Let GL(n), resp. O(n) denote as usual the group of all invertible, resp.
orthogonal linear maps on R".

Remind that a positive definite form in n variables is a polynomial p =
>ori1ai; XX st the n X n matrix [a;);_, is positive definite, namely

ij=1
Yo airix; > 0 for every vector (z;), # 0 in R or, equivalently, s.t.

ij=1
p(x) > cfjx||* for some constant ¢ = ¢, > 0 (< lim)—c p(z) = +00, t00).

Definition We call an arbitrary polynomial p € R[X] positive definite if
there exist constants ¢ > 0 and R s.t.

p(z) = cf|z|?
for all z € R™ with [|z|| > R, or, equivalently, if there exist ¢ > 0, ¢ s.t.
p(z) +c >c|z)|* VaeR
condition that easily proves also to be equivalent to

m p(z) = +o0.

llz[|—oc

Let P=PF, ={peR[Xy,...,X,] : p is positive definite }.

Remark 2 (a) If p = >°"._ a;; XiX; + >0, biX; + ¢, then p € P, & the
form szzl a;; X;X; is positive definite.

(b) P, is a convex cone, stable under multiplication.

(c) If p € P,, then for every T' € GL(n), zo € R™ and ¢ € R the
polynomial p(T'X + z() + ¢ also is in P,.

(d) If X = (X*,...,X%) is a partition of the set X = (X1,...,X,,) of
variables and p; € R[X’] C R[X] is a positive definite form in R[X7] for each
j=1,kthenp, +-- +pp € P,.

(e) P, is the minimal set containing all polynomials p; + - - - 4+ py with
1 <k < n from (e) and stable under the operations from (b) and (c).

(f) If p € P, then degp must be even > 2.

(g) For p homegeneous, p € P < infj, =1 p(z) > 0 & p(x) > c||z||*? Va
for some ¢ > 0.



(h) If the homogeneous part py, of p is in P, then p € P, but the converse
is not true: for example, the polynomial p = X} + X7 € R[X;, Xy is in P
while p, = X} & P».

We remind from [?] the following lemma.

Lemma 3 For any p € R[X] there exists a unique minimal linear subspace
Y CR" st. p=po Py.

Let supp p denote the unique minimal linear subspace provided by Lemma
3. We call supp p the support of the polynomial p.

Lemma 4 Let P : R" — R" be linear s.t. P> =P and dimimP =n—1. If
p € R[X] s.t. p=po P, thenp=po Pker(I—P*)'

Proof. Let Z = ker (I — P*). Since P is a projection onto a hyperplane,
I — P is a projection onto a 1-dimensional space. Then there exist some
vectors v, w € R™ s.t. x — Pr = (x,v)w for all x € R". The equality
P? = P is equivalent to (v,w) = 1. We can assume that [|w| = 1, replacing
w by Jw||'w and v by [Jw]jv. Set e; = (1,0,...,0) € R". Let O € O(n)
st. Oe; = w. Let @ = O*PO and ¢ = po O. Since p = po P, we
have ¢ o Q@ = q. Write O*v = (ay,...,a,). The equalities 1 = (v, w) =
(O*v, 0*w) = ((ai,...,a,),e1) = a; show that a; = 1. It follows that Qzx =
x—(Ox,v)O*w = z — (xr, 0*v)e;. Hence for every z = (x1,...,x,) € R", we
have ((x1,22,...,2,), (1,a9,...,a,)) = x1 + agxy + - - - a,x, and so

QI‘: (Zl,’l,LUQ,...,.CL’n) — <(I1,LE2,...,xn),(1,@2,...,CLn»(l,O,...,O)

n
=(— Zaj:vj,atg, e Tp).
j=2

Then 01Q) = 0, that is, the polynomial function Q = Q(x) does not depend
on the variable x;. Hence

Q1,29 ..., 2,) = Q(0, 22, ..., 2,). (4)

Now (I — P)* = ((-,v)w)* = (-, w)v and hence Z = ker (I — P*) = w'.
Then for every z = (7;)7_; € R" we have

Po*ZZL' = O*PwLOl’ = O*(I — P]R.w)Ol’ =
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O*(Ozx — (Ox,w)w) =z — (z, O*w)O*w
=z — (z,e1)er = (21, o, ..., xn) — (21,0,...,0) = (0, 29,...,2,).
Then, using (4) also, we obtain q(Po-zz) = q(0, 22, ..., z,) = q(z), namely
qoPo+z = q. Hence poO Pp«;0O* = p. But Pp«y = O* P70, and so, po Py = p.

Lemma 5 Let 7, ¢, 7 be polynomials with degt < degq(< deg@?) and ¢
homogeneous of degree k. Write ¢ = Z?:o P; X7 with P; € R[X'] homoge-
neogous of degree k — j. Suppose there is an index j € {1,...,k — 1} s.t.
P; £ 0. Suppose also that 7@ € R[X']. Then e™47 & L1,

Lemma 6 Let 7, q, r € R[X]| s.t. degr < degq(< degn?) and q is homo-
geneous. Let' Y C R™ be a linear subspace s.t. m = mo Py. Suppose that
sup{d(z,Y) : z € suppq||z|| = 1, ¢(2) > 0} = 1. Then ™4t & L.

Remind that we have obtained in [1] the following theorem.

Theorem 7 Let p € R[X,, ..., X,] be arbitrary. Set f(t) = e?® fort € R™.
The following statements are equivalent:

(a) The function f = eP is Lebesque integrable on R™.

(b) The polynomial —p is positive definite in R[X1, ..., X,].

The idea is to be used firstly can be described by the following elementary
example.

Example: n=1 m=1

In this case, the equations of moments are:
f6x0+x1t+x2t2dt:g(), ft6x0+x1t+x2t2dt:gl, ft26xo+x1t+x2t2dt:g2

= 2190 + 22291 =0, go + 7191 + 22292 =0
= 11 = x1(g), 2 = x2(g) by solving the system of equations fi(x1,22) =0,
fo(z1,29) = 0 from above

(while z can be obtained from [, erotaitteat® g — g0

Proof: Leibniz-Newton formula



00 d (, xo+xittaat? _ zo+zittzat? |t=+o00 __
f—oo dt(e )dt =€ t=—00 0

= [T (1 + 2aot) "ot 2 gt — () that is,
T1go + 291 = xy [ €P0TTIFERE Gt o, [ pemotmittet g — ()

and we similarly use [ %(te:”‘)”lH””?tQ)dt =0
2.1 Notions of multivariable moments problems

Fixn,meN
Problem:

Characterize those sets g = (gi)iem lil<2m of real numbers g; that admit

nonnegative representing measures on R™ with respect to the powers * (|i| <
2m), that is,

/ t'du(t) = g; (i € 27, |i] < 2m)

where we used the multiindex notation,
i =(i1,... 1) |z| =i+t
t= (... tn) =10t

w: Bor(R"™) — [0, 00) measure
s.t. t' e LYR™,m) V i with |i| < 2m

We call p a representing measure for g

We call [ #'du(t) the moments of p

If p = fdt with f € LYR"™, dt), we call f a representing density for g
Example 1 n =1, m = arbitrary, g = (g;)7™

Theorem (Hamburger, Markov, Chebyshev,...) A set ¢ = (90,91, - -, Jom)
is a sequence of moments of some nontrivial representing density f > 0, that



is,

/OO t'f(t)dt = g; (i=0,...,2m),

oo

if and only the Hankel matrix
Hy = [gitjli, j<m

is positive definite, namely ZZ;:O Gi+jNiA; > 0 for all (Ao,..., \y) # 0, or
equivalently,
9o >0, g0g2— 91 >0, ..., det H, > 0.

Proof

— Riesz-Haviland’s theorem: ¢ is a set of moments < the functional L :
X' g, satisfies Lp > 0 for all polynomials p > 0 (Lp = [ pdu)

— On the real line, p > 0 & p = Y. ¢* = sum of squares of polynomials
q=>,;NX i

- L(q2) = L(Zm’ )‘i)‘inH) = Zzg AijGitj
In this case (real line), various numerical algorithms can provide approx-
imate solutions y = f dt

Example 2 m = 1, n = arbitrary, g = (g:)}ij<2

Since any polynomial of degree 2 in several variables is a sum of squares, we
obtain the (also, well known):

Theorem A set g = (gi,....in )iy +-+in<2 has representing measures p > 0 on

R" &
Z GirjriNj = 0

i.JETL il |j|<m

for all ()\Z)Mgm

In this case (moments of order 2), there exist elementary ways of finding
solutions p.

10



In the general case, for arbitrary n and m (> 2), no such characterizations
or analytic solutions are known (there are positive polynomials that are not
sums of squares).

We remind from [| the following basic result.
Theorem Let g = (gi)em,mggm be a set of powers moments of a measure
p= fdt+v >0, with f € L}(R",dt) \ {0} and v singular with respect to
dt. Namely,

/ tdp(t) = g, (1] < 2m).

Then there exist x; € R (|i] < 2m), uniquely determined by g, such that the

polynomial
p(t) == Z x;t!

l7|<2m

satisfies p(t) < —c||t]]* + ¢ and

/ thexp (Y xth)dt=g; (li] <2m).

lil<2m

2.2 On the maximum entropy principle

Let
V:i(QA P)— (T,m)

be a random variable with values in 7" and absolutely continuous repartition
PoV™l=pu=fm,
where (9, A, P) is a probability field and T is a measurable space.

If T =finite and m :=the normalized cardinal measure:

Theorem (Shannon) The average of the minimum amount of information
necessary to determine the position of V' in T" equals the entropy H(f) of V,

H(f) = — / log, F(V(@) dP(w) = — 3" £(t)log, £(1).

teT
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In general, the degree of randomness of V' is measured by

HV) ::—/anfonP (:—/Tflnfdm).

Suppose the repartition f of V' is unknown but we can find the average
values g; of some quantities u; depending on V.
The available data on V' are thus given by the knowledge of the numbers

s [ wV)dP) = [ wlo) fe)am (5)
T

The problem is now to choose the most reliable f, by using all this, and only
this information.

Solution: f = f,, maximizing H(-) subject to egs. (5)
Formula: f.(t) =exp >, z;u,(t)
Other motivations for H:

— Let T'=R and m = dt;
Boltzmann’s integral formula for the physical entropy,

1) == [ 1om s

— Theorem (Van Campenhout; Cover) Let T' = [a, b] be endowed with
m = dt. Let V be a random variable with uniform distribution on 7. Let
Vi, Va, ... be independent copies of V.

Then the conditional probability of V' given the observation

k
p=1
converges to f, as k — oo.
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Suppose we look for a joint repartition
fm:=Po(Vi,...,V,)™*

of n random variables V7, ..., V,, with values in R by knowing only the average
values

gi= [Virviap = [ et s
Q n

for all multiindices i = (i1, . ..,14,) with |i] < 2m.
Then let T := R", m = dt, u;(t) = ¢* and maximize

H(f) == [ fin fam

among all absolutely continuous measures ;. = fm > 0 having the prescribed
moiments

/ ff ()t = g, (lil < 2m)

Conclusion: f.(t) = expp(t), p(t) = 3 <op, Til’
Problem: computation of the coefficients z;

3 Method of the stationary phase

M =My i=1{i € Z" : |i| <m,i# 0}
M = M, n, := card M

PR S RY, r(t) = (em

Lemma There is a map

a:{i€Z:i|<2m} —{aeZl |a| <2}

s.t.

t=7(t)*D vi
Instead of the variables ty,...,t,, we introduce new variables 171, ..., T,
s.t.
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the monomials ¢* of order |i| < 2m
can be expressed as

monomials 7% with o = a(7) of order |a] < 2,
by

t =T r—rq)
Example n=1, m=2  7(t) = (t,t?)

M={1,2}, M =2 R™ = {ther, RY = {(T1, T2)}11 moer
The variables Ty, Th are: "1} =t”, 7Ty = t2”

(dependent, T, = T{, when restricted to the image of 7:

0 =1=(t,1)00

th =T, = (t,2)10

£ =T¢ = (t,¢*)20

13 = T\Ty = (t,t2)BD=9G); here t3 = 7(1)*®)
th=1T3 = (%)%

The equations of moments [, t'e?Mdt = g; become

/RM 7" Ddp(T) = g,

where:
P(T) =polynomial of degree 2 s.t. P|r—ru) = p(t);

1 is a singular measure of integration along the n-dimensional submanifold
{7(t)}; of RM;

write [TeePDdu(T) = (p, T*ePD) = g,
O(T) = e ITIP
T = (Ty,...,Ty) € RM independent variables

Vp(T) = e (KT) = cpe ¥ ITI?
¢k constant s.t. [ou p(1)dT =1V k> 1

¢k—>5

in D'(RM), as k — oo
Py — pxd=p

14



(o, T D) — (u, T M) = g;. (6)
(o x oy, T ) = / k(T = 7(A)T" AT dx (7)
n RIVI

[ i
RM
=l / e RIT=rIF+PID) gy 147

1 is a continuous integral of gaussian densities

(6), (7) = for large k, we get a small perturbation of the moments equations

/ Tdi(T) ~ g,
RM

for which ”the coefficients of p in eP are computable”
For every fixed A € R" and j € M (C Z"), by Stokes’ formula on large
spheres, we have:

/ %(Cke—kZHT—T(A)nz PO =0 =
RM j

9 / K2 RIT=r O (7, _ 77)ePO) g7
RM

d
RM i
(Ve(T) = cre ¥’ ITI7 ) After integration over R™:

2nd term = (pux ¢y, 7= (e"™M)) — (p, 22 (")) = a linear combination of
J J
the coefficients x;, with coefficients depending on known data ¢

1st term = rational expression in terms of integrals of the form

/ u(y)eikf(y)dy

where y = either T or ¢, and f is complex-valued
(for ex. f(y) =ily—7(N)[?)
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Theorem (Hoérmander,... ) Let f = f(y) be a complex valued C* function
in a neighborhood of 0 in R™ s.t.

Imf >0, f(0)=0, f(0) =0, det f”(0) # 0.
Then there is a compact neighborhood K = Ky of 0 s.t. for every u € C§°(K)
and p > 1 we have

1

,- 1 1
|/uekfdy—Rk'(L0U+EL1U+?L2U+'”+ kp_1)|
<C—1
<ot ®)

where Ry, = (det(kf"(0))/2mi)~ /2
and each L; is a differential operator of order 2j acting on u at 0, given by

Liu= Y Y i727(f"(0)D, D)"(g"u)(0)/pv!

v—pu=j 2v>3u

_ (10 i)
where D = (;5,-,...,5,~) and

9(y) = f(y) — £(0) = (f"(0)y,y)/2.

Moreover, the coefficients of L; are rational homogeneous functions of
degree —j in f"(0),..., f#+2(0) with denominator (det f”(0))%. In every
term the total number of derivatives of u and f” is at most 2j.

Also, each constant C, = C,(f,u) is bounded "when f, f', u are con-
trolled”.

Example of use of (8): p=2, m=N,y=T,

f(y) =i|ly — 7(N)||? for simplicity, X := 0

u(y) = y*e’® with o # 0;

we multiply the equation

1

, 1
/uezkfdy = Rk(Lou 4+ —Liu—+ O(k’2))

k
1
k2

1

= Ry, (u(0) + %(Au)(o) +0(=)) = Rk(%Au(O) +0(33))

by k, then divide the result by
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/eifdy —Ry-(1+ 0(%))

and obtain that

k [ue*dy  Au(0) + O(3)
[e*dy — 14+0(5)

1
= Au(0) +O(2),
that provides
K / eHIT=r P T PO GT — (A - / (T — 7(\))eP @ dr

+0O(1/k) — (Au) x known data

Integration with resp. to A gives, since u = T%e”T) a 1st term = quadratic
function of x, with coefficients depending on g

etc

Conclusions:

— larger p are necessary to deal with higher order moments m = 3,4, .. ;

— also, f is not always quadratic; may be given by the implicit function
theorem;

— this method can be used, in principle, for arbitrary data n, m etc;

— the usefullness of the results for concrete moments problems would only
occur by means of explicitely computing the functions f;(X) in the main
Theorem; this seems to be a routine, but difficult task, to be completed in
future papers.

References

[1] C. Ambrozie, Infinite dimensional Fenchel duality and truncated mo-
ment problems in several real variables, to appear.

[2] C. Ambrozie, Representing densities of the multi-sequences of moments,
Hokkaido Math. J., ...

[3] C.-G. Ambrozie, A note on moment problems, Proc. Operator Theory
Conf. 17(2000), 21-27, Theta Found., Timisoara.

17



[4] N.I. Akhiezer, The classical moment problem, Hafner Publ. Co., New

York, 1965.

[5] A. Atzmon, A moment problem for positive measures in the unit disc,

Pacific J. Math. 59(1975), 317-325.

[6] M. Bakonyi; L. Rodman; .M. Spitkovsky; H.J. Woerdeman, Positive

[7]

8]

[9]

[10]

[11]

[12]

[13]

extensions of matrix functions of two variables with support in an infinite

band, C.R. Acad. Sci., Paris, Sér. 1 323:8(1996), 859-863.

J.M. Van Campenhout; T.M. Cover, Mazximum entropy and conditional
probability, IEEE Trans. Inf. Theory IT-27(1981), 483-489.

R.E. Curto; L.A. Fialkow, Solution of the truncated complex moment
problem for flat data, Memoirs of the A.M.S. 1996.

C. Foiag; A.E. Frazho, A commutant lifting approach to interpolation
problems, Operator Theory: Advances and Applications, Birkhauser,
1990.

J.—P. Gabardo, Trigonometric moment problems for arbitrary finite sub-
sets of Z™, Trans. Am. Math. Soc. 350:11(1998), 4473-4498 .

S. Guiasu, Information theory with applications, Mc—Graw Hill, London,
1977.

E.T. Jaynes, On the rationale of maximum entropy methods, Proc. IEEE
70(1982), 939-952.

G. Polya; G. Szegd, Problems and theorems in Analysis, 11, Springer—
Verlag, Berlin, 1971.

W. Rudin, The extension problem for positive—definite functions, Illinois
J. Math. 7(1963), 532—-539.

F.—H. Vasilescu, Moment problems for multi—sequences of operators, J.
Math. Anal. Appl. 219:2(1998), 246-259.

Institute of Mathematics AV CR
Zitna 25, 115 67 Prague 1
Czech Republic

ambrozie@math.cas.cz

18



