
On Efficient Solution of Linear Systems Arising
in hp-FEM
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Abstract This contribution studies thestatic condensation of internal degrees of
freedom which allows for efficient solution of linear algebraic systems arising in
higher-order finite element methods. On each element, the static condensation elim-
inates the degrees of freedom corresponding to the internal(or bubble) basis func-
tions. The elimination is local in elements and can be done inparallel. The resulting
Schur complement system is considerably smaller and, moreover, it has less nonzero
elements and better condition number in comparison with theoriginal system. This
paper focuses on the numerical performace of the static condensation and shows its
CPU time efficiency.

1 Introduction and Higher-Order Finite Elements

In the standard finite element method (FEM) or more preciselyin its h-version (h-
FEM), the decrease of the discretization error is achieved by successive refinement
of the mesh. The method converges if the size of the elements tends to zero, and
the rate of this convergence is proved to be algebraic. In an alternative approach
called thep-version (p-FEM), the geometry of the mesh is fixed and the polyno-
mial degrees of the elements vary. The convergence is achieved by increasing the
polynomial degrees and the convergence rate is exponentialif the exact solution
is C∞-smooth. A combination of these two approaches is known as the hp-version
(hp-FEM), see, e.g., [2, 4, 5, 7, 8]. To decrease the discretization error in thehp-
FEM we either refine the elements or we increase their polynomial degrees or we
both refine the elements and redistribute the polynomial degrees on the subelements
in a suitable way. If thishp-refinement is done in a correct way, then thehp-FEM
converges exponentially fast even in the presence of singularities.
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The higher-order FEM leads to linear algebraic systems witha special structure.
This special structure can be utilized to design efficient algebraic solvers. In partic-
ular, a characteristic feature of the higher-order FEM is the presence of the so-called
bubble (or internal) basis functions that are supported in asingle element only. The
static condensation of internal degrees of freedom (DOFs) eliminates these bubble
functions from the whole system by a local (element-by-element) procedure. Af-
ter this elimination, we obtain a reduced system of linear algebraic equations – the
Schur complement system. From this system, we compute the other (non-internal)
DOFs which correspond to vertices, edges, and faces of the elements. The number
of the internal DOFs grows with the polynomial degreep by an order of magni-
tude faster than the number of the non-internal DOFs. Thus, for higher values ofp,
the number of the internal DOFs dominates and their static condensation leads to a
significant decrease of the size of the linear algebraic system.

The technique of the static condensation of the internal DOFs is described in
Section 2. The core of this paper lies in Section 3, where the performance of the
static condensation is tested by various numerical experiments. Brief conclusions
are given in Section 4.

2 Static Condensation of Internal Degrees of Freedom

To simplify the exposition, we only consider 2D elliptic problems discretized by
triangular finite elements of an arbitrary order. However, the static condensation of
the internal DOFs can be used in any dimension, for much widerclass of problems,
and for various types of higher-order finite elements.

Let Ω ⊂R
2 be a polygon. We consider a problem whose weak formulation reads:

find u ∈V such that
a(u,v) = F (v) ∀v ∈V, (1)

whereV is a suitable Hilbert space,a : V ×V →R is a continuousV -elliptic bilinear
form, andF is a continuous linear functional onV . Problem (1) possesses a unique
solution due to the Lax-Milgram lemma. For example, if

V = H1
0(Ω), a(u,v) =

∫

Ω
∇u ·∇vdx, and F (v) =

∫

Ω
f vdx, (2)

then (1) corresponds to the Poisson problem with homogeneous Dirichlet boundary
conditions.

We discretize problem (1) by thehp-FEM. LetThp be a triangulation ofΩ , let
pK stand for the polynomial degree assigned to the elementK ∈ Thp, and let

Vhp = {vhp ∈V : vhp|K ∈ PpK (K), K ∈ Thp}

be the finite element space, wherePpK (K) denotes the space of polynomials of de-
gree at mostpK on the triangleK. Thehp-FEM solutionuhp ∈Vhp is defined by
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a(uhp,vhp) = F (vhp) ∀vhp ∈Vhp. (3)

We consider a standardhp-FEM basisϕ1,ϕ2, . . . ,ϕN of Vhp, whereN = dim(Vhp),
see, e.g., [2, 4, 5, 8]. These basis functions are constructed element by element as

ϕi|K = ϕK
ι−1
K (i)

, i = 1,2, . . . ,N,

whereϕK
m , m = 1,2, . . . ,NK , denote theshape functions that only are supported in

the single elementK andιK : {1,2, . . . ,NK}→ {1,2, . . . ,N} is the standard connec-
tivity mapping, see [8, 6] for more details and Fig. 1 for an illustration. Notice that
if i 6∈ Dom(ιK), i.e., if ι−1

K (i) is not defined, thenϕK
ι−1
K (i)

is considered to be zero.

(a) (b)

Fig. 1 (a) Two edge shape functions on two neighbouring elements form an edge basis function.
(b) The bubble shape function coincides with the bubble basis function.

Problem (3) is equivalent to the system of linear algebraic equations

AY = F, Ai j = a(ϕ j,ϕi), Fi = F (ϕi), i, j = 1,2, . . . ,N, (4)

whereA ∈ R
N×N andF ∈ R

N are the (global) stiffness matrix and the (global) load
vector, respectively. The vectorY ∈ R

N contains the expansion coefficients ofuhp

in the finite element basis.
The global stiffness matrix and the global load vector are assembled from the

local stiffness matricesAK ∈ R
NK×NK

and from the local load vectorsFK ∈ R
NK

,
K ∈ Thp. These local matrices and vectors are defined by

A
K
ℓm = aK(ϕιK(m),ϕιK (ℓ)) and F

K
ℓ = FK(ϕιK (ℓ)), ℓ,m = 1,2, . . . ,NK ,

where the local bilinear formaK(·, ·) and the local linear functionalFK satisfy

a(ϕ j,ϕi) = ∑
K∈Thp

aK(ϕ j,ϕi) and F (ϕi) = ∑
K∈Thp

FK(ϕi), i, j = 1,2, . . . ,N.

For example, ifa(·, ·) andF are given by (2), then the local bilinear formaK(·, ·)
and the local linear functionalFK are defined as

aK(ϕ j,ϕi) =

∫

K
∇ϕ j ·∇ϕi dx and FK(ϕi) =

∫

K
f ϕi dx.

With this notation, the standard finite element assembling procedure can be written
as
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Ai j = ∑
K∈Thp

A
K
ι−1
K (i),ι−1

K ( j)
and Fi = ∑

K∈Thp

F
K
ι−1
K (i)

, i, j = 1,2, . . . ,N. (5)

From now on we will consider a special enumeration of the basis function. We
enumerate the bubbles first, and then the other basis functions. Hence ifM de-
notes the number of the bubble functions, thenϕ1, . . . ,ϕM stand for the bubbles
andϕM+1, . . . ,ϕN stand for the other basis functions. Similarly, we enumerate the
shape functions in all elements. In each elementK ∈ Thp, the firstMK shape func-
tions are the bubbles and the otherNK −MK shape functions are the non-bubbles.
This enumeration splits the global and local stiffness matrices and the global and
local load vectors into natural blocks

A =

(
A BT

B D

)
, A

K =

(
AK (BK)T

BK DK

)
, F =

(
F
G

)
, F

K =

(
FK

GK

)
, (6)

whereA ∈ R
M×M, B ∈ R

(N−M)×M, AK ∈ R
MK×MK

, BK ∈ R
(NK−MK )×MK

, etc.
Since the bubble functions are supported in a single element, the correspond-

ing matrix A is block diagonal with the diagonal blocks beingAK , i.e., A =
blockdiag

{
AK ,K ∈ Thp

}
. Thus, the matrixA is easily invertible and this makes

the static condensation of the internal DOFs efficient.
The block structure (6) reshapes the global stiffness system (4) as follows

(
A BT

B D

)(
x
y

)
=

(
F
G

)
, (7)

where(xT ,yT ) = Y
T . The idea of the static condensation is to expressx ∈ R

M as

x = A−1(F −BT y)

and substitute this into the second block-row of (7) to obtain the Schur complement
system fory ∈ R

N−M

Sy = G̃, where S = D−BA−1BT and G̃ = G−BA−1F. (8)

It is shown in [6] that the Schur complementS and the right-hand sidẽG can be
obtained by the standard finite element assembling procedure, cf. (5),

Si j = ∑
K∈Thp

SK
ι−1
K (M+i),ι−1

K (M+ j)
and G̃i = ∑

K∈Thp

G̃K
ι−1
K (M+i)

, (9)

i, j = 1,2, . . . ,N −M, whereSK = DK −BK(AK)−1(BK)T are the local Schur com-
plements and̃GK = GK −BK(AK)−1FK are the corresponding local right-hand sides.

The static condensation of the internal DOFs can also be interpreted as an or-
thogonalization of the non-bubble basis functions with respect to the bubbles. It can
be shown that the static condensation and the partial orthogonalization of the basis
are just two interpretations of the same arithmetic procedure. Moreover, if the Schur
complement system (8) is solved by the ILU-PCG, then this arithmetic procedure is
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equivalent to the ILU-PCG applied to the original system (4). However, the usage of
ILU-PCG for (4) is less efficient than the static condensation because in ILU-PCG
we eliminate the internal DOFs superfluously in every iteration while it suffices to
do it once. Furthermore, it can be shown that the sparsity patterns of the Schur com-
plementS and of the original blockD are identical. Hence, no fill-in appears during
the construction ofS. Finally, notice that the Schur complementS only depends on
the space of the bubbles and not on the particular basis. All these facts are proven in
[6], where more technical details can be found.

Another interesting fact, see [3], is that the conditioningof S cannot be worse than
the conditioning ofA. In practice, however, the condition number ofS is observed
to be much smaller than the condition number ofA.

3 Numerical Performance

This section presents several numerical experiments to compare the performance of
the ILU-PCG with and without the static condensation. More precisely, we com-
pare two approaches. First, we use the static condensation and construct the Schur
complement system (8), where we explicitely invert the local blocksAK . The Schur
complement system (8) is then solved by ILU-PCG. In the second approach we
directly apply the ILU-PCG to system (4). We show in [6] that these approaches
are two different implementations of the same arithmetic procedure and hence the
number of ILU-PCG iterationsNiter is the same in both cases.

For the following tests, we consider the Possion problem

−∆u = f in Ω = (−1,1)2, u = 0 on∂Ω .

The right-hand sidef = uπ2/2 is chosen in agreement with the exact solutionu =
cos(xπ/2)cos(yπ/2).

We stress that the static condensation can easily be implemented with the same
memory requirements as the standard approach. The memory columns in Tables 1–4
below show the total number of entries in the local stiffnessmatricesAK .

The first two experiments illustrate the standardh- andp-version. For theh-FEM
we start with the four element mesh with polynomial degrees 4,5,6,7, see Fig. 2(a).
Then in every refinement step, we split each triangular element into four similar sub-
triangles with the same polynomial degree as the parent element has. In Table 1 we
present:N, the total number of DOFs (the size ofA); M −N, the number of DOFs
after the elimination of the internal DOFs (the size ofS); the memory requirements
(specified above); the relative discretization error‖u− uh‖/‖uh‖ measured in the
energy norm; the number of ILU-PCG iterationsNiter; and the CPU times needed to
solve the stiffness system with and without the static condensation.

Similarly, Table 2 shows the same quantities for thep-FEM. Here we start with
the first order elements and increase this order by one in every step. The initial
mesh was uniform with 256 elements, see Fig. 2(b). We remark that the values of



6 Tomáš Vejchodský

the relative discretization error forp = 8 and p = 9 are already polluted by the
round-off errors and by the precission of the used numericalquadrature because the
discretization error is already close to the machine precission.

The results in Tables 1 and 2 show that for the presented rangeof polynomial
degrees the static condensation of the internal DOFs decreases the solver CPU time
up to ten times. We remark that the polynomial degrees higherthan ten are rarely
used in practice.

Notice the exponential decrease of the error for thep-version in Table 2 and in
Fig. 3. This is due to theC∞-smoothness of the exact solution. However, the number
of DOFs grows very rapidly with increasingp. The question is whether the error
would decrease if we fix the number of DOFs and increasep only. The answer is
given in Table 3. Practically, for a given value ofp we construct a uniform triangu-
lation ofΩ such that the number of DOFs is more-less fixed. Clearly, the number of
elements decreases with growingp. In Table 3 we can observe the decrease of the
discretization error as well as the speed-up obtained by thestatic condensation.

Nevertheless, the memory requirements grow withp even if the number of DOFs
is fixed. This is due to the fact that the stiffness matrixA is more dense for higher
polynomial degrees. Hence, we can modify the previous experiment in order to keep
the memory requirements fixed. For a givenp we construct a uniform triangulation
of Ω such that the resulting memory requirements are constant. Table 4 summarizes
the results. Interestingly, see also Fig. 3, the number of DOFs decreases quite rapidly
but the discretization error decreases as well. However, the rate of the error decrease
is not as fast as in the previous cases, which is not surprising.

Fig. 2 (a) The initial mesh
for theh-FEM. (b) The initial
mesh for thep-FEM consits
of linear elements (p = 1).
There are eight elements
along each edge of the square.

(a)

p1 = 4

p2 = 5

p3 = 6

p4 = 7

(b)

Table 1 The standardh-FEM.
ref. N N −M memory rel. err. solver CPU time [s]
step (sizeA) (sizeS) [×103] [%] Niter stat. con. no conden.
0 50 16 2.7 1.2 3 0.004 0.005
1 225 89 11.0 5.4×10−2 5 0.012 0.017
2 953 409 43.9 3.4×10−3 7 0.049 0.130
3 3921 1745 175.7 2.1×10−4 11 0.389 1.665
4 15905 7201 703.0 1.3×10−5 21 4.697 26.10
5 64065 29249 2 811.9 8.2×10−7 40 71.10 415.5
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Table 2 The standardp-FEM.

N N −M memory rel. err. solver CPU time [s]
p (sizeA) (sizeS) [×103] [%] Niter stat. con. no conden.

1 113 113 2.3 1.0×10+1 8 — 0.007
2 481 481 9.2 5.1×10−1 10 — 0.049
3 1105 849 25.6 1.7×10−2 12 0.102 0.105
4 1985 1217 57.6 4.1×10−4 13 0.171 0.350
5 3121 1585 112.9 7.7×10−6 14 0.302 0.987
6 4513 1953 200.7 1.3×10−7 14 0.504 2.333
7 6161 2321 331.8 1.7×10−9 15 0.808 4.933
8 8065 2689 518.4 2.3×10−11 16 1.218 9.582
9 10225 3057 774.4 1.1×10−11 16 1.773 17.407

Table 3 The p-FEM with fixed number of DOFs.

N N −M memory rel. err. solver CPU time [s]
p (sizeA) (sizeS) [×103] [%] Niter stat. con. no conden.

1 28561 28561 518 6.9×10−1 82 — 16.9
2 28561 28561 518 9.3×10−3 83 — 28.1
3 28561 22161 640 1.3×10−4 53 26.7 44.4
4 28561 17761 810 2.1×10−6 41 21.2 59.8
5 28561 14737 1 016 3.2×10−8 34 17.6 74.7
6 28561 12561 1 254 5.3×10−10 29 15.0 89.4
7 28085 11221 1 498 8.9×10−12 26 12.8 101.2
8 28561 9661 1 823 4.2×10−12 24 11.7 118.5
9 27145 9663 2 045 1.3×10−11 22 9.6 121.4

Table 4 The p-FEM with fixed memory requirements.

N N −M memory rel. err. solver CPU time [s]
p (sizeA) (sizeS) [×103] [%] Niter stat. con. no conden.

1 28561 28561 518 6.9×10−1 65 — 15.0
2 28561 28561 518 9.3×10−3 62 — 26.8
3 23113 17929 518 1.8×10−4 40 17.8 28.5
4 18241 11329 518 5.1×10−6 28 8.8 23.9
5 14281 7345 510 1.8×10−7 22 4.5 18.5
6 12013 5253 530 7.1×10−9 19 2.8 15.6
7 9661 3661 518 3.6×10−10 17 1.7 12.0
8 8065 2689 518 2.3×10−11 16 1.2 9.6
9 7813 2325 593 1.2×10−11 15 1.1 10.3

4 Conclusions

The presented experiments show that the static condensation of the internal DOFs
can lead to a considerable speed-up of the solver. Asymptotically, however, if the
polynomial degrees tend to the infinity and the number of elements stays fixed, then
the algorithm of the static condensation is close to the computation of the inverse of
the (almost) fully populated matrix, which is not efficient.On the other hand, high
polynomial degrees are rare in practical computations.
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Fig. 3 The error plot in the log-log scale. The numbers indicate thepolynomial degrees.

Finally we mention that more elaborate preconditioners than ILU are available
for higher-order FEM, see, e.g., [1], where almost optimal preconditioners for the
p-FEM are derived. However, even these preconditioners can be implemented either
with or without the static condensation. For these preconditioners the static conden-
sation would lead to the same speed-up per iteration as for the ILU preconditioner.
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