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Abstract

It is a classical fact, due to Day, that every separable Banach space admits an equiv-
alent Gâteaux smooth renorming. In fact, it admits an equivalent uniformly Gâteaux
smooth norm, as was shown later by Šmulyan. It is therefore rather unexpected that
the existence of Gâteaux smooth renormings satisfying various quantitative estimates
on the directional derivative has rather strong structural and geometrical implications
for the space. For example, by a result of Vanderwerff, if the directional derivatives
satisfy a p-estimate, where p varies arbitrarily with respect to the point and the di-
rection in question, then the Banach space must be an Asplund space. In the present
survey paper, we discuss the interplay between various types of Gâteaux differentia-
bility of norms and extreme points with the geometry of separable Banach spaces. In
particular, we present various characterizations of Asplund, reflexive, superreflexive,
and other classes of separable Banach spaces, via smooth as well as rotund renorm-
ings. We also include open problems of various levels of difficulty, with the hope of
stimulating research in the area of smoothness and renormings of Banach spaces.

In nonlinear analysis, the differentiability of norms plays an important role. The most impor-
tant type of differentiability is that of Fréchet differentiability. However, in many instances it
suffices to use weaker forms of differentiability, i.e., variants of the Gâteaux differentiability
(that are more often accessible). This happens especially when some convexity arguments
can be combined with Baire category techniques. The present paper surveys some of these
results and discusses several ideas and constructions in their proofs.
We focus on the interplay of these concepts with the geometry of separable spaces, for ex-
ample with problems on containment of c0 or `1, with superreflexivity, the Radon–Nikodým
property, etc. Several open problems in this area are discussed.
We refer to, e.g., [Gode], [DGZb], [Fab], [AlKal06], [BoVa10], and [FHHMZ] for all unex-
plained notions and results used in this note.

1 Pointwise directional Hölder derivatives

Pisier proved in [Pisi75] that every Banach space that admits a uniformly Fréchet differen-
tiable norm (i.e., a superreflexive space) can be renormed (by this we mean “equivalently

∗Supported in part by GAČR P201/11/0345
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renormed”) by a norm with modulus of smoothness of power type. This is not true, even
directionwise, for the case of the uniform Gâteaux differentiability.

Recall that a real valued function f is Gâteaux differentiable (or, Gâteaux smooth) at a
point x of a Banach space X, if there exists an element g in the dual space X∗ such that
limt→0

1
t (f(x + th)− f(x)) = g(h) for each h ∈ X.

A norm is called a Gâteaux differentiable norm, if it is Gâteaux differentiable at all nozero
points in the space.
Recall that a norm ‖ · ‖ of a Banach space X is uniformly Gâteaux differentiable on X (UG,
in short) if for each h ∈ X, the limit above is uniform in x in the unit sphere SX of X,
i.e. if, and only, if for each h ∈ X, limt→0

1
t (‖x + th‖+ ‖x− th‖ − 2‖x‖) = 0 uniformly for

x ∈ SX .

It is well known that every separable Banach space can be renormed by a UG norm: Indeed,
if {xi} is a dense sequence in the unit sphere SX of a separable Banach space (X, ‖ · ‖0), let
the norm ‖ · ‖ be defined for f ∈ X∗ by

‖f‖2 = ‖f‖20 +
∑

2−if2(xi),

where ‖ · ‖0 is the canonical dual norm of X∗. Then ‖ · ‖ is a dual equivalent norm on
X∗, and standard convexity arguments give that fn − gn → 0 in the weak∗ topology of X∗

whenever ‖fn‖ = ‖gn‖ = 1 and ‖fn + gn‖ → 2. This means, by the Šmulyan lemma (see,
e.g., [FHHMZ, Corollary 7.22]), that the predual norm of ‖ · ‖ is UG.

The situation is different if we require that the derivative be pointwise directionally Hölder
in the following sense: A function ϕ on a Banach space X is said to have a directional Hölder
derivative at x0 if for each h ∈ BX there are Kh > 0, δh > 0 and αh ∈ (0, 1] such that

|(ϕ′(x0 + th)− ϕ′(x0)
)
(th)| ≤ Kht1+αh

for all 0 ≤ t ≤ δh. In case that αh = 0 for all h ∈ SX , ϕ′ is said to be directionally Lipschitz
at x0. We will say that ϕ has pointwise directional Hölder derivative on X if for each x ∈ X,
ϕ has directional Hölder derivative at x.
We say that a function ϕ has uniform directional Hölder derivative if for each h ∈ SX there
are Ch > 0 and αh > 0 such that

|(ϕ′(x + th)− ϕ′(x)
)
(th)| ≤ Cht1+αh

for every x ∈ X.

These cases have already a strong impact on the structure of the space. This is seen in the
following results.

Recall that a bump function on a Banach space X is a real valued function on X with
bounded nonempty support.

Theorem 1 ([Vand93]). Assume that X is a separable Banach space. Suppose that X
admits a continuous bump function with pointwise directional Hölder derivative. Then X∗

is separable.

Note that not every Banach space with separable dual admits a bump as in Theorem 1.
Indeed, the reflexive separable space (

∑
`n
∞)2 is not superreflexive and thus cannot admit

such a bump by Theorem 2 below.

After the combined efforts of Davis, Huff, Maynard, Phelps and Rieffel (see references in
[Diest, Chapter 6]), we know that a Banach space X has the Radon-Nikodým property (in
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short, RNP) if and only it is dentable, i.e., if each bounded set in X has slices of arbitrarily
small diameter (where a slice is the intersection of the set with an open halfspace). This
happens if, and only if, each bounded closed convex set C in X is the closed convex hull of
its strongly exposed points (see, e.g., [FHHMZ, Theorem 11.3]). A point x0 ∈ C is called
exposed (by a functional f ∈ X∗) if {x ∈ C : f(x) = supx∈C f(x)} = {x0}, and strongly
exposed (by f) if it is exposed by f and ‖xn − x0‖ → 0 whenever f(xn) → f(x0).
There are examples of Banach space failing RNP and not containing either c0 or L1, see
[Tal] and [BoRo2].

A Banach space X is called an Asplund space if every separable subspace of X has separable
dual. A norm on a Banach space is said to be strictly convex (or rotund) if each point in
its sphere is an extreme point of the ball. A norm ‖ · ‖ is locally uniformly rotund (LUR, in
short) if ‖xn − x‖ → 0 whenever xn, x ∈ SX are such that ‖xn + x‖ → 2.

The following couple of results summarize some of the known results in this area.

Theorem 2 ([DGZ93a], [MPVZ93], [Vand93][MaVa]). Let X be a Banach space. Then
each one of the following four conditions implies that X is superreflexive.
(i) The space X has the RNP property and admits a continuous bump function with pointwise
directional Hölder derivative.
(ii) Both X and X∗ admit continuous bump functions with pointwise directional Hölder
derivative.
(iii) The space X admits an LUR norm with pointwise directional Hölder derivative on the
sphere.
(iv) The space X admits a bounded bump function with uniformly directional Hölder deriv-
ative.

Note that due to Pisier’s theorem mentioned above, and due to further results in this area (cf.
e.g. [FHHMZ, Chapter 9]), each of the conditions in Theorem 2 characterizes superreflexive
spaces.

Note also that, using that the space c0 admits a C∞ smooth norm, Theorem 2 (iii) shows
that the Asplund averaging procedure (cf. e.g. [DGZb, Chapter 3]) does not work for this
kind of Gâteaux differentiability.
The Day norm on c0 (cf. e.g. [DGZb, p. 69]) is an example of a LUR norm whose pointwise
modulus of smoothness is of power type 2 for points of a dense subset. This norm is also
an example of a function for which the set of points at which the derivative is pointwise
Lipschitz is not a Gδ set (cf. [DGZ93a]).

Theorem 3 ([Vand93]). Let X be a Banach space. Assume that both X and X∗ admit
continuous bump functions with pointwise directional Lipschitz derivative. Then X is iso-
morphic to a Hilbert space.

Corollary 4 ([MPVZ93], [MaVa], [BoFa93], [DGHZ87]). (i) A separable C(K) space admits
a continuous bump function with pointwise directional Hölder derivative if, and only if, K
is countable.
(ii) If X is a Banach space, then the space of compact operators K(X) on X admits a
continuous bump function with pointwise directional Lipschitz derivative if, and only if, X
is isomorphic to a Hilbert space.

We will not give proofs of the results above in this note. We will present in the lemmas
below only some of the main ideas and constructions used in these proofs.

One of the main tools in the proofs consists of the use of the Baire Category theorem in
several ways:
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First, in [Vand93], the Baire category theorem is used in the proof of Theorem 1 in connection
with the Ekeland variational principle (see, e.g., [FHHMZ, Chapter 7]).
Second, the Baire Category theorem is used for the directions of differentiability in the
convex case ([BoNo94]).
Third, by using the RNP and duality, the Baire Category Theorem is used to apply the Day
method to reach the uniformity required ([DGZ93a], [MPVZ93], [Day43]).

If f is a real valued function on a Banach space X, x ∈ X and η > 0, we put

ρx(η) = sup{|f(x + h) + f(x− h)− 2f(x)| : ‖h‖ ≤ η}

and call, for a fixed x ∈ X, the function ρx the pointwise modulus of smoothness of f at
x ([Zyg59, p. 43]). We say that a real valued function f on X has pointwise modulus of
smoothness ρx of power type p > 0 at x if

lim sup
η→0

ρx(η)η−p < ∞.

The modulus of convexity of the norm ‖ · ‖ is defined for ε ∈ [0, 2] by

δ(ε) = inf{1− ‖(x + y)/2‖ : x, y ∈ SX , ‖x− y‖ ≥ ε}.

The norm is uniformly convex (or uniformly rotund, UR in short) if, and only if, δ(ε) > 0
for every ε > 0.
We say that the norm ‖·‖ has modulus of convexity of power type p > 0 if there is a constant
C > 0 such that

δ(ε) ≥ Kεp

for every ε ∈ (0, 2].
The modulus of smoothness of the norm ‖ · ‖ is defined for τ > 0 by

ρ(τ) = sup{‖x + τy‖+ ‖x− τy‖
2

− 1 : ‖x‖ = ‖y‖ = 1}.

The norm ‖ · ‖ is uniformly Fréchet differentiable (or uniformly Fréchet smooth) if, and only
if,

lim
τ→0

ρ(τ)/τ = 0.

We say that the norm ‖ · ‖ has modulus of smoothness of power type p > 1 if there is a
constant C > 0 such that

ρ(τ) ≤ Kτp

for every τ > 0.

We will use the fact that the the derivative ‖ · ‖′ is α-Hölder (α ∈ (0, 1]) if, and only if, the
norm ‖ · ‖ has modulus of smoothness of power type 1 + α (see, e.g., [DGZb, p. 204]).

The norm ‖ · ‖ is locally uniformly rotund on X if for every x ∈ SX and every ε ∈ (0, 2],

0 < δx(ε) := inf{1− ‖x + y‖/2; y ∈ SX , ‖y − x‖ ≥ ε}.

For given x ∈ SX , we call the function δx(ε) the pointwise modulus of rotundity at x. If
there is a p > 0 and a constant C > 0 such that δx(ε) ≥ Cεp, for each ε ∈ (0, 2], we say that
‖ · ‖ has pointwise modulus of rotundity of power type p at x.
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Lemma 5 ([BoNo94]). Let a Banach space X have a norm with pointwise directional Lip-
schitz derivative on the sphere. Then X admits a norm with pointwise modulus of smoothness
of power type 2.

Proof (Sketch) Fix x0 ∈ SX . Define Fn by

Fn = {h ∈ BX : ‖x0 + th‖+ ‖x0 − th‖ − 2‖x0‖ ≤ n‖th‖2, for all 0 < t ≤ 1}.

Then Fn is closed for each n, and
⋃

n Fn = BX . By the Baire Category theorem, there is
a neighborhood V of some point h0 6= 0 in the interior of BX and a positive integer n such
that

‖x0 + th‖+ ‖x0 − th‖ − 2‖x0‖ ≤ n‖th‖2, for all h ∈ V, 0 < t ≤ 1.

Consider the cone generated by taking the convex hull of −h0 and V . This cone contains
Br for some r > 0. For some k ≥ n, the convexity gives

‖x0 + th‖+ ‖x0 − th‖ − 2‖x0 ≤ k‖th‖2, for all ‖h‖ ≤ r, 0 < t ≤ 1.

¤

Lemma 6 ([DGHZ87]). Let X be a Banach space. Assume that for each x ∈ SX there is
p(x) > 0 such that ‖ · ‖ has pointwise modulus of rotundity of power type p(x) at x. Then
X is superreflexive.

Proof. For positive integers N and p, we let

FN,p = {x ∈ SX : δx(ε) ≥ N−1εp, for all ε ∈ (0, 2]}.

It is not difficult to show that each FN,p is closed. Our assumption means that

SX =
⋃

N,p

FN,p.

By the Baire Category theorem, there exist positive integers N1 and p1 such that FN1,p1

has a nonempty interior in SX . Hence there is an open set O in X such that O ∩ SX 6= ∅,
and

x, y ∈ O ∪ SX , ‖x− y‖ ≥ ε implies ‖x + y‖ ≤ 2− 2N−1
1 εp1 .

Now, a result of Day ([Day73, Theorem 1]) provides a uniformly rotund norm of power type
p1. ¤

Lemma 7 ([DGZ93a]). Let a Banach space X with the RNP admit a Lipschitz bump func-
tion ϕ with pointwise Lipschitz derivative. Then X admits a norm with modulus of smooth-
ness of power type 2.

The main idea of the proof
Put ψ(x) = ϕ−2(x) if ϕ(x) 6= 0, and +∞ otherwise. Let ψ∗ be the Fenchel conjugate of ψ,
i.e. for f ∈ X∗ put

ψ∗(f) = sup{f(x)− ψ(x) : x ∈ X}.
As X has the RNP, ψ∗ is Fréchet differentiable on a norm dense set of points Ω in X∗

([Coll76]) with derivative in X. Let ψ̃ denote the Fenchel conjugate of ψ∗ in X. The
derivatives of ψ∗ give rise to the epigraph of ψ̃, and since they are strongly exposed points,
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they are actually in the epigraph of ψ. It is not hard to check that these strongly exposed
points are points where the derivative of ψ̃ is directionally Lipschitz and, by the previous
lemma, pointwise Lipschitz, so they represents points with pointwise modulus of smoothness
of power type 2. By passing to the dual, we get points with pointwise rotundity behavior
of power type 2, which give, by the method of the proof of previous lemma, a norm on X∗

of modulus of rotundity of power type 2. We then finish the proof by taking the predual of
this norm. ¤

Sketch of main ideas of the proof of Theorem 2.
(i) We use the idea in the proof of Lemma 7, see [MPVZ93].
(ii) The space X∗ is Asplund (Theorem 1) and thus X has the RNP (see e.g. [FHHMZ,
Chapter 11]). Hence (ii) follows from (i).
(iii) We use the general method of passing from local uniform differentiability to the uniform
differentiability (see e.g. [DGZb, p. 188]) combined with the method of the proof of Lemma
5 and Lemma 6.
(iv) We use the general method of constructing uniformly differentiable norms from uni-
formly differentiable bumps as explained e.g. in [FHHMZ, Chapter 9]. The complete proof
is given in [MaVa].

¤

Sketch of the main idea in the proof of Theorem 3.
Both X and X∗ are Asplund spaces by Theorem 1. Hence both have the RNP (cf. e.g.
[FHHMZ, Chapter 11]). Thus both X and X∗ admit norms with modulus of smoothness of
power type 2 and therefore, by Kwapien’s theorem (see e.g. [AlKal06, Chapter 7.4]), X is
isomorphic to a Hilbert space.

¤

Sketch of the main ideas in the proof of Corollary 4.
(i) follows from Theorem 1, since if C(K) is separable Asplund then K is scattered and thus
countable (it is metrizable). If K is countable, then C(K) admits a C∞ Fréchet differentiable
norm (see, e.g., [FHHMZ, Corollary 10.14]).
(ii) The “if” part follows [Tom74]. For the “only if” part, use the fact that K(X) contains
copies of X and X∗.
Thus both X and X∗ are Asplund spaces and thus both have the RNP. Thus both have
norms with modulus of smoothness of power type 2 and thus, by Kwapien theorem (cf. e.g,
[AlKal06]), X is isomorphic to a Hilbert space.

¤

Problem 1. ([DGZ93a]) Can the assumption of the RNP in Theorem 2 be replaced by the
weaker condition that X does not contain an isomorphic copy of c0?

2 Second order Gâteaux differentiability

We will say that a function ϕ : X → R is twice Gâteaux differentiable at x ∈ X provided
that the Gâteaux derivative ϕ′(y) exists for y in a neighborhood of x, the limit

ϕ′′(x)(h, k) := lim
t↓0

(
1
t
(ϕ′(x + tk)− ϕ(x)))(h)

exists for each h, k ∈ X, and that ϕ′′(·, ·) is a continuous symmetric bilinear form.
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The following result shows that twice Gâteaux differentiable norms are quite easily accessible
in some separable superreflexive spaces.

Theorem 8 ([FWZ]). Assume that X is a separable Banach space with the RNP. Then X
admits an equivalent twice Gâteaux differentiable norm if, and only if, X admits a norm
with modulus of smoothness of power type 2.

Proof. First if X admits a twice Gâteaux differentiable norm then X admits a norm with
modulus of smoothness of power type 2 by Lemma 7.
We give only roughly, the main idea of the proof of the other implication and refer to [FWZ]
for the details.
Select a dense sequence {hi} in SX . Find a C∞ smooth function ϕ0 : R→ R such that ϕ0

is nonnegative and even, vanishes outside [−1, 1], and satisfies
∫
R ϕ0 = 1. Put f0 = ‖x‖2

and ϕn(t) = 2nϕ0(2nt) for t ∈ R, n ≥ 1. Define a sequence of functions {fn : X → R} by

fn(x) =
∫

Rn+1
f0

(
x−

n∑

i=0

tihi

)
n∏

i=0

ϕi(ti) dt0 dt1... dtn

Then fn converge uniformly on bounded sets, to a twice Gâteaux differentiable function g
which gives rise, via Minkowski functional of the set {x : g(x) ≤ C} for some C, to the
desired norm on X. ¤

Remark. Since `p, p ∈ [1, 2), does not admit any norm of modulus of smoothness of power
type 2 (cf. e.g. [DGZb, p. 222]), it does not admit any twice Gâteaux differentiable norm by
Theorem 8. On the other hand the space (

∑
`n
4 )2 has a norm with modulus of smoothness of

power type 2, and admits no twice Fréchet differentiable norm [DGJ]; however, by Theorem
8, it admits a twice Gâteaux differentiable norm. It is proved in [Troy] that, for p odd, `p

space admits p times Gâteaux differentiable norm.

The following is a corollary of the proof of Theorem 8

Theorem 9 ([MPVZ93]). Assume that X is a separable Banach space with a norm of
modulus of smoothness of power type 2. Then
(i) Every convex function which is bounded on bounded subsets of X can be approximated
uniformly on bounded sets by twice Gâteaux differentiable convex functions whose first deriv-
atives are Lipschitz.
(ii) The space X admits a twice Gâteaux smooth UR norm.

The following result is a corollary of Theorem 3.

Theorem 10 ([Vand93]). Let X be a Banach space. Assume that both X and X∗ admit
continuous bump functions the restriction of which to each line in X, respectively in X∗, is
twice differentiable. Then X is isomorphic to a Hilbert space.

Theorem 10 improves on Meškov’s result that X is isomorphic to a Hilbert space if both X
and X∗ admit Fréchet C2 smooth bumps (cf. e.g. [DGZb, Chapter 5], [FHHMZ, Chapter
10]).
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3 Preserved extreme points

The classical Krein–Milman theorem (see, e.g., [FHHMZ, Theorem 3.65]) says that every
nonempty convex compact subset C of a locally convex space has an extreme point —hence
C is the closed convex hull of the set of its extreme points. If C is a nonempty bounded
closed convex subset of a Banach space, its w∗-closure C

w∗
in X∗∗ is a w∗-compact convex

subset of X∗∗, hence it is the w∗-closed convex hull of the set of its extreme points.

Definition 11. Let C be a nonempty bounded closed convex subset of a Banach space X.
The elements in Ext C

w∗ ∩ ExtC are called preserved extreme points of C.

Preserved extreme points are called weak∗-extreme in [Mat]. Extreme points of C which are
not preserved extreme points of C will be called unpreserved.

A straightforward consequence of James’ weak compactness theorem is that a bounded
closed convex subset C of a Banach space is weakly compact if (and only if) ExtC =
Ext C

w∗
. Theorem 24 below gives a renorming characterization of reflexivity in terms of

preserved extreme points.
The following simple observation will be used several times in this note: Given a non-empty
subset A of a Banach space X, a finite subset {fi : i = 1, 2, . . . , n} of X∗, and numbers
α1, α2, . . . , αn in R,

{x∗∗ ∈ A
w∗

: fi(x∗∗) > αi, i = 1, 2, . . . , n}
⊂ {x ∈ A : fi(x) > αi, i = 1, 2, . . . , n}w∗

⊂ {x∗∗ ∈ A
w∗

: fi(x∗∗) ≥ αi, i = 1, 2, . . . , n} (3.1)

The following lemma characterizes preserved extreme points of bounded closed convex sub-
sets of a Banach space.

Lemma 12 (Rosenthal, see [LLT1]). Assume that C is a bounded closed convex set in a
Banach space X. A point e in C is a preserved extreme point of C if, and only if, the slices
of C containing e form a neighborhood base of the restricted weak topology on C at the point
e.

Proof. If e is a preserved extreme point, the result is a consequence of Choquet’s lemma
(see, e.g., [FHHMZ, Lemma 3.69]). For the other direction, assume that 2e = y∗∗ + z∗∗,
where y∗∗, z∗∗ ∈ C

w∗
, y∗∗ 6= z∗∗, and let U be a closed neighborhood of e in (X∗∗, w∗)

missing both y∗∗ and z∗∗. By the assumption, C∩U contains a set of the form C∩S, where
S := {x∗∗ : x∗∗ ∈ X∗∗, f(x∗∗) > α} for some f ∈ X∗ and α ∈ R such that f(e) > α. Using
(3.1) we get C

w∗ ∩ S ⊂ U ; however, C
w∗ ∩ S must contain either y∗∗ or z∗∗ (or both), a

contradiction. ¤

3.1 Preserved extreme points, RNP and KMP

Recall that a Banach space X is said to have the Krein–Milman property (KMP, in short)
if every bounded closed convex set in X has an extreme point. Equivalently, every bounded
closed convex set in X is the closed convex hull of the set of all extreme points (the equiv-
alence is due to Lindenstrauss, cf., e.g., [FHHMZ, Exer. 7.57]). Note that every space with
the RNP has the KMP (see e.g. [FHHMZ, Chapter 11]). It is an open problem (see Problem
3) whether every space with the KMP has the RNP. This problem has been solved in the
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positive in dual spaces in [HuMo], and, for the notion of preserved extreme points, in the fol-
lowing result (see also Theorem 19 below). Here, dist (A,B) := inf{‖a− b‖ : a ∈ A, b ∈ B}
for two non-empty subsets A and B of a Banach space X.

Theorem 13. Let X be a Banach space. Then, the following conditions are equivalent:
(i) X fails the RNP.
(ii) [SchSeWe] For every ε > 0 there exists an equivalent norm ‖ · ‖ on X such that
dist (Ext (B(X∗∗‖·‖)), X) ≥ 1− ε.
(iii) [Bou1], [Ste2] There exists an equivalent norm ‖ · ‖ on X such that each extreme point
of B(X,‖·‖) is unpreserved (and dist (Ext (B(X∗∗‖·‖)), X) > 0).

We shall not prove this theorem. We only note that (ii)⇒(iii) is obvious, and that (iii)⇒(i)
follows from the fact that, if ‖ · ‖ is an equivalent norm in X, and X has the RNP, then
B(X,‖·‖) has a strongly exposed point. Clearly, such a point is a preserved extreme point of
B(X,‖·‖).

Remark. A simple consequence of (i)⇔(ii) in Theorem 13 is the following: If a Banach
space X fails the RNP then, for every ε > 0, there exists an equivalent norm ‖ · ‖ on X such
that every slice S of B(X,‖·‖) has ‖ · ‖-diameter greater than 1− ε. Indeed, Let ‖ · ‖ be the
norm associated to ε given by Theorem 13. Let S(f, δ) := {x ∈ B(X,‖·‖) : f(x) > 1 − δ}
be an arbitrary slice of B(X,‖·‖), where f ∈ S(X∗,‖·‖) and δ > 0. By the Bishop–Phelps
theorem, there exists g ∈ S(X∗,‖·‖) close enough to f that attains its supremum on B(X,‖·‖).
We can find δ′ > 0 small enough so that S(g, δ′) ⊂ S(f, δ). It follows that {x∗∗ ∈ B(X∗∗,‖·‖) :
g(x∗∗) = 1} contains both an extreme point of B(X∗∗,‖·‖) and an element x ∈ S(X,‖·‖), so

‖ · ‖-diam S(f, δ)
w∗ ≥ 1− ε. This implies that diam S(f, δ) ≥ 1− ε. In connection with this

result, let us mention the following open problem.

Problem 2 ([SchSeWe]). Assume that a Banach space X fails the RNP property and ε > 0
is given. Can X be renormed so that all the slices of the new ball have diameter greater than
or equal to 2− ε?

A result of Collier [Coll76, Theorem 4] says that a Banach space (X, ‖·‖) has the RNP if, and
only if, each dual equivalent norm on X∗ is Fréchet differentiable somewhere. The necessity
is a consequence of the fact, mentioned earlier, that if X has the RNP, then every nonempty
closed convex and bounded subset of X —in particular the closed unit ball B(X,|‖·|‖) of an
equivalent norm |‖ · |‖ on X— is the closed convex hull of the set of its strongly exposed
points. So B(X,|‖·|‖) has a strongly exposed point, say x (exposed by f ∈ S(X∗∗,|‖·|‖)). Then,
by the Šmulyan’s lemma, |‖ · |‖ is Fréchet differentiable at f . The sufficiency follows from
the Remark after Theorem 13, or, if we wish, from Theorem 14 below, itself a consequence
of Theorem 13. Note too that, again by the Šmulyan’s lemma, if a dual equivalent norm
‖ · ‖ on X∗ is Fréchet differentiable at some f ∈ SX∗ , then ‖ · ‖′(f) ∈ X.

Theorem 14 ([BaDa], [Gil02]). Let X be a Banach space. Assume that for each equiva-
lent dual norm on X∗, there is a point where the norm is Gâteaux differentiable with the
derivative lying in X. Then X has the RNP.

Proof. Assume that X does not have the RNP. Then, by Theorem 13, there is an equivalent
norm ‖ · ‖ on X such that none of the points in S(X,‖·‖) is an extreme point of B(X∗∗,‖·‖).
Let f ∈ S(X∗,‖·‖) where ‖ · ‖ on X∗ would be Gâteaux differentiable with the derivative x
in S(X,‖·‖). Then, {x∗∗ ∈ X∗∗ : f(x∗∗) = 1} ∩B(X∗∗,‖·‖) = {x}, so x is an extreme point of
B(X∗∗,‖·‖), a contradiction. ¤

Recall that a Banach space X is called weakly sequentially complete if every weakly Cauchy
sequence in X is weakly convergent in X. As a straightforward consequence of Theorem 14
and the Šmulyan’s lemma, we get the following statement.
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Theorem 15 ([BaDa]). Assume that X is a weakly sequentially complete Banach space.
Assume that every equivalent dual norm on X∗ is Gâteaux differentiable at some point.
Then X has the RNP.

A point x0 in a closed bounded convex subset C of a Banach space X is called a weakly
exposed point of C (by some f ∈ X∗) if x0 is exposed by f and xn

w−→ x0 whenever
f(xn) → f(x0). It is easy to prove that, in C, every strongly exposed point is weakly
exposed, that every weakly exposed point is exposed and a preserved extreme point, and
that every exposed point is extreme. Note that the renorming in Theorem 26 has the
property that all the points on its new unit sphere are exposed points of the new unit ball
but none of them is a weakly exposed point of this ball.

Theorem 13 gives also a proof of the sufficient condition in the following result.

Theorem 16 ([Bou2], Theorem I.4). A Banach space X has the RNP if, and only if, each
nonempty bounded closed convex set in X has a weakly exposed point.

Proof. We already mentioned that if X has RNP, then every bounded closed convex subset
of X is the closed convex hull of the set of its strongly exposed points. Each of them is,
certainly, a weakly exposed point. On the other side, if X has not RNP, the closed unit ball
of the equivalent norm |‖ · |‖ given by Theorem 13 has no weakly exposed point. Indeed,
assume that e ∈ S(X,|‖·|‖) is a weakly exposed point of B(X,|‖·|‖) (exposed by f ∈ S(X∗,|‖·|‖)).
Since e is not extreme in BX∗∗ , 2e = x∗∗1 + x∗∗2 for some x∗∗1 and x∗∗2 in B(X∗∗,‖·‖), where
x∗∗1 6= x∗∗2 . Find g ∈ S(X∗,|‖·|‖) such that g(x∗∗1 ) > g(e), and a sequence {xn} in B(X,|‖·|‖)
such that g(xn) → g(x∗∗1 ) and f(xn) → f(x∗∗1 ) (= 1 = f(e)). It follows that xn

w−→ e, a
contradiction. ¤

There is an interplay between the notion of extreme points and the convex points of conti-
nuity properties. We first provide a definition.

Definition 17. A Banach space X is said to have the Convex Point of Continuity Property
(CPCP, in short) if every closed bounded convex subset C of X has a point at which the
relative weak and norm topologies on C coincide.
The space X∗ has the weak∗-convex point of continuity property (C∗PCP, in short) if every
weak∗ compact convex subset C of X∗ has a point at which the relative weak∗ and norm
topologies on C coincide.

If X is separable and has the property that X∗ has the C∗PCP, then X does not contain a
copy of `1 (cf. e.g. [DGZb, Chapter 3]).
The RNP property implies the CPCP property of the space and the RNP property of the
dual space X∗ implies the C∗PCP property of X∗ (cf. e.g. [FHHMZ, Chapter 11]).
The predual of the James tree space (see e.g. [AlKal06], [FHHMZ, Chapter 4]), JT∗, has
the CPCP property and not the RNP property (cf. e.g. [EW]).
The non-Asplund space JT has the property that JT ∗ has the C∗PCP property ([GMS]).
There is a separable space X not containing `1 and yet, X∗ does not have the C∗PCP
([GMS]).

In the direction of the interplay between CPCP and rotundity properties, let us mention,
first of all, that Troyanski showed that if a Banach space X has a strictly convex norm on
the sphere of which the weak and norm topology coincide, then X can be renormed by a
locally uniformly rotund norm (see, e.g. [DGZb, chapter 4] and Raja’s geometric proof of
it in [FHHMZ, Exercise in Chapter 8]).

Then we have the following result.
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Theorem 18 ([LLT]). Let X be a Banach space, C be a non-empty closed convex and
bounded subset of X, and e be an extreme point of C at which the relative weak and norm
topologies on C coincide. Then the slices of C containing the point e form a neighborhood
base at e of the norm topology on C.

Proof. First, we show that e is then a preserved extreme point of C. Indeed, assume that
e = 1

2 (y∗∗ + z∗∗), where y∗∗, z∗∗ ∈ C
w∗

, y∗∗ 6= z∗∗. From the coincidence of the topologies

at e follows the coincidence of the relative w∗ and norm topologies on C
w∗

at e (use (3.1)).
Then, by a standard cone argument, we get that the same must hold for both y∗∗ and z∗∗.
Thus, both y∗∗ and z∗∗ are in C, a contradiction with the fact that e is an extreme point
of C.
Given r > 0, e + rBX∗∗ contains a w∗-neighborhood U of e in X∗∗. The Choquet’s Lemma
applied to the w∗-compact set C

w∗
gives a w∗-slice S of C

w∗
such that e ∈ S ⊂ e + rBX∗∗ .

It follows that e ∈ S ∩ C ⊂ e + rBX . ¤

For similar results we refer also to [LLT1].

Schachermayer proved in [Sch] the following theorem.

Theorem 19 ([Sch]). Assume that a Banach space X has both the KMP and the CPCP.
Then X has the RNP .

Note, then, that a Banach space has the RNP if, and only if, it has, simultaneously, the KMP
and the CPCP. Related to this, we already mentioned that the following is a well-known
long-standing open problem in this area.

Problem 3. Assume that every closed convex bounded set in a Banach space X has an
extreme point (in other words, assume that X has KMP). Does X have the RNP?

It is worth to mention here a geometric characterization of RNP in terms of extreme points
due to Bourgain [Bou1]: A Banach space X has the RNP if, and only, if every nonempty
weakly closed bounded subset of X has an extreme point.

Remark. We do not know the answer to Problem 3 even if we replace the word “extreme”
by the word “exposed”.

Theorem 20 below was proved in [DGHZ87]; compare it with the renorming characterization
of the RNP given in [Diest, Corollary 1, page 219], saying that a Banach space X has the
RNP, if and only if, the closed unit ball of every equivalent norm is dentable. It follows from
this characterization that a Banach space X has the RNP if, and only if, the closed unit
ball of every equivalent norm is the closed convex hull of its strongly exposed points.

Theorem 20 ([DGHZ87]). If X is a separable Banach space, then X has the CPCP
property if, and only if, the closed unit ball of every strictly convex norm is the closed
convex hull of its strongly exposed points.

Talagrand proved the following theorem

Theorem 21 (Talagrand, see [SchSeWe]). If a separable Banach space X contains an
isomorphic copy of `1, then X∗ contains a weak∗ compact convex norm non dentable subset.

Yet, the following problem seems to be open.

Problem 4. Let X be separable. Is it true that X does not contain a copy of `1 if, and
only if, every weak∗ compact set in X∗ is norm dentable?

11



Related to Theorem 21 and Problem 4, recall that the James tree space JT is a separa-
ble space not containing isomorphic copies of `1, having a nonseparable dual, and being
saturated with copies of `2. The following result is due to Stegall.

Theorem 22 ([Ste]). Let X denote the James tree space JT . Then
(i) On the unit sphere of X∗, the weak and norm topologies coincide.
(ii) If C is an arbitrary weak∗ compact convex set in X∗, then the functionals which strongly
expose C form a dense Gδ subset of X∗∗.

3.2 Preserved extreme points and reflexivity

Theorem 24 below (that should be compared with Theorem 13) shows how preserved extreme
points of balls can be used to characterize reflexive spaces. We slightly modified the original
proof in order to use the same technique in proving Theorem 26. The following standard
fact will be used.

Lemma 23. Let (X, ‖ · ‖) and (Y, | · |) be Banach spaces. Let T : X → Y be a continuous
linear mapping. Define

|‖x|‖ = ‖x‖+ |Tx|, for x ∈ X. (3.2)

Then,
(i) |‖ · |‖ is an equivalent norm on X.
(ii) The corresponding norm on (X, ‖ · ‖)∗∗ is given by

|‖x∗∗|‖ = ‖x∗∗‖+ |T ∗∗x∗∗|. (3.3)

(iii) If | · | is strictly convex and T is one-to-one, then |‖ · |‖ is strictly convex.

Theorem 24. Let (X, ‖ · ‖) be a Banach space. Then, the following are equivalent:
(i) The space X fails to be reflexive.
(ii) [Godu85] There exists an equivalent norm |‖ · |‖ on X and an extreme point of B(X,|‖·|‖)
that is unpreserved.

Proof. Obviously, only (i)⇒(ii) needs a proof. Assume first that X is separable (and not
reflexive). Fix x∗∗0 ∈ X∗∗ \ X, and let N := Kerx∗∗0 (⊂ X∗), a norming subspace of X∗,
so ‖x‖N := sup{|x∗(x)| : x∗ ∈ N, ‖x∗‖ = 1}, for x ∈ X, defines an equivalent norm on X
(whose higher dual norms are denoted, as usual, again by ‖ · ‖N ; note that ‖ · ‖N induces

on N the norm ‖ · ‖). Let {x∗n : n ∈ N} be a subset of S(N,‖·‖N ) such that x∗n
w∗−→ 0, and

spanw∗{x∗n : n ∈ N} = X∗ (find, for example, a Markushevich basis {xn; x∗n} in X×X∗ such
that x∗n ∈ S(N,‖·‖N ) for all n ∈ N, see, e.g., [FHHMZ]). We may now define two one-to-one
continuous linear operators S : X → c0 and T : X → `2 by

S(x) =
(
x∗n(x)

)∞
n=1

, T (x) =
(

1
2n

x∗n(x)
)∞

n=1

, for all x ∈ X. (3.4)

Put
Ak = {x ∈ X : ‖x‖N ≤ k‖S(x)‖∞}, for k ∈ N. (3.5)

We obtain an increasing sequence {Ak}∞k=1 of (homogeneous) subsets of X and, certainly,
A2 6= ∅ (indeed, x ∈ A2 for every x ∈ S(N,‖·‖N ) such that 〈x∗n, x〉 > 1/2 for some n ∈ N)1.
Put then k = 2 and define a new equivalent norm |‖ · |‖ on X by

|‖x|‖ = max
{

1
2k
‖x‖N , ‖S(x)‖∞

}
+ ‖T (x)‖2, for all x ∈ X. (3.6)

1We define this, seemingly, artificial sequence {Ak} to allow further manipulations in subsequent argu-
ments, although, strictly speaking, we need only here the nonempty set A2.
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Certainly, |‖ · |‖ is strictly convex in X. According to Lemma 23, the bidual norm |‖ · |‖ on
X∗∗ is given by

|‖x∗∗|‖ = max
{

1
2k
‖x∗∗‖N , ‖S∗∗(x∗∗)‖∞

}
+ ‖T ∗∗(x∗∗)‖2, for all x∗∗ ∈ X∗∗. (3.7)

Fix x ∈ Ak (so ‖x‖N ≤ k‖S(x)‖∞) such that |‖x|‖ = 1. Since |‖ · |‖ is strictly convex, x is
an extreme point of B(X,|‖·|‖). Fix δ > 0 so small that ‖x ± δx∗∗0 ‖N < 2‖x‖N . Note that
S∗∗(x± δx∗∗0 ) = S(x) and T ∗∗(x± δx∗∗0 ) = T (x). Then

|‖x± δx∗∗0 |‖
= max

{
1
2k
‖x± δx∗∗0 ‖N , ‖S∗∗(x± δx∗∗0 )‖∞

}
+ ‖T ∗∗(x± δx∗∗0 )‖2

≤ max
{

1
2k

2‖x‖N , ‖S(x)‖∞
}

+ ‖T (x)‖2
= ‖S(x)‖∞ + ‖T (x)‖2 ≤ |‖x|‖ (= 1),

hence x is not an extreme point of B(X∗∗,|‖·|‖).
If X is not separable, it is enough to apply a separable-reduction argument by using the
next lemma. ¤

Lemma 25. Let (X, ‖ · ‖) be a Banach space, and let Y be a closed linear subspace. Then,
every equivalent norm on Y can be extended to an equivalent norm on X in such a way that,
if some extreme point y0 of B(Y,|‖·|‖) is unpreserved, then y0 is an extreme point of B(X,|‖·|‖)
that is unpreserved.

Proof. Assume that ‖y‖ ≤ |‖y|‖ ≤ c‖y‖ for some c > 0 and for all y ∈ Y . Let | · | be the
Minkowski functional of the set conv (B(Y,|‖·|‖) ∪ 1

cB(X,‖·‖)) (an equivalent norm on X that
induces the norm |‖ · |‖ on Y ). Finally, put |‖x|‖ := |x| + dist |·|(x, Y ) for x ∈ X. This is
again an equivalent norm in X that induces on Y the norm |‖ · |‖. We shall prove first that
y0 is an extreme point of B(X,|‖·|‖). Indeed, assume that 2y0 = x1 + x2, where x1 and x2

are elements in X such that |‖x1|‖ = |‖x2|‖ = 1. If x1 ∈ Y and x2 ∈ Y , we get x1 = x2.
Otherwise,

1 = |‖y0|‖ = |y0| ≤ 1
2
(|x1|+ |x2|)

<
1
2
(|x1|+ dist |·|(x1, Y ) + |x2|+ dist |·|(y2, Y )) =

1
2
(|‖x1|‖+ |‖x2|‖) = 1,

a contradiction.
Since y0 is not an extreme point of B(Y ∗∗,|‖·|‖), and the space (Y ∗∗, |‖ · |‖) is isometrically
isomorphic to a subspace of (X∗∗, |‖ · |‖), it follows that y0 is not an extreme point of
B(X∗∗,|‖·|‖), as claimed. ¤

Remark. The proof of (i) ⇒ (ii) in the previous theorem shows that, in a separable Banach
space X, the nonreflexivity is equivalent to the existence of a strictly convex norm |‖ · |‖ on
X such that some (extreme) point of S(X,|‖·|‖) is unpreserved.

The proof we provide here of the following result —which should be compared with Theorem
13— relies on the technique used for proving Theorem 24.

Theorem 26 ([Morr83]). Assume that (X, ‖ · ‖) is a separable Banach space that contains
an isomorphic copy of c0. Then X admits an equivalent strictly convex norm |‖ · |‖ such that
each point in S(X,|‖·|‖) is not a preserved extreme point of B(X,|‖·|‖).
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Proof. (i) We shall prove it first for the space (c0, ‖ · ‖∞) itself. This follows from the
proof of Theorem 24 as we shall show presently. Keep the notation there, letting x∗∗0 =
(1, 1, 1, . . .) (∈ `∞ \ c0). In this case, the subspace N is 1-norming, so ‖ · ‖N = ‖ · ‖∞ on c0

(and ‖ · ‖N = ‖ · ‖1 on c∗0 = `1). If, for n ∈ N, the symbol e∗n denotes the n-th canonical
unit vector of `1, the countable set Γ := {(1/2)(e∗n − e∗m) : n,m ∈ N, n < m} (⊂ `1) is in
S(N,‖·‖N ) and spanw∗(Γ) = `1. The mapping S defined in the proof of Theorem 24 for the
set 2Γ is a one-to-one continuous linear operator from X into the c0-sum of countably many
copies of (c, ‖ · ‖∞), i.e., the space Z := c0(c⊕ c⊕ c⊕ . . .) endowed with the supremum norm
(a space linearly isomorphic to (c0, ‖ · ‖∞)). Precisely, put

S(x) :=
(
(〈e∗1 − e∗m, x〉)m>1, (〈e∗2 − e∗m, x〉)m>2, . . .

)
, for x ∈ c0.

Obviously 2‖x‖∞ ≥ ‖S(x)‖∞ ≥ ‖x‖∞ for every x ∈ c0, so c0 = A1 (see formula (3.5)). The
norm |‖ · |‖ defined by (3.6) in the proof of Theorem 24 for k = 1 satisfies the requirements
(even more: we found that a single direction in `∞ is enough to check that no element
x ∈ S(c0,|‖·|‖) is a preserved extreme point).
(ii) Assume now that X contains an isomorphic copy of c0. By Sobczyk’s theorem (see,
e.g., [FHHMPZ, Theorem 5.14], [FHHMZ, Theorem 5.11]), this copy is complemented in X,
i.e., X is isomorphic to (G ⊕ c0, | · |), where |(g, x)| = max{‖g‖, ‖x‖∞}, g ∈ G (⊂ X), and
x ∈ c0. Let S : G → `2 be a one-to-one linear and continuous operator, and let T : c0 → `2
be the operator defined in the proof of Theorem 24. Let U : G⊕ c0 → `2 ⊕ `2 be defined by
U(g, x) = (Sg, Tx), g ∈ G, x ∈ c0. Then U is a one-to-one continuous linear operator from
G⊕ c0 into `2 ⊕ `2. Put

|‖(g, x)|‖ := |(g, x)|+ ‖U(g, x)‖2, for (g, x) ∈ G⊕ c0. (3.8)

As before, the space (G ⊕ c0, |‖ · |‖) is strictly convex. We shall prove that no element
(g, x) ∈ S(G⊕c0,|‖·|‖) is an extreme point of the bidual space of (G⊕ c0, |‖ · |‖). Choose, as in
(i), x∗∗ 6= 0 in `∞ such that T ∗∗x∗∗ = 0 and

‖x± x∗∗‖ = ‖x‖ (≤ |(g, x)|). (3.9)

We have

|‖(g, x)± (0, x∗∗)|‖ = ‖(g, x± x∗∗)‖+ ‖U∗∗(g, x± x∗∗)‖2
= max(‖g‖, ‖x± x∗∗‖) + ‖U(g, x)‖2
≤ max(‖g‖, ‖x‖∞) + ‖U(g, x)‖2 = |‖(g, x)|‖ = 1.

It follows that (g, x) is not extreme. ¤

Problem 5. ([Morr83]) Which spaces can be renormed to be strictly convex but to have
unpreserved extreme points?

4 Strongly Gâteaux differentiable norms

Recall that a multivalued map M from a topological space X into a topological space Y is
called upper semicontinuous if for every open set U in Y the set {x ∈ X : M(x) ⊂ U} is
open.

Definition 27. We will say that the norm ‖ · ‖ of a Banach space X is strongly Gâteaux
differentiable at a point x0 ∈ SX if it is Gâteaux differentiable at x0 and the (multivalued)
map x → ∂‖ · ‖(x) from SX into X∗ is norm-to-weak upper semicontinuous at x0.
A norm on a Banach space will be called strongly Gâteaux differentiable if it is strongly
Gâteaux differentiable at each point of SX .
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In the literature this concept appears also under the name very smooth. Note that the notion
of strong Gâteaux differentiability obviously coincides with that of Gâteaux differentiability
for reflexive spaces. The Šmulyan lemma (see, e.g. [FHHMZ, Chapter 7]) implies that
Fréchet differentiable norms are strongly Gâteaux differentiable.

Lemma 28. Let (X, ‖ · ‖) be a Banach space and let x ∈ SX . Assume that ‖ · ‖ is Gâteaux
differentiable at x. Then the following are equivalent.
(i) The norm ‖ · ‖ of X is strongly Gâteaux differentiable at x.
(ii) The norm ‖ · ‖ of X∗∗ is Gâteaux differentiable at x.
(iii) Every sequence (x∗n) in BX∗ such that x∗n(x) → 1 is weakly convergent to x∗ := ‖ ·‖′(x).
(iv) The functional x∗ := ‖ · ‖′(x) is a point of continuity for the identity mapping I :
(BX∗ , w∗) → (BX∗ , w).

Proof. First of all, (ii) and (iii) are equivalent by the Šmulyan lemma (see, e.g., [FHHMZ,
Corollary 7.22 (iv)]).
(i) ⇒ (iii): Use the Brøndsted-Rockafellar theorem (see, e.g. [Ph93, page 48]) to choose
yn ∈ SX and y∗n ∈ SX∗ such that y∗n(yn) = 1, ‖yn − x‖ ≤ εn/

√
εn and ‖y∗n − x∗n‖ ≤

√
εn.

Since εn → 0, it follows that yn → x. By (i) we get y∗n
w−→ ‖ · ‖′(x), so x∗n

w−→ ‖ · ‖′(x).
(iii) ⇒ (iv) is obvious.
(iv) ⇒ (i): Assume that (i) fails. Then there exists a w-neighborhood U of x∗, a sequence
{xn} in X, and elements x∗n ∈ ∂‖ · ‖(xn), such that xn → x and x∗n 6∈ U for every n ∈ N.

Since the duality mapping is ‖ · ‖-w∗-upper semicontinuous, we get that x∗n
w∗−→ x∗, hence

x∗n
w−→ x∗, a contradiction. ¤

Theorem 29 ([Day73], [Gil74], [Rain]). Assume the dual norm of X∗ is strongly Gâteaux
differentiable. Then X is reflexive.

Proof Let F ∈ SX∗∗ attain its norm at f ∈ SX∗ . Let xn ∈ SX be such that f(xn) → 1.
By the strong Gâteaux differentiability of the dual norm at f , we get that xn → F in the
weak topology of X∗∗, and thus F is in the norm closed linear hull of {xn} by the Mazur
theorem. Thus F ∈ X. Hence X∗∗ ⊂ X by the Bishop–Phelps theorem (cf. e.g. [FHHMZ,
Theorem 7.41]). ¤

Theorem 29 has the following corollary.

Corollary 30 ([Dix]). Assume that the norm of the fourth dual of a Banach space is strictly
convex. Then X is reflexive.

In this direction, let us mention the following well-known and easy-to-proof result (see e.g.
[DGZb, p. 51], and compare with Theorem 15).

Theorem 31. Let X be a weakly sequentially complete Banach space whose dual norm is
Gâteaux differentiable. Then X is reflexive.

Theorem 32 ([Sing75]). Assume the norm of X is strongly Gâteaux differentiable. Then
X is an Asplund space.

Proof. We shall show that X∗ is separable if X is separable. To this end, let {xn} be a
dense sequence in SX . Let f ∈ SX∗ attain its norm at x ∈ SX . Take a subsequence {xnk

}
of {xn} such that xnk

→ x.
Then f is the weak limit of the sequence {‖·‖′(xnk

)}. Thus f is in the norm-closed linear hull
of {‖ · ‖′(xnk

)}, by the Mazur theorem (cf. e.g. [FHHMZ, Theorem 3.45]). The separability
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of X∗ then follows from the Bishop–Phelps theorem on the density of the norm attaining
functionals (cf. e.g. [FHHMZ, Theorem 7.41]). ¤

Remark. Note that the notion of strong Gâteaux differentiability of the norm coincides
with the Fréchet differentiability for the C(K) spaces, since it gives the Asplund property
by Theorem 32 and thus the isomorphism of C(K)∗ to `1. Then, it is enough to use the
Schur property of `1 (cf. e.g., [FHHMZ, Theorem 5.36, 14.24 and 14.25]).

We do not know the answer to the following problem.

Problem 6. Which separable spaces admit norms that are nowhere strongly Gâteaux dif-
ferentiable?

The following result is due to Godun, who provided an ad hoc argument in [Godu85]. The
proof we present here, although closely related to the original one, shows that, after a
reduction to the Asplund setting, this result is dual to Theorem 24.

Theorem 33 ([Godu85b]). Let (X, ‖ · ‖) be a separable Banach space. Then X is reflex-
ive if, and only if, every Gâteaux differentiable equivalent norm on X is strongly Gâteaux
differentiable.

Proof. Obviously, only the sufficient condition must be proved. So assume that X is not
reflexive. If X is not Asplund, the result follows from Theorem 32. Indeed, it is then enough
to renorm X by a Gâteaux differentiable norm and use Theorem 32. If X, on the contrary, is
Asplund, then X∗ is separable. We shall see that the construction in the proof of Theorem
24 carried on X∗ gives, if starting conveniently, a dual (rotund) norm whose predual norm
is the sought one. Indeed (and we use the notation there), it is enough to choose an element
(0 6=) x∗∗∗0 ∈ X⊥ (⊂ X∗∗∗). Then X ⊂ Ker x∗∗∗0 ⊂ X∗∗, and the norm ‖ · ‖N in X∗ defined
by the norming subspace N := Ker x∗∗∗0 is, in fact, ‖ · ‖. We choose a w-null sequence {xn}
in S(X,‖·‖) such that spanw∗{xn : n ∈ N} = X∗∗, and define S : X∗ → c0 and T : X∗ → `2
as in (3.4) by using {xn}. Then the norm |‖ · |‖ defined on X∗ by (3.6) is an equivalent dual
rotund norm. Put |‖ · |‖ for its predual norm in X, an equivalent Gâteaux differentiable
norm on X. The sets Ak := {x∗ ∈ X∗ : ‖x∗‖ ≤ k‖Sx∗‖∞}, k = 1, 2, . . ., are ‖ · ‖-closed,
and

⋃∞
k=1 Ak = X∗, hence there is k ∈ N such that Ak has nonempty interior. Recall that

every element x∗ in Ak ∩S(X∗,|‖·|‖) is an extreme point of B(X∗,|‖·|‖) that is not preserved in
X∗∗∗, precisely because for some δ > 0 we have |‖x∗ ± δx∗∗∗0 |‖ ≤ 1. Use the Bishop-Phelps
theorem to ensure that Ak ∩ S(X∗∗∗,|‖·|‖) contains an element x∗ that attains its norm at
some element x in B(X,|‖·|‖). Then x is a smooth point of |‖ · |‖; however, it is not a very
smooth point due to the fact that x∗ ± δx∗∗∗0 ∈ B(X∗∗∗,|‖·|‖) and 〈x∗ ± δx∗∗∗0 , x〉 = 〈x∗, x〉.¤

Let (X, ‖ · ‖) be a Banach space. A norm |‖ · |‖ on X∗ is called weak∗ uniformly rotund

(W∗UR in short) if fn−gn
w∗−→ 0 whenever fn, gn ∈ S(X∗,|‖·|‖) are such that |‖fn +gn|‖ → 2.

It is well known (see, e.g., [DGZb, Theorem II.6.7]), that ‖ · ‖ on X is UG if, and only if,
‖ · ‖ on X∗ is W∗UR.

Theorem 34 ([BoFa93]). Let X be an infinite-dimensional separable Banach space. Then
there is a (uniformly) Gâteaux differentiable norm on X that is somewhere not Fréchet
differentiable.

Proof. Without loss of generality, we may assume that ‖·‖ on X satisfies ‖(y, t)‖ = ‖y‖+ |t|
for Y ⊕R = X, where Y is a closed hyperplane of X. Then the norm ‖ ·‖ on Y ∗⊕R (= X∗)
satisfies ‖(ζ, r)‖ = max{‖ζ‖, |r|}, for (ζ, r) ∈ Y ∗ ⊕ R. Let {yn} be a dense sequence in the
unit ball of Y and define a compact operator T : `2 → Y by

T ((λn)) =
∑

2−nλnyn, (λn) ∈ `2.
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Define a norm ||| · ||| on Y ∗ ⊕ R by

|||(ζ, r)|||2 = max{‖ζ‖2, r2}+ ‖T ∗ζ‖22 + |r|2, (ζ, r) ∈ Y ∗ ⊕ R.

Observe that ||| · ||| is an equivalent dual norm on Y ∗⊕R, dual to a norm on Y ⊕R denoted
again by ||| · |||.
The Josefson–Niszenweig theorem allows to choose a sequence {ζn} in SY ∗ such that ζn

w∗−→
0. Then (ζn, 1) → (0, 1) in the weak∗ topology of Y ∗ ⊕ R, and |||(0, 1)||| = √

2.

Now, since T ∗ is also a compact operator, we have T ∗ζn
‖·‖2−→ 0. Therefore |||(ζn, 1)||| → √

2.
Put ξn = (ζn, 1)/|||(ζn, 1)||| for n ∈ N, and ξ = (0,

√
2

2 ). We have |||ξn||| = |||ξ||| = 1 and

ξn
w∗−→ ξ.

Put x = (0,
√

2) ∈ Y ⊕ R. Note that |||x||| = 1. Indeed, 〈(0,
√

2
2 ), x〉 = 1, and

|||x||| = sup{〈(ζ, r), (0,
√

2)〉 : (ζ, r) ∈ Y ∗ ⊕ R, |||(ζ, r)||| ≤ 1}
= sup{

√
2r : (ζ, r) ∈ Y ∗ ⊕ R, max{‖ζ‖2, r2}+ ‖T ∗ζ‖2 + r2 ≤ 1}

≤ sup{
√

2r : r ∈ R, 2r2 ≤ 1} = 1

Then |||ξn||| = |||ξ||| = 1 = 〈ξ, x〉 = 1, ξn
w∗−→ ξ, and an easy computation shows that

|||ξn − ξ||| →
√

2
2 . Thus, by the Šmulyan lemma, ||| · ||| is not Fréchet differentiable at x.

It remains to show that ||| · ||| on X is UG. For it we show that its dual norm ||| · ||| on X∗

is W∗UR. Indeed, if wn := (ζ1
n, r1

n) ∈ Y ∗ ⊕ R and zn := (ζ2
n, r2

n) ∈ Y ∗ ⊕ R, n ∈ N, are such
that {wn} is bounded, and 2|||wn|||2 + 2|||zn|||2 − |||wn + zn|||2 → 0, then, by a standard
convexity argument, using the second and third term in the definition of the norm ||| · |||
on X∗, we have that r1

n − r2
n → 0 and T ∗(ζ1

n − ζ2
n) → 0, which gives ζ1

n − ζ2
n

w∗−→ 0 as T ∗

is a weak∗-to-weak∗ isomorphism of the dual ball of Y ∗ onto its image in `2, since T ∗ is
one-to-one. Therefore the predual norm ||| · ||| on X is UG. ¤

In [BoFa93], the following results are proved.

Theorem 35 ([BoFa93]). Let X∗ be separable. Then X admits a norm that is everywhere
(outside the origin) Gâteaux differentiable but is Fréchet differentiable exactly at each point
of X \ span{x0}, where x0 is a fixed nonzero point.

Theorem 36 ([BoFa93]). If X is an infinite dimensional Banach space. Then X admits
a norm ‖ · ‖ and x0 ∈ X such that ‖ · ‖ is Gâteaux differentiable at x0 but not Fréchet
differentiable at x0.

Remark. Note that Theorem 36 is equivalent to the Josefson–Niszenweig theorem. Indeed,
given an infinite dimensional Banach space X, let ‖ ·‖ in X be the norm defined in Theorem
36. Let x0 ∈ S(X,‖·‖) be a point where ‖ · ‖ is Gâteaux and not Fréchet differentiable, with
‖ · ‖′(x0) = x∗0. Use the Šmulyan lemma to find a sequence {x∗n} in B(X∗,‖·‖) such that

〈x∗n, x0〉 → 1 and ‖x∗n − x∗0‖ ≥ ε, for all n ∈ N and for some ε > 0. Then x∗n
w∗−→ x∗0. The

sequence {(x∗n − x∗0)/‖(x∗n − x∗0)‖} in in S(X∗,‖·‖) and is w∗-null.

The norm ‖ · ‖ on a separable Banach space is called octahedral (see e.g [DGZb, Chapter 3])
if there is u ∈ X∗∗ \ 0 such that ‖u + x‖ = ‖u‖+ ‖x‖ for all x ∈ X. Recall that X contains
an isomorphic copy of `1 if, and only if, X admits an equivalent octahedral norm (see e.g.
[DGZb, Chapter 3]).
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Problem 7 ([Tan96]). Assume that X is a separable Banach space that contains an iso-
morphic copy of `1. Does X admit an equivalent Gâteaux smooth octahedral norm?

Note that an example of a separable space with Gâteaux differentiable octahedral norm is,
e.g., in [DGZb, p. 120].

Theorem 37 ([Tan96]). Assume that a separable Banach space X contains an isomorphic
copy of `1. Then X admits an equivalent (uniformly) Gâteaux differentiable norm that is
nowhere strongly Gâteaux differentiable.

Proof. There is an equivalent octahedral norm ‖ · ‖ on X (see e.g. [DGZb])), which implies
the existence of an element x∗∗0 ∈ X∗∗ such that x∗∗0

∣∣
(BX∗ ,‖·‖) has no point of continuity

on (B(X∗,‖·‖), w∗). Let {xn : n ∈ N} be a countable dense subset of S(X,‖·‖), and define a
continuous linear operator T : X∗ → `2 by Tx∗ =

(
1
2n x∗(xn)

)∞
n=1

, for x∗ ∈ X∗. Then put

|x∗| := ‖x∗‖+ ‖Tx∗‖2, for x∗ ∈ X∗. (4.1)

This is an equivalent w∗-uniformly rotund dual norm on X∗, so its predual norm | · | in X
is UG. Fix x ∈ S(X,|·|), and let x∗ = | · |′(x) (∈ S(X∗,|·|)). We may find a sequence {x∗n} in

‖x∗‖B(X∗,‖·‖) such that x∗n
w∗−→ x∗, while x∗∗0 (x∗n) 6→ x∗∗0 (x∗). Note that |x∗n| → |x∗|. Indeed,

‖Tx∗n‖ → ‖Tx∗‖ because x∗ → ‖Tx∗‖2 is a w∗-continuous mapping, and ‖fn‖ → ‖f‖ as
‖ · ‖ is w∗-lower semicontinuous. Hence, according to the Šmulyan lemma, the dual norm of
| · | on X∗∗ is not Gâteaux differentiable at x. ¤

Remark. For the particular case X := `1, we do not need to rely on the concept of
octahedrality of a norm (incidentally, the canonical norm of `1 is indeed octahedral). It is
enough to use the following lemma, since the existence of an element in the bidual space
with a restriction to the dual unit ball that has no point of w∗-continuity is what matters.

Lemma 38. Fix a non-principal ultrafilter U in N, and let u = limU en (∈ `∗∞) be the w∗-
limit along U of the sequence {en}n∈N consisting of the canonical unit vectors in `1. Then
u
∣∣
B`∞

has no point of continuity as a mapping from (B`∞ , w∗) into R.

Proof. Fix x∗ = (xn) ∈ B`∞ . Let l := limU xn, and choose k ∈ [−1, 1] such that k 6= l. For

n ∈ N, put s∗n := (x1, x2, . . . , xn, k, k, . . .) (∈ B`∞). Then s∗n
w∗−→ x∗, although u(s∗n) = k for

all n ∈ N, and u(x∗) = l. ¤

Problem 8 ([Tan96]). Which separable spaces can be renormed by a Gâteaux differentiable
norm that is nowhere strongly Gâteaux differentiable?

Answering a question of Mazur in [Mazur33], Phelps proved in [Ph60] that there is an
equivalent Gâteaux differentiable norm on `1 that is nowhere Fréchet differentiable. This
motivated the following result.

Theorem 39 ([DGHZ87]). Assume that X is a separable Banach space. Then X admits
an equivalent Gâteaux differentiable norm that is nowhere Fréchet differentiable if, and only
if, X∗ does not have the C∗PCP.

Proof. We will show only one implication, namely that if X∗ does not have C∗PCP , then
X admits an equivalent Gâteaux differentiable norm that is nowhere Fréchet differentiable
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Claim. Let A, B be subsets of X∗ such that for every nonempty w∗-open subset O of B,
we have diam(O) > ε. Then the same conclusion holds for (A + B).
Indeed, let f ∈ V , where V is a w∗-open subset of (A+B). We write f = g + f ′ with g ∈ A
and f ′ ∈ B. By continuity, there is a w∗-neighbourhood O of f ′ in B such that (g+O) ⊂ V .
From the assumption, there are f1, f2 ∈ O with ‖f1 − f2‖ > ε. Then (g + fi) ∈ V (i = 1, 2)
and

‖(g + f1)− (g + f2)‖ = ‖f1 − f2‖ > ε,

which shows that diam(V ) > ε.
We now return to the proof of Theorem 39. Assume that there is a convex weak∗ compact
subset K of X∗ and ε > 0 such that for every nonempty weak∗ open subset O of K we have
diam(O) > ε. Applying our claim twice shows that C := BX∗ + (K) + (−K) shares the
property of K. Clearly, C is the dual unit ball of an equivalent norm, denoted by |||·|||.
Let {xi; i ≥ 1} be a norm-dense sequence in the unit ball of (X, ||| · |||). We define

|f |∗ = |||f |||+ ( ∞∑

i=1

2−if(xi)2
)1/2

.

Note that |f |∗ ≥ |||f ||| ≥ |f |∗/2 for any f ∈ X∗. It is easily seen that | · |∗ is a dual strictly
convex norm and therefore its predual norm | · | is Gâteaux differentiable. For showing that
| · | is nowhere Fréchet differentiable, it suffices to show that any nonempty w∗-open subset
O of {|f |∗ ≤ 1} has ‖ · ‖-norm-diameter at least ε/2.
Clearly, O ∩ {|f |∗ = 1} 6= ∅. Hence we can pick f ∈ O with 1 = |f |∗ ≥ |||f ||| ≥ 1/2.
There exist sequences fn, gn such that |||fn||| ≤ |||f |||, |||gn||| ≤ |||f ||| for every n, satisfying
‖fn − gn‖ ≥ ε and

w∗ − lim fn = w∗ lim gn = f.

By elementary rules on interchanging the limit and the summation, it follows that

lim
n

∑
2−if2

n(xi) =
∑

2−if2(xi).

If for some subsequence nk and δ ∈ (0, 1),

|||fnk
|||+ (

∑
2−if2

nk
(xi))1/2 ≤ δ|||f |||+ δ(

∑
2−if2(xi))1/2,

then by using the w∗-lower semicontinuity of ||| · |||, we obtain

1 = |||f |||+ (
∑

2−if2(xi))1/2 ≤ δ|||f |||+ δ(
∑

2−if2(xi))1/2 = δ,

a contradiction which shows that lim |fn|∗ = |f |∗. Similarly we obtain that lim |gn|∗ = |f |∗.
Because ‖fn − gn‖ ≥ ε for each n, we have ‖fn/|fn|∗ − gn/|gn|∗‖ ≥ ε/2, for n large enough.
¤

We will show now an easier variant of Theorem 20. Recall that the norm ‖ · ‖ of a Banach
space X is called weakly uniformly rotund (WUR in short) if xn − yn → 0 in the weak
topology of X whenever xn, yn ∈ SX are such that ‖xn + yn‖ → 2.

Theorem 40 ([DGHZ87]). Let X∗ be separable. Then X has the CPCP if, and only if, the
closed unit ball of every equivalent WUR norm in X is dentable.

Proof If X does not have the CPCP, then a variation on the proof of Theorem 39 shows
that X admits an equivalent WUR norm whose closed unit ball is not dentable. On the
other hand, if X has the CPCP and ‖ · ‖ is a WUR norm on X, then its dual norm is
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Gâteaux differentiable by the Šmulyan lemma. The closed unit ball BX of (X, ‖ · ‖) has
a point where the identity map from (BX , w) into (BX , ‖ · ‖) has a point of continuity x.
Clearly x lies on the unit sphere SX of (X, ‖ · ‖). Let f ∈ SX∗ be such that f(x) = 1. If
xn ∈ BX are such that f(xn) → 1, then xn

w−→ x by the Šmulyan lemma, as the dual norm
is Gâteaux differentiable at f . Since the weak and norm topologies on BX coincide at x, we
have that f is a point of Fréchet differentiability of the dual norm and x is thus a strongly
exposed point of BX . ¤

If a separable Banach space X contains a copy of `1, then C[0, 1] is a quotient of X by a
result of PeÃlczyński (see e.g. [FHHMZ, Corollary 5.33]). Therefore X∗ contains a copy of
the nonseparable space `1(Γ), that does not admit any equivalent Gâteaux differentiable
norm (see e.g. [FHHMZ, Exercise 7.65]).

5 Uniformities of rotund norms

We have seen in the previous sections how various notions of rotundity are intimately linked
with smoothness, structure, and geometry of a Banach space. Let us now give a systematic
description of variants of uniformities for rotund norms.

Definition 41. Let (X, ‖ · ‖) be a Banach space (respectively in some cases a dual Banach
space equipped with a dual norm). Consider the following conditions.

If the relation limn→∞ ‖xn + yn‖ = 2, for some {xn}∞n=1, {yn}∞n=1 ⊂ BX , implies

lim
n→∞

(xn − yn) = 0, then ‖ · ‖ is called uniformly rotund (UR).

w- lim
n→∞

(xn − yn) = 0, then ‖ · ‖ is called weakly uniformly rotund (WUR).

w∗- lim
n→∞

(xn − yn) = 0, then ‖ · ‖ is called weakly∗ uniformly rotund (W∗UR).

If the relation limn,m→∞ ‖xn + ym‖ = 2, for some {xn}∞n=1, {yn}∞n=1 ⊂ BX , implies

lim
n,m→∞

(xn − ym) = 0, then ‖ · ‖ is called 2-uniformly rotund (2UR).

w- lim
n,m→∞

(xn − ym) = 0, then ‖ · ‖ is called 2-weakly uniformly rotund (2WUR).

w∗- lim
n,m→∞

(xn − ym) = 0, then ‖ · ‖ is called 2-weakly∗ uniformly rotund (2W∗UR).

If the relation limn,m→∞ ‖xn + xm‖ = 2, for some {xn}∞n=1 ⊂ BX , implies

lim
n→∞

xn = x, for some x ∈ X, then ‖ · ‖ is called 2-rotund (2R).

w- lim
n,m→∞

(xn − xm) = 0, then ‖ · ‖ is called weakly Cauchy rotund (WCR).

w- lim
n→∞

xn = x, for some x ∈ X, then ‖ · ‖ is called weakly 2-rotund (W2R).

w∗- lim
n,m→∞

(xn − xm) = 0, then ‖ · ‖ is called weakly∗ Cauchy rotund (W∗CR).

w∗- lim
n→∞

xn = x, for some x ∈ X, then ‖ · ‖ is called weakly∗ 2- rotund (W∗2R).
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Let us pass to simple properties of the above notions. Note that it can be easily shown that
if a norm ‖·‖ on X has any one of the above properties then it is a rotund norm on X. For a
given norm we have the easy implications: UR⇒2UR⇒2R, WUR⇒2WUR⇒WCR⇐W2R,
and analogously W∗UR⇒2W∗UR⇒W∗CR⇐W∗2R. It is known (see below) that JT admits
a 2WUR renorming but it has no equivalent WUR norm. Also, W2R is strictly stronger
than WUR. As regards the rest, we pose the following problem.

Problem 9. Which of the implications above can be reversed?

The first three notions UR, WUR, and W∗UR are classical and have been discussed in
previous sections. Recall that a Banach space X admits a UR renorming if, and only if,
X is superreflexive (Enflo [Enf]). If X admits a WUR norm, then X is an Asplund space
([Haj96]). If X is moreover separable, then WUR renormability is equivalent to being an
Asplund space. Next, X∗ has a W∗UR renorming if, and only if, BX∗ in its w∗-topology is
a uniform Eberlein compact [FGZ]. Regarding the duality with smoothness, a norm ‖ · ‖ on
X is uniformly Fréchet differentiable (resp. UG) if, and only if, ‖ · ‖∗ is UR (resp. W∗UR).
Finally, ‖ · ‖ is WUR if, and only if, ‖ · ‖∗∗ is W∗UR. The proofs of all these results can be
found in [DGZb].
The notion 2WUR was introduced in [HaRy]. The main result of this paper is that the
James tree space JT has an equivalent 2WUR renorming.
Let us explain the situation in more detail. In [BGV] the authors investigate the properties
of the Clarke subdifferential of a typical Lipschitz function on a given Banach space. They
call a Banach space (X, ‖.‖) Lipschitz separated, if for every closed convex set C ⊂ X and
every bounded 1-Lipschitz real valued function f on C and x 6∈ C, there exist 1-Lipschitz
extensions of f on the whole X, say f1, f2, satisfying f1(x) 6= f2(x). This property depends
heavily on the norm ‖.‖. In [BGV] the following characterization is proved:

Theorem 42. For a given Banach space (X, ‖ · ‖) the following are equivalent:

(1) X is Lipschitz separated.

(2) For every pair of sequences {xn}∞n=1, {yn}∞n=1 ⊂ BX such that
limn,m→∞ ‖xn + ym‖ = 2, there is no φ ∈ X∗ such that
lim supn→∞ φ(xn) < 0 < lim infn→∞ φ(yn).

It is observed in [BGV] that the WUR property of ‖ · ‖ implies (2) (and so does 2WUR by
a similar argument), and on the other hand (2) implies that ‖ · ‖∗∗ is rotund. The last fact
implies that `1 is not isomorphic to any subspace of X. Indeed, if `1 ↪→ X, then `∞ ↪→ X∗,
so in particular `1(c) ↪→ X∗. Thus `∞(c) ↪→ X∗∗. For these classical results see, e.g.,
[HMVZ]. On the other hand, there exists no rotund renorming of `∞(c) by Day’s result
(e.g., [DGZb, Corollary II.7.13]). Recall that, by [Haj96], the space JH of Hagler from [Hag],
which also does not contain `1, does not admit an equivalent norm ‖ · ‖ such that ‖ · ‖∗∗
is rotund. Therefore JH does not admit a Lipschitz separated renorming. Thus separable
spaces with 2-WUR renorming (or Lipschitz separating renorming) cut in between Asplund
spaces and spaces not containing `1.

Problem 10. Is every Lipschitz separated separable Banach space 2WUR renormable?

The notions 2UR and 2W∗UR seem to be new. Since 2UR implies 2R, it can hold only for
reflexive spaces (see below).

Problem 11. Study the notions 2UR and 2W∗UR with respect to duality with some notions
of smoothness. Characterize spaces sharing these properties and find the connections with
other notions above.
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We are getting to the last set of notions. Milman, in [Mil], introduced the notions of 2R
and W2R and suggested the problem whether they characterize reflexivity. This was solved
in [HaJo] for W2R, and for 2R in [OdSch], in the separable case.

Theorem 43 ([HaJo],[OdSch]). Let X be a Banach space. Then X is reflexive if, and only
if, it admits an equivalent W2R norm. If X is a separable Banach space, then X is reflexive
if, and only if, it admits an equivalent 2R norm.

Problem 12. Let X be a nonseparable reflexive Banach space. Is there an equivalent 2R
renorming of X?

The remaining notions are again new and have not yet been studied. Therefore we suggest
to study them in some detail.

Problem 13. Study the notions WCR, W∗CR, 2WUR and 2W∗UR with respect to duality
with some notions of smoothness. Characterize spaces sharing these properties and find
connections with other notions in the present note.

In particular, since `1 6↪→ X if X has 2WUR norm, check whether ‖ · ‖ is 2WUR if, and only
if, ‖ · ‖∗∗ is 2W∗UR, and find their dual notion of smoothness. Similarly,

Problem 14. Is it true that ‖ · ‖ is WCR if, and only if, ‖ · ‖∗∗ is W∗CR?

Problem 15. Is there an equivalent renorming characterization (perhaps WCR) of a sep-
arable Banach space not containing a copy of `1?

We point out that there is an equivalent characterization of Banach spaces which do contain
a copy of `1 by means of octahedrality, [DGZb].

Problem 16. Study the notions analogous to Definition 41 where sequences are replaced by
nets.

Problem 17 (Godefroy). Suppose that w∗-convergent sequences on SX∗ are norm conver-
gent. Is X an Asplund space?

6 Two more constructions of smooth norms

The following result gives a quite general geometric method of construction of smooth norms
whose dual norms are not strictly convex.

Theorem 44 ([Klee59]). Every infinite dimensional separable nonreflexive Banach space
admits a Gâteaux differentiable norm the dual norm of which is not strictly convex.

Sketch of the Proof. (See Figures 1 and 2.) Let L, J , and H be closed linear subspaces
of X such that L ⊂ J ⊂ H, J a hyperplane of H, and H a hyperplane of X. Let p ∈ H
such that dist (p, J) ≥ 2 and q ∈ X such that dist (q,H) ≥ 1. Let Q1 and Q2 be the closed
half-spaces of X containing 0 and bounded by the translated hyperplanes determined by
span(J+q)∪{−p} and span(J+q)∪{p}, respectively. We shall produce a smooth absolutely
convex body B in X such that B ⊂ Q1∩Q2, B∩ (L+ q) = ∅, but dist (B,L+ q) = 0. Then,
if | · |B denotes the Minkowski functional of B in X (an equivalent norm in X), as well as
the corresponding norm in X/L and the dual norm in X∗, the closed unit ball of the space
(X/L, | · |B) admits two distinct supporting hyperplanes at the point q + L. This implies,
in particular, that | · |B in X∗ is not strictly convex.
To construct such B, let C0 be the closed unit ball of (H, ‖ · ‖). There exists a decreasing
sequence {Cn} of bounded closed convex in L whose intersection is empty (note that L is
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−p

p

H

L = J

L + q = J + q

Q1

Q2 Cn

0

A

Figure 1: Construction of the set A (for simplicity, we assumed L = J)

not reflexive). Consider A := Γ
( ⋃∞

n=0(Cn + (1 − 2−n)q
)
, where Γ(S) denotes the convex

and balanced hull of a set S. Then A ⊂ X \ (L + q) and dist(A, L + q) = 0.
There exists a compact absolutely convex smooth subset K that is contained in the open unit
ball in (X, ‖ · ‖) (for example T ∗B`2 where T is a compact one-to-one operator from X into
`2). For each t ∈ (−1, 1), let At = A∩ (H + tq). Finally, let B =

⋃
t∈(−1,1)

(
At + (1− t)K

)
.

This set has the required properties. ¤

B

0

Figure 2: Construction of the set B

Another example of a separable Banach space whose norm is Gâteaux differentiable and its
dual norm is not strictly convex was given by Troyanski in [Troy1].

Talagrand proved that the nonseparable space C[0, ω1], where ω1 is the first uncountable
ordinal, admits a Fréchet differentiable norm but admits no norm whose dual norm is strictly
convex (see e.g. [DGZb, Chapter 7]).

Problem 18. Assume X∗ is separable. Can a modified Klee’s construction in Theorem 44
produce a Fréchet differentiable norm the dual of which is not strictly convex?

The following theorem should be compared with Corollary 30. For a description of the
James space J see, e.g., [FHHMZ, Definition 4.43].

Theorem 45 ([Sm76]). The James space J admits a norm whose third dual is strictly
convex.

Proof. Let B denote the James space J renormed by a norm ‖·‖ such that its dual is at the
same time LUR and W∗UR (cf. e.g. [FHHMZ, Chapter 8]). Write B∗∗∗ = B∗⊕ span{b∗∗∗},
where b∗∗∗ ∈ B⊥. We claim that B∗∗∗ is rotund. To show this suppose that x∗∗∗ and y∗∗∗
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are norm 1 elements in B∗∗∗ such that ‖x∗∗∗+ y∗∗∗‖ = 2. We are to show that x∗∗∗ = y∗∗∗.
Write x∗∗∗ = x∗ + αb∗∗∗ and y∗∗∗ = y∗ + βb∗∗∗, where x∗ and y∗ are in B∗ and α and β are
real numbers.
If x∗ 6= y∗, then there exists an x ∈ SB such that (x∗ − y∗)(x) 6= 0. By the Principle of
Local Reflexivity, there is a sequence of linear maps Tn : span{x∗∗∗, y∗∗∗} → B∗ such that,
for each n ∈ N,

(Tn(x∗∗∗ − y∗∗∗))(x) = (x∗∗∗ − y∗∗∗)(x) = (x∗ − y∗)(x)

and
(1− εn)‖z‖ ≤ ‖Tn(z)‖ ≤ (1 + εn)‖z‖

for all z ∈ span{x∗∗∗, y∗∗∗}, where {εn} is a positive sequence of real numbers decreasing to
0 (use the fact that b∗∗∗(x) = 0).
For n ∈ N, let x∗n = Tn(x∗∗∗) and y∗n = Tn(y∗∗∗). Then we have ‖x∗n‖ → 1, ‖y∗n‖ → 1, and
‖x∗n +y∗n‖ → 2. Thus by the W∗UR property of the dual norm, (x∗n−y∗n)(x) → 0. However,
(x∗n − y∗n)(x) = (x∗ − y∗)(x) for each n, a contradiction. Thus x∗ = y∗.
Choose f ∈ SB4 such that f( 1

2 (x∗∗∗ + y∗∗∗)) = 1. Then f(x∗∗∗) = f(y∗∗∗) = 1. Then we
have

0 = f(x∗∗∗ − y∗∗∗) = (α− β)f(b∗∗∗).

If f(b∗∗∗) 6= 0, then α = β and thus x∗∗∗ = y∗∗∗ and the proof is finished.
If f(b∗∗∗) = 0, then

f(x∗) = f(x∗ + αb∗∗∗) = f(x∗∗∗) = 1.

From this and since ‖x∗‖ ≤ ‖x∗+ αb∗∗∗‖ = 1, it follows that ‖x∗‖ = 1 and ‖x∗+ x∗∗∗‖ = 2.
If x∗∗∗ 6= x∗, then by the priciple of Local Reflexivity, there exists a sequence of linear maps
Tn : span{x∗, x∗∗∗} → B∗ such that Tn(x∗) = x∗ for each n and

(1− εn)‖z‖ ≤ ‖Tn(z)‖ ≤ (1 + εn)‖z‖

for all z ∈ span{x∗, x∗∗∗} and for all n ∈ N, where {εn} is a sequence of positive real numbers
decreasing to 0.
Let x∗n = Tn(x∗∗∗). Then we have ‖x∗‖ = 1, ‖x∗n‖ → 1 and ‖x∗ + x∗n‖ → 2. By the
LUR property of the dual norm, we thus have that ‖x∗ − x∗n‖ → 0. However, ‖x∗ − x∗n‖ ≥
(1 − εn)‖x∗ − x∗∗∗‖. Thus x∗∗∗ = x∗. Similarly we can show that y∗∗∗ = y∗ = x∗. Thus
x∗∗∗ = y∗∗∗ and the proof is completed. ¤

It is shown in [Haj96] that the James tree space JT admits a norm whose second dual is
strictly convex. Thus its predual JT∗ has a norm whose third dual is strictly convex. It is
also shown in [Haj96] that the separable Hagler’s space JH (that also does not contain a
copy of `1 and JH∗ is nonseparable (cf. [Hag])) admits no equivalent norm whose second
dual is strictly convex.

Yet, the following problem seems to be open.

Problem 19 ([Haj96]). Is it true that if X is separable and does not contain a copy of `1,
then X∗ admits an equivalent Gâteaux differentiable norm?

Remark We do not know if appropriate versions of many results discussed above hold true
in the nonseparable setting.
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Václav Zizler
Institute of Mathematics of the Czech Academy of Sciences
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