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Abstract

A parallel implementation of the Balancing Domain Decomposi-
tion by Constraints (BDDC) method is described. It is based on
formulation of BDDC with global matrices without explicit coarse
problem. The implementation is based on the MUMPS parallel solver
for computing the approximate inverse used for preconditioning. It is
successfully applied to several problems of Stokes flow discretized by
Taylor-Hood finite elements and BDDC is shown to be a promising
method also for this class of problems.

1 Introduction

In many areas of engineering, numerical solution of problems by the finite
element method (FEM) leads to solution of systems of linear algebraic equa-
tions with sparse and often ill-conditioned matrices. For very large problems,
the usual method of choice for their solution is one of the iterative methods
based on Krylov subspaces. However, without preconditioning, the conver-
gence rate deteriorates with growing condition number of the problem. The
need of first-rate preconditioners tailored to the solved problem, which can
be implemented in parallel, gave rise to the field of domain decomposition
methods (e.g. [20]).
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The Balancing Domain Decomposition based on Constraints (BDDC) is
one of the most advanced preconditioners of this class. It was introduced
by Dohrmann [3] in 2003 and the theory was developed by Mandel and
Dohrmann in [12]. In an important contribution to the theory of the precon-
ditioner [13], Mandel, Dohrmann, and Tezaur proved close connections with
the earlier FETI-DP method by Farhat et al. [5], another popular domain
decomposition technique. The preconditioner was reformulated without ex-
plicit coarse problem as is used in this paper by Li and Widlund in [11]. The
underlying theory of the BDDC method covers problems with symmetric
positive definite matrix. An important application that leads to such kind
of systems is structural analysis by linear elasticity theory.

The solution of the incompressible Stokes problem by a mixed finite ele-
ment method leads to a saddle point system with symmetric indefinite ma-
trix. Thus, the standard theory of BDDC does not cover this important
class of problems. In the first attempt to apply BDDC to the incompressible
Stokes problem proposed by Li and Widlund [10], the optimal precondi-
tioning properties of BDDC were recovered. The approach is based on the
notion of benign subspaces, which is restricted to using discontinuous pressure
approximation, and the authors present results for piecewise constant func-
tions. Moreover, the approach in [10] requires quite nonstandard constraints
between subdomains, thus making the implementation more problem specific
and difficult.

In this paper, we follow a different approach. We have implemented a par-
allel version of the BDDC method and verified its performance on a number
of problems arising from linear elasticity (e.g. [19]). Here, we investigate the
applicability of the method and its implementation to the Stokes flow with
only minor changes to the source code of the implementation for elasticity
problems. Although such application is beyond the standard theory of the
BDDC method, contributive results are obtained.

It has been known for a long time, that the conjugate gradient method is
able to reach solution also for many indefinite cases (e.g. [16]), although it
may fail in general. Our effort is also supported by recent trends of numerical
linear algebra to investigate and often prefer the use of preconditioned CG
method (PCG) with a suitable indefinite preconditioner over more robust
but also more expensive iterative methods for solving indefinite systems such
as MINRES, BiCG or GMRES [17]. Another reason for which we do not
switch to the MINRES method [16], which is suitable for indefinite problems
(e.g. [4]), is the fact that it requires a positive definite preconditioner, while
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BDDC at the presented setting provides an indefinite preconditioner for the
saddle-point problem.

Several results for the Stokes flow in three dimensions are presented. All
these problems are obtained using mixed discretization by Taylor-Hood finite
elements or their serendipity version. These elements use piecewise (tri)linear
pressure approximation, which does not allow the approach via benign spaces
of [10], but are very popular in the computational fluid dynamics community.

2 Stokes problem and approximation by mixed

FEM

Let Ω be an open bounded domain in R3 filled with an incompressible viscous
fluid, and let ∂Ω be its boundary. Isothermal low speed flow of such fluid is
modelled by the following Stokes system of partial differential equations

−ν∆u +∇p = f in Ω, (1)

−∇ · u = 0 in Ω, (2)

u = g on ∂Ωg, (3)

−ν(∇u)n + pn = 0 on ∂Ωh, (4)

where u denotes the vector of flow velocity, p denotes the pressure divided by
the (constant) density, ν denotes the kinematic viscosity of the fluid supposed
to be constant, f denotes the density of volume forces per mass unit, ∂Ωg and
∂Ωh are two subsets of ∂Ω satisfying ∂Ω = ∂Ωg ∪ ∂Ωh, µR2(∂Ωg ∩ ∂Ωh) = 0,
n denotes an outer normal vector to the boundary ∂Ω with unit length, and
g is a given function satisfying

∫
∂Ω

g · n ds = 0 in the case of ∂Ω = ∂Ωg .
We derive the weak formulation of the Stokes equations (1)-(4) in the

manner of mixed methods (cf. [7]). Let us consider the vector function space

V =
{

v ∈ [H1(Ω)]3; v|∂Ωg = 0
}

and the set Vg =
{

v ∈ [H1(Ω)]3; v|∂Ωg =

g
}

, where H1(Ω) is the usual Sobolev space, and the restriction v|∂Ωg is

understood in the sense of traces.
We now introduce a triangulation of the domain Ω into Taylor-Hood

finite elements P2P1 and/or Q2Q1 (or their serendipity version Q2SQ1), which
satisfy the Babuška-Brezzi stability condition (cf. [2]). Their application
leads to the finite dimensional subsets Vgh ⊂ Vg, Vh ⊂ V , which contain
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continuous piecewise quadratic functions, and Qh ⊂ L2(Ω) with continuous
piecewise linear functions.

We can now introduce the discrete Stokes problem:
Find uh ∈ Vgh and ph ∈ Qh satisfying

ν

∫
Ω

∇uh : ∇vhdΩ−
∫

Ω

ph∇ · vhdΩ =

∫
Ω

f · vhdΩ, ∀vh ∈ Vh,

−
∫

Ω

ψh∇ · uhdΩ = 0, ∀ψh ∈ Qh, (5)

uh − ugh ∈ Vh. (6)

Here ugh ∈ Vgh represents the Dirichlet boundary condition g in (3).
Expressing the finite element functions as linear combinations of basis

functions (see e.g. [4, Section 5.3] for more details), the problem finally leads
to the saddle point system of algebraic equations[

A BT

B 0

] [
ū
p̄

]
=

[
f̄
0

]
, (7)

where ū denotes velocity unknowns, p̄ denotes pressure unknowns, A and B
are called vector–Laplacian matrix and the divergence matrix, respectively,
and f̄ is the discrete vector of intensity of volume forces per mass unit.

3 Iterative substructuring

In this section, we recall ideas of iterative substructuring used in our imple-
mentation. Details can be found in [20].

Let Ω be a bounded domain in R2 or R3, let U be a finite element space
of piecewise polynomial functions v continuous on Ω and U ′ its dual space.
Let a(·, ·) be a bilinear form on U × U and f ∈ U ′, and let 〈·, ·〉 denote the
duality pairing of U ′ and U . Consider now an abstract variational problem:
Find u ∈ U such that

a(u, v) = 〈f, v〉 ∀ v ∈ U . (8)

Write the matrix problem corresponding to (8) as

Au = f. (9)
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The domain Ω is decomposed into N nonoverlapping subdomains Ωi, i =
1, ..., N , with characteristic size H, which form a conforming triangulation
of the domain Ω. Each subdomain is a union of several finite elements of
the underlying mesh with characteristic mesh size h, i.e. nodes of the finite
elements between subdomains coincide. Unknowns common to at least two
subdomains are called boundary unknowns and the union of all boundary
unknowns is called the interface Γ.

The problem is first reduced to the interface Γ. For this purpose, the
solution u is split into the interior solution uo, with zero values at Γ, and uΓ,
where values in subdomain interiors are determined by values at Γ (see (12)
below). Then problem (9) may be rewritten as

A(uΓ + uo) = f. (10)

Let us formally reorder unknowns of problem (10) into two blocks, with the
first block (subscript 1) corresponding to unknowns in subdomain interiors,
and the second block (subscript 2) corresponding to unknowns at the inter-
face. This results in the block form of the system (10) given as[

A11 A12

A21 A22

] [
uΓ1 + uo1

uΓ2 + uo2

]
=

[
f1

f2

]
, (11)

with uo2 = 0 by definition. Function uΓ is called discrete harmonic, by which
we mean that it is fully determined by values at interface Γ and by the
algebraic condition

A11uΓ1 + A12uΓ2 = 0, i.e. A11uΓ1 = −A12uΓ2. (12)

By this splitting, we derive that (11) is equivalent to

A11uo1 = f1, (13)[
A11 A12

A21 A22

] [
uΓ1

uΓ2

]
=

[
0

f2 − A21uo1

]
, (14)

and the solution is obtained as u = uΓ + uo. Problem (14) can be further
split into two problems

A11uΓ1 = −A12uΓ2, (15)

SuΓ2 = g2, (16)
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where S is the Schur complement with respect to unknowns at interface Γ
defined as S = A22 − A21A

−1
11 A12, and g2 is the condensed right hand side

g2 = f2−A21uo1 = f2−A21A
−1
11 f1. Since A11 has a block diagonal structure,

the solution to (13) may be found in parallel and similarly the solution to
(15). We are ready to recall the algorithm of substructuring.

Algorithm 1 (Iterative substructuring) Problem (9) is solved in the fol-
lowing steps:

1. factorize block diagonal matrix A11 in (13) and store factors,

2. solve (13) by back-substitution to find uo1,

3. construct g2 as g2 = f2 − A21uo1,

4. solve problem (16) by a Krylov subspace method. In each iteration,
multiplication of a given vector p2 by S is realized as

• find p1 by solution of A11p1 = −A12p2,

• get Sp2 as Sp2 = A21p1 + A22p2.

5. Find uΓ1 by (15),

6. get solution u as u =

[
uΓ1

uΓ2

]
+

[
uo1

0

]
.

Note, that the Schur complement S is never formed explicitly and its action
is realized by three sparse matrix multiplications and one back-substitution.
The main reason for using Algorithm 1 is usually much faster convergence
of the iterative method for problem (16) compared to problem (9) (see e.g.
[20]).

4 BDDC preconditioner

The BDDC method provides a preconditioner for problem (16). LetWi be the
space of finite element functions on subdomain Ωi, coefficients of which satisfy
the algebraic discrete harmonic condition (12) locally on the subdomain, and
put W = W1 × · · · ×WN . It is the space where subdomains are completely
disconnected at the interface Γ, and functions on them are independent of
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each other. Let us further define UΓ ⊂ U as the subset of finite element
functions on Ω with coefficients satisfying the discrete harmonic condition
(12). Clearly, UΓ ⊂ W , and the solution to (14) uΓ ∈ UΓ.

The main idea of the BDDC preconditioner in the abstract form [14] is to

construct an auxiliary finite dimensional space W̃ such that UΓ ⊂ W̃ ⊂ W ,
and extend the bilinear form a (·, ·) to a form ã (·, ·) defined on W̃ × W̃ ,
such that solving the variational problem (8) with ã (·, ·) in place of a (·, ·) is
cheaper and can be split into independent computations performed in paral-
lel. Then the solution restricted to UΓ is used for the preconditioning of (16).

Space W̃ contains functions generally discontinuous at interface Γ except a
small set of coarse degrees of freedom at which continuity is preserved. Coarse
degrees of freedom are typically values at selected nodes called corners. In
addition, continuity of generalized degrees of freedom, such as averages over
subdomain edges and/or faces, might be enforced.

In computation, the corresponding matrix denoted Ã is used. It is larger
than the original matrix of the problem A, but it possesses a simpler structure
suitable for direct solution methods. This is the reason why it can be used
as a preconditioner. In the presented algorithm, matrix Ã is constructed
using the standard FEM assembly procedure on a virtual mesh which is
disconnected at interface outside corners (Figure 1).

Figure 1: Example of an actual computational mesh with six subdomains
(left) and corresponding virtual mesh used for assembly of matrix Ã (right).

The projection E : W̃ → UΓ is realized as a weighted average of values
from different subdomains at unknowns on the interface Γ, thus resulting in
functions continuous across the interface. The weights at a degree of freedom
are chosen as the inverse to the number of subdomains, in which the degree
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of freedom is contained, as is done e.g. in [10]. This approach is used for
both velocity and pressure unknowns.

Let r ∈ U ′Γ be the residual in an iteration of an iterative method. The
BDDC preconditioner MBDDC : U ′Γ → UΓ in the abstract form (see [14])
produces the preconditioned residual v ∈ UΓ as

MBDDC : r → v = Ew,

where w ∈ W̃ is obtained as the solution to problem

w ∈ W̃ : ã (w, z) = (r, Ez) ∀z ∈ W̃ , (17)

or in terms of matrices as
v = EÃ−1ET r. (18)

Here, the action of Ã−1 is performed as a back-substitution by a direct solver.
After v is found, we are typically interested only in its values at interface
nodes, since multiplication of this vector by S follows and interior values are
resolved from discrete harmonic constraint (12) as described in Algorithm 1.

For the Stokes problem, we adopt the following slightly unusual notation
in (8)

a(u, v) = ν

∫
Ω

∇uh : ∇vhdΩ−
∫

Ω

ph∇ · vhdΩ−
∫

Ω

ψh∇ · uhdΩ, (19)

〈f, v〉 =

∫
Ω

f · vhdΩ. (20)

The bilinear form a(u, v) is symmetric but indefinite [2, 4]. In (9), this
corresponds to putting

A =

[
A BT

B 0

]
, u =

[
ū
p̄

]
, f =

[
f̄
0

]
.

Should we distinguish between blocks corresponding to nodes in interiors
of subdomains and at the interface Γ as in (11), saddle point problem (7)
would look as 

A11 A12 BT
11 BT

21

A21 A22 BT
12 BT

22

B11 B12 0 0
B21 B22 0 0




ū1

ū2

p̄1

p̄2

 =


f̄1
f̄2
0
0

 , (21)
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and the Schur complement matrix and the condensed right hand side in (16)
as

S =

[
A22 BT

22

B22 0

]
−
[

A21 BT
12

B21 0

] [
A11 BT

11

B11 0

]−1 [
A12 BT

21

B12 0

]
,

g2 =

[
f̄2
0

]
−
[

A21 BT
12

B21 0

] [
A11 BT

11

B11 0

]−1 [
f̄1
0

]
.

5 Implementation and numerical results

Our parallel implementation of the BDDC preconditioner has been exten-
sively tested on problems with symmetric positive definite matrices arising
from linear elasticity (e.g. [19]). The current version is based on the multi-
frontal massively parallel sparse direct solver MUMPS [1] version 4.9.2, which

is used for the factorization of the matrices Ã in (18) and A11 in (15). These
matrices are put into MUMPS in the distributed format with one subdo-
main corresponding to one processor. While Cholesky factorization is used
for problems with symmetric positive definite system matrices, for the Stokes
problem, MUMPS is simply switched to the LDLT factorization of general
symmetric matrices. If additional constraints on averages over edges or faces
are prescribed, the generalized change of variables is used in combination
with nullspace projection. This approach, which provides a generalization
of the change of basis from [11], is described in detail in [15]. Iterations are
performed by a parallel PCG solver.

The applicability of the preconditioner to the steady problem of Stokes
flow has been tested, and results are presented in this section. The system
matrix of the Stokes problem is symmetric, but indefinite. For this reason, the
standard theory of BDDC does not cover this case. A way to assure positive
definiteness of the preconditioned operator based on BDDC was presented
by Li and Widlund [10]. However, that approach is limited to discontinuous
pressure approximation, and thus it can be used for neither Q2Q1 Taylor–
Hood finite elements (e.g. [2]) used in our Matlab computations nor their
serendipity version Q2SQ1 used in our parallel computations.

5.1 Problem (1)

The method is first tested on the problem of the lid driven cavity. This
popular 2D benchmark problem is used in the 3D setting as a section of
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an infinite cavity (Figure 2 left) used e.g. in [6]: The domain is a unit cube
with unit velocity in the direction of the x-axis on the upper face (called
lid), zero normal component of velocity (uz = 0) prescribed on faces parallel
to xy-plane, and homogeneous Dirichlet boundary conditions for velocity on
remaining faces. In numerical solution, all nodes with y = 1 are included
into the lid, which means that the setting corresponds to the so called leaky
cavity [4]. We fix pressure at the node in the centre of the domain to make
its solution unique. The entire motion inside cavity is driven by viscosity of
the fluid which is chosen as 0.01.

z

x

u

y

z

x

u

π/8y

Figure 2: 3D lid driven cavity problems: section of infinite cavity (Problem
1) (left) – unit velocity aligned with x-axis prescribed on the upper (dark
grey) face, zero component of velocity in z direction on two (light grey) faces,
homogeneous Dirichlet boundary conditions for velocity on remaining (white)
faces; cubic cavity (Problem 2) (right) – unit velocity parallel to the xz-plane
rotated along y-axis prescribed on the upper (dark grey) face, homogeneous
Dirichlet boundary condition for velocity on remaining (white) faces.

The problem is uniformly discretized using Q2SQ1 serendipity finite ele-
ments (velocity unknowns at vertices and edge-centres, pressure unknowns
at vertices).

Tables 1–3 contain results for variable number of subdomains (columns)
and variable H/h ratio, where H stands for the characteristic size of a sub-
domain and h denotes the characteristic size of an element. Each column
contains results for constraints at corners only (‘c’) and with additional con-
straints on averages over edges (‘c+e’). Results are summarised with respect
to the number of PCG iterations and computational times of individual dom-
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inant operations in the preconditioner (the total time includes also time for
parallel factorization of the block of interior unknowns). Computations were
performed on SGI Altix 4700 computer in CTU Supercomputing Centre in
Prague with 72 1.5 GHz Intel Itanium 2 processors. The stopping criterion
for PCG was defined by relative residual as ‖r‖2/‖g‖2 < 10−6.

Resulting times are for selected settings compared to those by direct ap-
plication of the MUMPS solver [1] and to results by our in–house serial
direct solver. The latter is based on the unsymmetric frontal method by
Hood [8], which is a generalization of the classical frontal method developed
for symmetric positive definite problems by Irons [9]. The basic idea of the
frontal approach lies in simultaneous assembling and eliminating of rows of
the system matrix finding the factors ‘out-of-core’. For suitably numbered
elements, this approach usually results in huge reduction of memory require-
ments, while it might have a negative impact on the speed due to the I/O
operations inside factorization. This solver has been successfully used by
our group to solve a number of benchmark as well as real-life Stokes and
Navier-Stokes problems.

Solution of this cavity problem using 16×16×16 elements (corresponding
to the last column of Table 1 or the first column of Table 2) takes 30 minutes
by our frontal solver on a single processor.

Table 3 also summarises solution of the problem using 32×32×32 elements
divided into 8 subdomains by the MUMPS solver. We have not been able to
fit this problem into memory using the serial frontal solver.

An example of the problem for 32×32×32 = 32,768 elements and H/h = 8
(64 subdomains) is presented in Figure 3 left. In Figure 3 right, several
streamlines at the z = 0.5 plane are presented. These are coloured by the
velocity magnitude.

Tables 1–3 reveal an unfortunate property of the presented approach,
that scalability is not achieved with respect to number of resulting iterations.
Computational times are growing with growing number of subdomains not
only due to increasing number of iterations, but also due to the dependence
on the MUMPS solver, which turns out not to scale well for this problem.

Nevertheless, it is still interesting to compare the results to the frontal
solver used to address the Stokes and Navier–Stokes problems by our group
before, and even to compare the computational time of solution by PCG
with BDDC preconditioner and by MUMPS (Table 3) on eight processors,
for which the former is two times faster. This result supports the initial
idea of the implementation – that using the parallel direct solver for the
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Figure 3: 3D lid driven cavity problem with 32×32×32 elements, H/h = 8:
division into 64 regular subdomains (left); several streamlines at the z = 0.5
plane for Problem (1) (right), colours by velocity magnitude.

subdomains (processors) 8 27 64
unknowns 8,748 27,040 61,268
constraints c / c+e c / c+e c / c+e

number of PCG iterations 18 / 15 29 / 17 37 / 18
analysis by MUMPS (sec) 0.9 / 0.5 1.9 / 2.1 5.7 / 6.6

factorization by MUMPS (sec) 0.2 / 0.2 0.3 / 0.3 0.5 / 0.6
PCG iterations (sec) 2.1 / 1.8 12 / 7.1 46 / 23

one PCG iteration (sec) 0.12 / 0.12 0.42 / 0.42 1.24 / 1.26
total wall time (sec) 5.6 / 4.9 24 / 22 106 / 87

Table 1: Scaling of cavity problem (1) for variable number of subdomains
and types of constraints, H/h = 4.
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subdomains (processors) 8 27 64
unknowns 61,268 197,500 457,380
constraints c / c+e c / c+e c / c+e

number of PCG iterations 19 / 16 35 / 18 122 / 44
analysis by MUMPS (sec) 11 / 11 26 / 27 84 / 89

factorization by MUMPS (sec) 1.3 / 1.4 1.9 / 2.1 3.0 / 3.0
PCG iterations (sec) 9.7 / 8.4 70 / 37 724 / 281

one PCG iteration (sec) 0.51 / 0.52 2.01 / 2.08 5.93 / 6.39
total wall time (sec) 42 / 41 195 / 182 1,352 / 966

Table 2: Scaling of cavity problem (1) for variable number of subdomains
and types of constraints, H/h = 8.

subdomains (processors) 8
unknowns 457,380

solver BDDC + PCG MUMPS
constraints c / c+e n/a

number of PCG iterations 45 / 36 n/a
analysis by MUMPS (sec) 168 / 166 185

factorization by MUMPS (sec) 54 / 55 1,398
PCG iterations (sec) 125 / 110 n/a

one PCG iteration (sec) 2.78 / 3.05 n/a
total wall time (sec) 634 / 651 1,601

Table 3: Cavity problem (1): BDDC for variable types of constraints, and
direct solution by MUMPS solver, H/h = 16.
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disconnected problem as a preconditioner for an iterative method can be
much faster than using the same solver for the original problem directly.

5.2 Problem (2)

The next problem is formed by another generalization of the 2D cavity prob-
lem into 3D inspired by [22]. It has the following setting (Figure 2 right):
Homogeneous Dirichlet boundary conditions for velocity are considered on
all faces except the lid, where unit tangential velocity is prescribed. However,
to make also the nature of the flow three-dimensional, the velocity is now not
aligned with the x-axis but rotated by angle π/8. Again, pressure is fixed at
the node in the centre of the domain and the viscosity of the fluid is chosen
as 0.01.

This problem is uniformly discretized using (full) Q2Q1 Taylor–Hood fi-
nite elements. Serendipity Q2SQ1 elements cannot be used for this problem
since they fail to determine pressure at the eight corners of the domain if
Dirichlet boundary conditions on velocity are prescribed on all three faces at
a corner.

Tables 4–5 summarise performance of the BDDC preconditioner in con-
nection with GMRES and BiCGStab methods, respectively. Since these ex-
periments were run in Matlab by a serial implementation of the method, the
comparison is done only for number of iterations and times are not presented.
The stopping criterion was defined by relative residual as ‖r‖2/‖g‖2 < 10−8.

Table 4 presents results for variable size of the problem and variable con-
straints with fixed ratio H/h = 4. Columns contain results for corners only
(‘c’), with additional constraints on averages over edges (‘c+e’), with addi-
tional constraints on averages over faces (‘c+f’), and with both (‘c+e+f’).
This experiment shows, that using averages on edges and faces, number of
iterations for larger problem does not grow with problem size. This is not
achieved with corner constraints only, and even with averages on edges or
faces, number of iterations slightly grows. For reference, number of iterations
without preconditioning (‘no prec.’) is also reported.

Table 5 presents results for fixed number of subdomains (eight) with
variable H/h ratio. This experiment shows, that number of iterations mildly
grows for all types of constraints with growing H/h, in agreement with avail-
able theory for SPD problems.

Numbers of iterations obtained for the same divisions, but using Matlab
implementation of ILU preconditioner with variable threshold for dropping
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entries (ILUT [18]) are presented in Tables 6 and 7. These tables present
results with respect to variable threshold for dropping entries in factors rang-
ing from 10−3 to 10−5. Where (‘–’) occurs, PCG method fails to converge.
We can conclude, that the ILUT preconditioner with threshold 10−5 is very
efficient and seems to reach independence of size of this problem. These
tables also suggest, that with an improving preconditioner, PCG method
tends to converge also for these indefinite problems. Numbers of iterations
for threshold 10−4 are comparable with BDDC with sufficient constraints.

BDDC no prec.
subdomains (unknowns) c c+e c+f c+e+f

8 (15,468) 31/24.5 28/24.5 26/22.5 23/19.5 223/608.5
27 (49,072) 50/74.5 35/31.5 31/33.5 26/23 436/731.5
64 (112,724) 75/126.5 42/46.5 34/27.5 27/44.5 627/1,074
125 (216,024) 115/182.5 47/41.5 35/28.5 27/42.5 782/1,168.5

Table 4: Number of iterations by GMRES/BiCGStab with BDDC precondi-
tioner for variable type of constraints, and without preconditioning, variable
number of subdomains, H/h = 4.

BDDC no prec.
H/h (unknowns) c c+e c+f c+e+f

2 (2,312) 26/20 22/19.5 22/17.5 19/15.5 92/372.5
4 (15,468) 31/24.5 28/24.5 26/22.5 23/19.5 223/608.5
8 (112,724) 38/44 33/26.5 29/63.5 26/22.5 418/690.5
12 (368,572) 42/35.5 37/31.5 32/173.5 29/98.5 530/725.5

Table 5: Number of iterations by GMRES/BiCGStab with BDDC precondi-
tioner for variable type of constraints, and without preconditioning, variable
H/h, 2×2×2 = 8 subdomains.

5.3 Problem (3)

The last problem is inspired by flow in artificial arteries. The geometry is
simplified to a tube with a sudden reduction of diameter. Due to the symme-
try of the tube, only one quarter is considered in the computation. Constant
kinematic viscosity ν = 0.01 is considered. Parabolic velocity profile with
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ILUT threshold
subdomains (unknowns) 10−3 10−4 10−5

8 (15,468) 15/11/– 5/3.5/– 3/2/3
27 (49,072) 32/40.5/– 9/5.5/– 5/2.5/5
64 (112,724) 49/97.5/– 15/11.5/– 6/3.5/20
125 (216,024) 57/138/– 23/15.5/– 6/4/–

Table 6: Number of iterations by GMRES/BiCGStab/PCG with ILUT pre-
conditioner for variable threshold, variable number of subdomains, H/h = 4.

ILUT threshold
H/h (unknowns) 10−3 10−4 10−5

2 (2,312) 6/4/11 3/1.5/4 3/1.5/3
4 (15,468) 15/11/– 5/3.5/– 3/2/3
8 (112,724) 43/66.5/– 15/10.5/– 5/3.5/10
12 (368,572) 44/79.5/– 29/26/– out of memory

Table 7: Number of iterations by GMRES/BiCGStab/PCG with ILUT pre-
conditioner for variable threshold, variable H/h, 2×2×2 = 8 subdomains.

unit mean value is prescribed at the inlet, and ‘do-nothing’ boundary condi-
tion (4) at the outlet. The diameter of the tube at the inlet is 0.025 and at
the narrow part 0.019. The mesh consists of 3,393 Q2SQ1 finite elements with
54,248 unknowns. It was divided into 4 subdomains by METIS (Figure 4).
Solution of this rather small problem with only corner constraints requires
33 PCG iterations and takes 30 seconds, which is comparable to 133 seconds
for solution by serial frontal solver, but now obtained in parallel. Applica-
tion of averages on faces does not reduce the number of iterations while the
solution takes 40 seconds due to the overhead of transforming the matrix.
Streamlines and pressure contours are plotted in Figure 5.

6 Conclusion

In our contribution, we present a straightforward parallel implementation of
the BDDC preconditioner based on its global formulation and built on top
of the parallel direct solver MUMPS. After a verification of the solver on a
number of problems from linear elasticity analysis, we explore the application
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Figure 4: Mesh of the tube of Problem (3) divided into 4 subdomains.

Figure 5: Solution of Problem (3): streamlines coloured by velocity magni-
tude (left) and pressure contours (right).

of BDDC to problems with indefinite matrices, namely the Stokes problem.
Although the available theory either does not cover this case, or treats it
differently [10, 21], the presented experiments suggest promising ways for
this effort. Results for two versions of the benchmark problem of the lid
driven cavity and for a real-life problem are presented. These results show
that the BDDC preconditioner is applicable to the Stokes flow and may speed
up the solution considerably.

Without claiming that this is the general case, we have performed sev-
eral experiments, for which the current parallel implementation based on the
PCG method is successfully used even though the system matrix is indefinite.
The reason why a breakdown was not observed lies probably in the indefinite-
ness of the BDDC preconditioner. Although solution times present a large
advancement compared to the method previously used for these problems
by our group, the experiments reveal that optimal scalability is not achieved
for the PCG method neither with respect to number of iterations, nor with
respect to computational times.

On the other hand, our Matlab experiments combining the BDDC pre-
conditioner with GMRES and BiCGStab methods suggest, that for suitably
chosen constraints, optimal behaviour can be achieved with respect to grow-
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ing number of subdomains.
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dimensions. Submitted to Math. Comput. Simulation, 2009.

[16] Paige, C. C., and Saunders, M. A. Solutions of sparse indefinite
systems of linear equations. SIAM J. Numer. Anal. 12, 4 (1975), 617–
629.
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