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Abstract
The paper deals with integral equations in a Banach space X of the form

x(t) = x̃ +
∫ t

a
d[A]x + f(t)− f(a), t∈ [a, b ], (0.1)

where −∞<a <b <∞, x̃∈X, f : [a, b ]→X is regulated on [a, b ], and A(t) is for
each t∈ [a, b ] a linear bounded operator on X, while the mapping A: [a, b ]→L(X)
has a bounded variation on [a, b ]. Such equations are called generalized linear
differential equations. Our aim is to present new results on the continuous depen-
dence of solutions of such equations on a parameter. In particular, in Sections 3
and 4 we give sufficient conditions ensuring that the sequence {xn} of the solu-
tions of generalized linear differential equations

xn(t) = x̃n +
∫ t

a
d[An]xn + fn(t)− fn(a), t∈ [a, b ], n∈N,

tends to the solution x of (0.1). Crucial assumptions of Section 3 are the uniform
boundedness of the variations varb

aAn of An and uniform convergence of An to
A. In Section 4, we present the extension of the classical result by Opial to the
case X 6= Rn, i.e. we do not require the uniform boundedness of varb

aAn while
the uniform convergence is replaced by a properly stronger concept. Finally in
Section 5 we present a partial result for the case when the uniform convergence
of An to A is violated.

2000 Mathematics Subject Classification: 34A37, 45A05, 34A30.

Key words. Kurzweil-Stieltjes integral, generalized differential equations in Banach
space, continuous dependence.

∗Universidade de São Paulo, Instituto de Ciências Matemáticas e Computação, ICMC-USP, São
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1 Introduction

The theory of generalized differential equations enables the investigation of contin-
uous and discrete systems, including the equations on time scales, from the common
standpoint. This fact can be observed in several papers related to special kinds of equa-
tions, such as e.g. those by Imaz and Vorel [11], Oliva and Vorel [22], Federson and
Schwabik [4], Schwabik [24] or Slav́ık [30].

This paper is devoted to generalized linear differential equations of the form ((0.1))
in a Banach space X. A complete theory in case of X = Rn can be found, for instance,
in the monographs by Schwabik [24] or Schwabik, Tvrdý and Vejvoda [29]. See also the
pioneering paper by Hildebrandt [9]. As concerns integral equations in a general Banach
space, it is worth to highlight the monograph by Hönig [10] having as a background
the interior (Dushnik) integral. On the other hand, dealing with the Kurzweil-Stieltjes
integral, the contributions by Schwabik in [26] and [27] represent the base of this paper.

In the case X = Rn, for ordinary differential equations, fundamental results on the
continuous dependence of solutions on a parameter based on the averaging princi-
ple have been delivered by Krasnoselskii and Krejn [13], Kurzweil and Vorel [15],
Kurzweil[16], Opial [23] and Kiguradze [12]. In particular, the problem of continuous
dependence gave an inspiration to Kurzweil to introduce the notion of generalized dif-
ferential equation in the papers [16] and [17]. For linear ordinary differential equations,
the most general result seems to be that given by Opial. An interesting observation is
contained in the fundamental paper by Artstein [1]. A different approach can be found
in the papers [18]–[20] by Meng Gang and Zhang Meirong dealing also with measure
differential analogues of Sturm-Liouville equations and, in particular, describing the
weak and weak*continuous dependence of related Dirichlet or Neumann eigenvalues on
a potential.

After Kurzweil, problem of the continuous dependence for generalized differential
equations has been treated by several authors, see e.g. Schwabik [24], Ashordia [2],
Fraňková [5], Tvrdý [33], Halas [6], Halas and Tvrdý [7]. Up to now, to our knowledge,
only Federson and Schwabik [4] dealt with the case of a general Banach space X. Our
aim is to prove new results valid also for X 6= Rn and such that, on the contrary to all
the above mentioned papers, they cover also the Opial’s result.

2 Preliminaries

Throughout these notes X is a Banach space and L(X) is the Banach space of bounded
linear operators on X. By ‖ · ‖X we denote the norm in X. Similarly, ‖ · ‖L(X) denotes
the usual operator norm in L(X).

Assume that −∞<a <b < +∞ and [a, b ] denotes the corresponding closed interval.
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A set D = {α0, α1, . . . , αm} ⊂ [a, b ] is said to be a division of [a, b ] if

a = α0 <α1 < . . . <αm = b .

The set of all divisions of [a, b ] is denoted by D[a, b ].

A function f : [a, b ]→X is called a finite step function on [a, b ] if there exists
a division D = {α0, α1, . . . , αm} of [a, b ] such that f is constant on every open interval
(αj−1, αj), j = 1, 2, . . . ,m.

For an arbitrary function f : [a, b ] → X we set

‖f‖∞ = sup
t∈ [a,b ]

‖f(t)‖X

and

varb
a f = sup

D∈D[a,b ]

m∑
j=1

‖f(αj)− f(αj−1)‖X

is the variation of f over [a, b ]. If varb
af < ∞ we say that f is a function of bounded

variation on [a, b ]. BV ([a, b ], X) denotes the Banach space of functions f : [a, b ] → X
of bounded variation on [a, b ] equipped with the norm ‖f‖BV = ‖f(a)‖X + varb

af.

Given f : [a, b ] → X, the function f is called regulated on [a, b ] if, for each t∈ [a, b)
there is f(t+) ∈ X such that

lim
s→t+

‖f(s)− f(t+)‖X = 0 ,

and for each t ∈ (a, b ] there is f(t−)∈X such that

lim
s→t−

‖f(s)− f(t−)‖X = 0 .

By G([a, b ], X) we denote the set of all regulated functions f : [a, b ]→X. For t∈ [a, b),
s∈ (a, b ] we put ∆+f(t)=f(t+)−f(t) and ∆−f(s)=f(s)−f(s−). Recall that

BV ([a, b ], X)⊂G([a, b ], X)

cf. e.g. [26, 1.5]. Moreover, it is known that regulated function are uniform limits of
finite step functions (see [10, Theorem I.3.1 ]).

In what follows, by an integral we mean the Kurzweil-Stieltjes integral. Let us
recall its definition.

As usual, a partition of [a, b ] is a tagged system, i.e., a couple P = (D, ξ) where
D∈D[a, b ], D = {α0, α1, . . . , αm}, and ξ = (ξ1, . . . , ξm)∈ [a, b ]m with

αj−1 ≤ ξj ≤ αj, j = 1, 2, . . . ,m .
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The set of all partitions of [a, b ] is denoted by P [a, b ]. Furthermore, any function
δ : [a, b ]→(0,∞) is called a gauge on [a, b ]. Given a gauge δ, the partition P is called
δ-fine

[αj−1, αj] ⊂ (ξj − δ(ξj), ξj + δ(ξj))

We remark that for an arbitrary gauge δ on [a, b ] there always exists a δ-fine partition
of [a, b ]. It is stated by the Cousin lemma (see [24, Lemma 1.4]).

For given functions F : [a, b ] → L(X) and g : [a, b ] → X and a partition P = (D, ξ)
of [a, b ], where D = {α0, α1, . . . , αm}, ξ = (ξ1, . . . , ξm), we define

S(dF, g, P ) =
m∑

j=1

[F (αj)− F (αj−1)] g(ξj) .

We say that I ∈X is the Kurzweil-Stieltjes integral (or shortly KS-integral) of g with
respect to F on [a, b ] and denote

I =

∫ b

a

d[F ] g

if for every ε > 0 there exists a gauge δ on [a, b ] such that∥∥∥S(dF, g, P )− I
∥∥∥

X
< ε for all δ − fine partitions P of [a, b ] .

Analogously, we define the integral

∫ b

a

F d[g] using sums of the form

S(F, dg, P ) =
m∑

j=1

F (ξj) [g(αj)− g(αj−1)]

For the reader’s convenience some of the further results needed later are summarized
in the following assertions:

2.1 . Proposition. Let F : [a, b ] → L(X) and g : [a, b ] → X.

(i) [25, Proposition 10]

Let F ∈BV ([a, b ], L(X)) and g: [a, b ]→X be such that

∫ b

a

d[F ] g exists. Then

∥∥∥∫ b

a

d[F ] g
∥∥∥

X
≤ (varb

aF ) ‖g‖∞ .
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(ii) [21, Lemma 2.2]

Let F ∈G([a, b ], L(X)) and g ∈BV ([a, b ], X) be such that

∫ b

a

d[F ] g exists. Then

∥∥∥∫ b

a

d[F ] g
∥∥∥

X
≤ 2 ‖F‖∞ ‖g‖BV .

(iii) [28, Corollary 14]

If F ∈BV ([a, b ], L(X)) and g ∈BV ([a, b ], X) then both the integrals

∫ b

a

F d[g]

and

∫ b

a

d[F ] g exist, the sum

∑
a≤τ<b

∆+F (τ) ∆+g(τ)−
∑

a<τ≤b

∆−F (τ) ∆−g(τ)

converges in X and the equality∫ b

a

F d[g] +

∫ b

a

d[F ] g

= F (b) g(b)−F (a) g(a)−
∑

a≤t<b

∆+F (t) ∆+g(t)+
∑

a<t≤b

∆−F (t) ∆−g(t)

is true.

(iv) [21, Theorem 2.11]
Let F ∈BV ([a, b ], L(X)) and let g: [a, b ] → X be bounded and such that the in-

tegral

∫ b

a

d[F ] g exists. Then both the integrals

∫ b

a

H(s) ds

[ ∫ s

a

d[F ] g
]

and

∫ b

a

H d[F ] g

exist and the equality∫ b

a

H(s) d
[ ∫ t

a

d[F ] g
]

=

∫ b

a

H d[F ] g

holds for each H ∈G([a, b ], L(X)).

In addition, we need the following convergence result.
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2.2 . Theorem. Let g, gn ∈G([a, b ], X), F, Fn ∈BV ([a, b ], L(X)) for n∈N. Assume
that

lim
n→∞

‖gn − g‖∞ = 0, lim
n→∞

‖Fn − F‖∞ = 0

and

ϕ∗ := sup{varb
aFn ; n∈N} < ∞.

Then,

lim
n→∞

(
sup

{∥∥∥∫ t

a

d[Fn] gn −
∫ t

a

d[F ] g
∥∥∥

X
; t∈ [a, b ]

})
= 0 . (2.1)

Proof. Let ε > 0 be given. By [10, Theorem I.3.1 ], we can choose a finite step function
g̃ : [a, b ] → X such that

‖g − g̃‖∞ < ε .

Furthermore, let n0 ∈N be such that

‖gn − g‖∞ < ε and ‖Fn − F‖∞ < ε for n ≥ n0.

For a fixed t∈ [a, b ], by Proposition 2.1 (i) and (ii), we obtain for n ≥ n0∥∥∥∫ t

a
d[Fn] gn −

∫ t

a
d[F ] g

∥∥∥
X

≤
∥∥∥∫ t

a
d[Fn]

(
gn − g̃

)∥∥∥
X

+
∥∥∥∫ t

a
d[Fn − F ] g̃

∥∥∥
X

+
∥∥∥∫ t

a
d[F ]

(
g̃ − g

)∥∥∥
X

≤ (vart
aFn) ‖gn − g̃‖∞ + 2 ‖Fn − F‖∞ ‖g̃‖BV + (vart

aF ) ‖g̃ − g‖∞

≤ ϕ∗
(
‖gn − g‖∞ + ‖g − g̃‖∞

)
+ 2 ‖g̃‖BV ε + (varb

aF ) ε

≤
(
2 ϕ∗ + 2 ‖g̃‖BV + varb

aF
)
ε = K ε,

where K =
(
2 ϕ∗ + 2 ‖g̃‖BV + varb

aF
)
∈ (0,∞) does not depend on n. This proves (2.1). �

2.3. Remark. In the case that X is a Hilbert space, Theorem 2.2 has been already given by
Krejč́ı and Laurençot [14, Proposition 3.1] or Brokate and Krejč́ı [3, Proposition 1.10].

3 Continuous dependence on a parameter in the

case of uniformly bounded variations

Given A∈BV ([a, b ], L(X)), f ∈G([a, b ], X) and x̃∈X, consider the integral equation

x(t) = x̃ +
∫ t

a
d[A]x + f(t)− f(a) , t ∈ [a, b ] . (3.1)
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A function x : [a, b ]→X is called a solution of (3.1) on [a, b ] if the integral
∫ b

a
d[A]x exists

and x satisfies the equality (3.1) for each t∈ [a, b ].

For our purposes the following property is crucial[
I −∆−A(t)

]−1 ∈ L(X) for all t ∈ (a, b ] . (3.2)

In particular, taking into account the closing remark in [26] we can see that the following
result is a particular case of [26, Proposition 2.10].

3.1 . Proposition. Let A∈BV ([a, b ], L(X)) satisfy (3.2) Then, for every x̃∈X and every
f ∈G([a, b ], X), the equation (3.1) possesses a unique solution x on [a, b ] and x∈G([a, b ], X).

Moreover, if A and f are left-continuous on (a, b ], then x is also left-continuous on (a, b ].

In addition, the following two important auxiliary assertions are true:

3.2. Lemma. Let A∈BV ([a, b ], L(X)) satisfy (3.2), f ∈G([a, b ], X) and x̃∈X and let x be
the corresponding solution of (3.1) on [a, b ]. Then

varb
a(x− f) ≤ (varb

aA) ‖x‖∞ < ∞ (3.3)

cA:= sup{
∥∥[I −∆−A(t)]−1

∥∥
L(X)

; t ∈ (a, b ]}∈ (0,∞), (3.4)

and
‖x(t)‖X ≤ cA (‖x̃‖X + ‖f(a)‖X + ‖f‖∞) exp (cA vart

aA) for t∈ [a, b ] . (3.5)

Proof. i) Let D = {α0, α1, . . . , αm} be an arbitrary division of [a, b ]. Then

m∑
j=1

∥∥∥x(αj)− f(αj)− x(αj−1) + f(αj−1)
∥∥∥

X

=
m∑

j=1

∥∥∥∫ αj

αj−1

d[A]x
∥∥∥

X
≤

m∑
j=1

[
(varαj

αj−1A) ‖x‖∞
]

= (varb
aA) ‖x‖∞ < ∞,

i.e. (3.3) is true.

ii) For t ∈ (a, b ] such that ‖∆−A(t)‖L(X) < 1
2 we have

∥∥[I −∆−A(t)]−1
∥∥

L(X)
≤ 1

1− ‖∆−A(t)‖L(X)
< 2

(cf. e.g. [31, Lemma 4.1-C]). Therefore, 0 ≤ cA < ∞ due to the fact that the set

{t∈ [a, b ]; ‖∆−A(t)‖L(X)≥
1
2
}

has at most finitely many elements. As the case cA = 0 is impossible, this proves (3.4).



8 G. Monteiro & M. Tvrdý

iii) Now, let x be a solution of (3.1). Put B(a) =A(a) and B(t) =A(t−) for t∈ (a, b ]. Then,
by [26, Corollary 2.6] and [26, Proposition 2.7], we get

A−B ∈BV ([a, b ], L(X)), varb
aB≤ varb

aA

and

A(t)−B(t) =∆−A(t),
∫ t

a
d[A−B]x=∆−A(t) x(t) for t∈ (a, b ].

Consequently

[I −∆−A(t)]x(t) = x̃ +
∫ t

a
d[B]x + f(t)− f(a) for t∈ (a, b ]

and (cf. Proposition 2.1 (i))

‖x(t)‖X ≤K1 +K2

∫ t

a
d[h] ‖x‖X for t∈ [a, b ],

where
K1 = cA (‖x̃‖X + ‖f(a)‖X + ‖f‖∞) , K2 = cA and h(t) = vart

aB.

The function h is nondecreasing and, since B is left-continuous on (a, b ], h is also left-
continuous on (a, b ]. Therefore we can use the generalized Gronwall inequality (see e.g. [29,
Lemma I.4.30] or [24, Corollary 1.43]) to get the estimate (3.5). �

3.3. Lemma. Let A, An ∈ BV ([a, b ], L(X)), n∈N, be such that (3.2) and

lim
n→∞

‖An −A‖∞ = 0 (3.6)

are satisfied. Then [
I −∆−An(t)

]−1 ∈ L(X) (3.7)

for all t∈ (a, b ] and all n∈N sufficiently large. Moreover, there is µ∗ ∈ (0,∞) such that

cAn := sup{
∥∥[I −∆−An(t)]−1

∥∥
L(X)

; t ∈ (a, b ]} ≤ µ∗ (3.8)

for all n∈N sufficiently large.

Proof. First, notice that, since A ∈ BV ([a, b ], L(X)), the set

D := {t ∈ (a, b ]; ‖∆−A(t)‖L(X) ≥ 1
4}

has at most a finite number of elements.
Let cA be defined as in (3.4). Then, as by (3.6) lim

n→∞
‖∆−An−∆−A‖∞ = 0, there is

n0 ∈N such that

‖∆−An(t)−∆−A(t)‖L(X) < 1
4 min{1, 1

cA
} for t∈ [a, b ] and n≥n0. (3.9)

Thus,

‖∆−An(t)‖L(X)≤‖∆−A(t)‖L(X) + ‖∆−An(t)−∆−A(t)‖L(X) < 1
2 for t∈ [a, b ] \D, n≥n0 .
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By [31, Lemma 4.1-C], this implies that

[I −∆−An(t)] is invertible and ‖[I −∆−An(t)]−1‖L(X) < 2 for t∈ [a, b ] \D and n≥n0.

Notice that, due to (3.2), the relation

I−∆−An(t) = [I−∆−A(t)]
[
I−[I−∆−A(t)]−1 (∆−An(t)−∆−A(t))

]
(3.10)

holds for all t∈ [a, b ] and n∈N. Denote

Tn(t) := [I−∆−A(t)]−1 (∆−An(t)−∆−A(t)) for n∈N and t∈ [a, b ].

Then (3.10) means that, I−∆−An(t) is invertible if and only if I − Tn(t) is invertible.
Now, let t∈D and n≥n0 be given. Then, due to (3.4) and (3.9), we have ‖Tn(t)‖L(X) < 1

4 .
Consequently, by [31, Lemma 4.1-C], I−Tn(t) and therefore also [I−∆−An(t)] are invertible.
Moreover, taking into account (3.4) and (3.10), we can see that

‖[I −∆−An(t)]−1‖L(X) ≤ 4
3 cA < 2 cA

is true.
To summarize, there exists n0 ∈N such that

[I−∆−An(t)] is invertible and ‖[I−∆−An(t)]−1‖L(X)≤µ∗ = 2 max{1, cA}

for all t∈ (a, b ] and n≥n0. This completes the proof. �

The main result of this section is the following Theorem, which generalizes in a linear case
the recent results by Federson and Schwabik [4]) and covers the results for generalized linear
differential equations known for the case X = Rn. Unlike [2], to prove it we do not utilize
the variation-of-constants formula. Therefore it is not necessary to assume the additional
condition

[I −∆+A(t)]−1 ∈L(X) , t∈ [a, b ].

3.4. Theorem. Let A, An ∈BV ([a, b ], L(X)), f, fn ∈G([a, b ], X), x̃, x̃n ∈X for n∈N. Fur-
thermore, let A satisfy (3.2), (3.6),

α∗ := sup{varb
aAn ;n∈N} < ∞ (3.11)

and
lim

n→∞
‖x̃n − x̃‖X = 0 and lim

n→∞
‖fn − f‖∞ = 0. (3.12)

Then equation (3.1) has a unique solution x on [a, b ]. Furthermore, for each n ∈ N large
enough there is a unique solution xn on [a, b ] to the equation

xn(t) = x̃n +
∫ t

a
d[An]xn + fn(t)− fn(a) , t ∈ [a, b ] (3.13)

and lim
n→∞

‖xn − x‖∞ = 0.
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Proof. Due to (3.2) equation (3.1) has a unique solution x on [a, b ]. Furthermore, by
Lemma 3.2, there is n0 ∈N such that (3.7) is true for n≥n0. Hence, for each n≥n0, equation
(3.13) possesses a unique solution xn on [a, b ]. Set

wn = (xn − fn)− (x− f) (3.14)

Then

wn(t) = w̃n +
∫ t

a
d[An]wn + hn(t)− hn(a) for n∈N and t∈ [a, b ],

where w̃n = (x̃n− fn(a))− (x̃− f(a)) and

hn(t) =
∫ t

a
d[An−A] (x− f) +

( ∫ t

a
d[An] fn −

∫ t

a
d[A] f

)
.

First, notice that according to (3.12) we have

lim
n→∞

‖w̃n‖X = 0. (3.15)

Furthermore, in view of Theorem 2.2, we have

lim
n→∞

∥∥∥∫ t

a
d[An] fn −

∫ t

a
d[A] f

∥∥∥
X

= 0.

Moreover, since (x− f)∈BV ([a, b ], X) by (3.3), we get by Proposition 2.1 (ii)∥∥∥∫ t

a
d[An−A] (x− f)

∥∥∥
X
≤ 2 ‖An−A‖∞ ‖x− f‖BV for all t∈ [a, b ].

Having in mind (3.6), we can see that the relation

lim
n→∞

∥∥∥∫ t

a
d[An−A] (x− f)

∥∥∥
X

= 0

holds. To summarize,
lim

n→∞
‖hn‖∞ = 0. (3.16)

By (3.11) and by Lemmas 3.2 and 3.3 we have

‖wn(t)‖X ≤ µ∗ (‖w̃n‖X + ‖hn‖∞) exp (µ∗ varb
aAn) for all t∈ [a, b ].

Consequently, using (3.15) and (3.16) we deduce that

lim
n→∞

‖wn‖X = 0.

Now, by (3.12) and (3.14) we conclude finally that lim
n→∞

‖xn−x‖∞ = 0. �

We will close this section by a comparison of Theorem 3.4 with two similar results pre-
sented for dimX <∞ by Schwabik in [24]. First, when restricted to the linear case, Theorem
8.2 from [24] modifies to
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3.5 . Theorem. Let A, An ∈BV ([a, b ], L(X) and fn(t)−fn(a)=f(t)−f(a)=0 for n∈N and
t∈ [a, b ]. Further, let a nondecreasing function h : [a, b ]→R be given such that

lim
n→∞

An(t) = A(t) on [a, b ], (3.17){
‖An(t2)−An(t1)‖L(X)≤ |h(t2)−h(t1)|, ‖A(t2)−A(t1)‖L(X)≤ |h(t2)−h(t1)|

for t1, t2 ∈ [a, b ] and n∈N.
(3.18)

Let xn, n∈N, be solutions of (3.13) and let

lim
n→∞

‖xn(t)− x(t)‖X for t∈ [a, b ].

Then x∈BV ([a, b ], X) is a solution of (3.1) on [a, b ].

3.6. Proposition. Under the assumptions of Theorem 3.5 the relations (3.6) and (3.11) are
satisfied.

Proof. i) The relation (3.11) follows immediately from (3.18).

ii) Notice that (3.17) and (3.18) imply that{
‖An(t−)−An(s)‖L(X)≤ |h(t−)−h(s)|, ‖A(t−)−A(s)‖L(X)≤ |h(t−)−h(s)|

for t∈ (a, b ], s∈ [a, b ], n∈N,
(3.19)

and {
‖An(t+)−An(s)‖L(X) ≤ |h(t+)−h(s)|, ‖A(t+)−A(s)‖L(X) ≤ |h(t+)−h(s)|

for t∈ [a, b), s∈ [a, b ], n∈N.
(3.20)

iii) Let ε > 0 and t∈ (a, b ] be given and let us choose s0 ∈ (a, t) and n0 ∈N so that

|h(t−)− h(s0)| <
ε

3
and ‖An(s0)−A(s0)‖L(X) <

ε

3
for n≥n0. (3.21)

Then, by (3.19) and (3.21),

‖An(t−)−A(t−)‖L(X) ≤ ‖An(t−)−An(s0)‖L(X) + ‖An(s0)−A(s0)‖L(X)

+ ‖A(s0)−A(t−)‖L(X)

< |h(t−)−h(s0)|+
ε

3
+ |h(t−)−h(s0)| < ε.

This means that
lim

n→∞
An(t−) = A(t−) holds for t ∈ (a, b ]. (3.22)

Similarly, using (3.20) we get

lim
n→∞

An(t+) = A(t+) holds for t ∈ [a, b). (3.23)
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iv) Now, suppose that (3.6) is not valid. Then there is ε̃ > 0 such that for any ` ∈ N there
exist m` ≥ ` and t` ∈ [a, b ] such that

‖Am`
(t`)−A(t`)‖L(X) ≥ ε̃. (3.24)

We may assume that m`+1 > m` for any ` ∈ N and

lim
`→∞

t` = t0 ∈ [a, b ]. (3.25)

Let t0 ∈ (a, b ] and assume that the set of those ` ∈ N for which t` ∈ (a, t0) has infinitely
many elements, i.e. there is a sequence {`k} ⊂ N such that t`k

∈ (a, t0) for all k∈N and
limk→∞ t`k

= t0. Denote sk = t`k
and Bk = Am`k

for k∈N. Then, in view of (3.24), we have

sk ∈ (a, t0) for k∈N, lim
k→∞

sk = t0 (3.26)

and
‖Bk(sk)−A(sk)‖L(X) ≥ ε̃ for k∈N. (3.27)

By (3.19), we have

‖A(t0−)−A(sk)‖L(X) ≤ h(t0−)− h(kn)
and

‖Bk(t0−)−Bk(sk)‖L(X) ≤ h(t0−)− h(kn)

for k∈N. Therefore, by (3.22) and since lim
k→∞

(h(t0−) − h(sk)) = 0 due to (3.26), we can

choose k0 ∈ N so that

‖Bk0(t0−)−A(t0−)‖L(X) <
ε̃

3

‖A(t0−)−A(sk0)‖L(X) ≤ h(t0−)− h(sk0) <
ε̃

3
and

‖Bk0(t0−)−Bk0(sk0)‖L(X) <
ε̃

3
.

As a consequence, we get finally by (3.27)

ε̃≤‖Bk0(sk0)−A(sk0)‖L(X)

≤‖Bk0(sk0)−Bk0(t0−)‖L(X) + ‖Bk0(t0−)−A(t0−)‖L(X) + ‖A(t0−)−A(sk0)‖L(X) < ε̃,

a contradiction.

If t0 ∈ [a, b) and the set of those ` ∈ N for which t` ∈ (a, t0) has only finitely many
elements, then there is a sequence {`k} ⊂ N such that t`k

∈ (t0, b) for all k∈N and
limk→∞ t`k

= t0. As before, let sk = t`k
and Bk = Am`k

for k∈N and notice that

sk ∈ (t0, b) for k∈N, lim
k→∞

sk = t0
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and (3.27) are true. Arguing similarly as before we get that there is k0 ∈ N such that

ε̃≤‖Bk0(sk0)−A(sk0)‖L(X)

≤‖Bk0(sk0)−Bk0(t0+)‖L(X) + ‖Bk0(t0+)−A(t0+)‖L(X) + ‖A(t0+)−A(sk0)‖L(X) < ε̃,

a contradiction. �

Similarly, when restricted to the linear case, Theorem 8.8 from [24] modifies to

3.7. Theorem. Let A,An∈BV ([a, b ], X), fn(t)−fn(a)=f(t)−f(a)=0 for n∈N and t∈ [a, b ].
Furthermore, let (3.2) hold and let x be the corresponding solution of (3.1). Finally, let scalar
nondecreasing and left-continuous on (a, b ] functions hn, n∈N, and h be given such that h
is continuous on [a, b ] and

lim
n→∞

An(t) = A(t) on [a, b ], (3.28){
‖An(t2)−An(t1)‖L(X)≤ |hn(t2)−hn(t1)|, ‖A(t2)−A(t1)‖L(X)≤ |h(t2)−h(t1)|

for all t1, t2 ∈ [a, b ] and n∈N,
(3.29)

{
lim sup

n→∞

[
hn(t2)− hn(t1)

]
≤ h(t2)− h(t1)

whenever a ≤ t1 ≤ t2 ≤ b.
(3.30)

Then, for any n∈N sufficiently large, equation (3.13) has a unique solution xn on [a, b ]
and

lim
n→∞

xn(t) = x(t) uniformly on [a, b ].

3.8. Proposition. Under the assumptions of Theorem 3.7 the relations (3.6) and (3.11) are
satisfied.

Proof (taken from [33]). i) By (3.30) there is n0 ∈N such that

hn(b)− hn(a) ≤ h(b)− h(a) + 1 for all n≥n0.

Hence for any n∈N we have

varAn ≤ α0 = max
({

varAn ;n ≤ n0

}
∪

{
h(b)− h(a) + 1

})
< ∞.

Thus we conclude that (3.11) is true.
ii) Suppose that (3.6) does not hold. Then there is ε̃ > 0 such that for any ` ∈ N there

exist m` ≥ ` and t` ∈ [a, b ] such that

‖Am`
(t`)−A(t`)‖L(X) ≥ ε̃. (3.31)

We may assume that m`+1 > m` for any ` ∈ N and

lim
`→∞

t` = t0 ∈ [a, b ]. (3.32)
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Let t0 ∈ (a, b) and let an arbitrary ε > 0 be given. Since h is continuous, we may choose
η > 0 in such a way that t0 − η, t0 + η ∈ [a, b ] and

h(t0 + η)− h(t0 − η) < ε. (3.33)

Furthermore, by (3.28) there is `1 ∈ N such that

‖Am`
(t0)−A(t0)‖L(X) < ε for all ` ≥ `1 (3.34)

and by (3.29), (3.30) and (3.33) there is `2 ∈ N, `2≥ `1, such that

‖Am`
(τ2)−Am`

(τ1)‖L(X) ≤ h(t0 + η)− h(t0 − η) + ε < 2 ε (3.35)

whenever τ1, τ2 ∈ (t0 − η, t0 + η) and ` ≥ `2.

The relations (3.28) and (3.35) imply immediately that{
‖A(τ2)−A(τ1)‖L(X) = lim

`→∞
‖Am`

(τ2)−Am`
(τ1)‖L(X) ≤ 2ε

whenever τ1, τ2 ∈ (t0 − η, t0 + η).
(3.36)

Finally, let `3 ∈ N be such that `3≥ `2 and

|t` − t0| < η for all ` ≥ `3, (3.37)

then in virtue of the relations (3.32)–(3.37) we have

‖Am`
(t`)−A(t`)‖L(X)

≤ ‖Am`
(t`)−Am`

(t0)‖L(X) + ‖Am`
(t0)−A(t0)‖L(X) + ‖A(t0)−A(t`)‖L(X)

≤ 5 ε.

Hence, choosing ε < 1
5 ε̃, we obtain by (3.31) that

ε̃ > ‖Am`
(t`)−A(t`)‖L(X) ≥ ε̃.

This being impossible, the relation (3.6) has to be true. The modification of the proof in the
cases t0 = a or t0 = b is obvious. �

4 Continuous dependence on a parameter in the

case of variations bounded with a weight

In this section we restrict ourselves to homogeneous generalized linear differential equations

x(t) = x̃ +
∫ t

a
d[A]x, t∈ [a, b ], (4.1)

where, as before, A∈BV ([a, b ], L(X)) and x̃∈X. As in the previous section we will assume
that the fundamental existence assumption (3.2) is satisfied.

The main result of this section extends that obtained by Z. Opial for the case dim X <∞
in [23]. To this aim, we recall an estimate presented in [21].
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4.1. Lemma. If F ∈G([a, b ], L(X)) and G∈BV ([a, b ], L(X)) then∑
t∈[a,b)

‖∆+F (t)∆+G(t)‖L(X) +
∑

t∈(a,b ]

‖∆−F (t)∆−G(t)‖L(X)≤ 2 ‖F‖∞ varb
aG . (4.2)

4.2. Theorem. Let A, An ∈ BV ([a, b ], L(X)) and x̃, x̃n ∈X for n∈N. Assume (3.2) and

lim
n→∞

‖An−A‖∞
(
1 +varb

aAn

)
= 0 (4.3)

and
lim

n→∞
‖x̃n− x̃‖X = 0. (4.4)

Then (4.1) has a unique solution x on [a, b ]. Moreover, for each n∈N sufficiently large, the
equation

xn(t) = x̃n +
∫ t

a
d[An]xn , t ∈ [a, b ] (4.5)

has a unique solution xn on [a, b ] and lim
n→∞

‖xn−x‖∞ = 0.

Proof. First, notice that, since

‖An−A‖∞≤‖An−A‖∞
(
1 +varb

aAn

)
for all n∈N,

(4.3) implies (3.6). Therefore, by Lemma 3.3, there is n0 ∈N such that (3.7) holds for each
t∈ (a, b ] and each n≥n0.

Assume n≥n0. Let x and xn be the solutions on [a, b ] of (4.1) and (4.5), respectively.
Then

(xn(t)− x(t)) = (x̃n − x̃) +
∫ t

a
d[A] (xn−x) + hn(t) for t∈ [a, b ] , (4.6)

where

hn(t) =
∫ t

a
d[An−A]xn for t∈ [a, b ] . (4.7)

By Lemma 3.2 we have

‖xn − x‖∞ ≤ cA (‖x̃n−x̃‖X + ‖hn‖∞) exp (cA varb
aA). (4.8)

(Notice that hn(a) = 0 for all k.) Thus, in view of the assumption (4.4), to prove the assertion
of the theorem, we have to show that limn→∞ ‖hn‖∞ = 0.

To this aim, we integrate by parts (cf. Proposition 2.1 (iii)) in the right-hand side of (4.7)
and use Substitution Formula (cf. Proposition 2.1 (iv)). Then we get

hn(t) = [An(t)−A(t)]xn(t)− [An(a)−A(a)] x̃n−
∫ t

a
(An−A) d[An]xn−∆t

a(An−A, xn) (4.9)

for t∈ [a, b ], where

∆t
a(An−A, xn) =

∑
a≤s<t

[∆+(An(s)−A(s))∆+xn(s)]−
∑

a<s≤t

[∆−(An(s)−A(s))∆−xn(s)] . (4.10)
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Inserting the relations (cf. [26, Proposition 2.3])

∆+xn(t) = ∆+An(t) xn(t) for t∈ [a, b) and ∆−xn(t) = ∆−An(t) xn(t) for t∈ (a, b ]

into the right-hand side of (4.10) and using Lemma 4.1, we obtain the estimates

‖∆t
a(An−A, xn)‖X ≤ 2 ‖An−A‖∞ (vart

aAn) ‖xn‖∞ for t∈ [a, b ] .

Hence
‖hn(t)‖X ≤ ‖An −A‖∞

(
2 +3 (vart

aAn)
)
‖xn‖∞,

that is,
‖hn‖∞ ≤ αn ‖xn‖∞, (4.11)

where αn = ‖An−A‖∞
(
2+3 varb

aAn

)
. Note that, due to (4.3), we have

lim
n→∞

αn = 0. (4.12)

We can see that to show that limn→∞ ‖hn‖∞ = 0, it is sufficient to prove that the sequence
{‖xn‖∞} is bounded. By (4.8) and (4.11) we have

‖xn‖∞≤‖xn−x‖∞+ ‖x‖∞≤ cA

(
‖x̃n− x̃‖X +αn‖xn‖∞

)
exp (cA varb

aA) + ‖x‖∞ .

Hence(
1− cA αn exp (cA varb

aA)
)
‖xn‖∞ ≤ cA ‖x̃n − x̃‖X exp (cA varb

aA) + ‖x‖∞ for n≥n0.

By (4.4) and (4.12), there is n1≥n0 such that

‖x̃n − x̃‖X < 1 and cA αn exp (cA varb
aA) < 1

2 for n≥n1.

In particular,
‖xn‖∞ < 2

(
cA exp (cA varb

aA) + ‖x‖∞
)

for n≥n1,

i.e. the sequence {‖xn‖∞} is bounded and this completes the proof. �

4.3. Remark. In comparison with Theorem 3.4, the uniform boundedness of variation (3.11)
was not needed in Theorem 4.2. On the other hand, if (3.11) is assumed, Theorem 4.2 reduces
to Theorem 3.4.

Let us note that, on the contrary to the finite dimensional case, in the case of a general
Banach space X it is not possible to extend easily the convergence result Theorem 4.2 to the
the nonhomogeneous equations.
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5 Emphatic convergence

In this section we deal with the case that the uniform convergence is violated. The assump-
tions of Theorems 5.1 and 5.2 are related to the notion of emphatic convergence introduced
by Kurzweil in [17]. More precisely, together with the locally uniform convergence we infer
some control condition for points sufficiently close to the end points a, b of the interval [a, b ].
These results extend the work of Halas and Tvrdý dealing with X = Rn (c.f. [6], [8] and [34]).

If {fn} is a sequence of X-valued functions defined on [a, b ], we say that it tends to f
locally uniformly on J ⊂ [a, b ] if

lim
n→∞

(sup{‖fn(t)− f(t)‖X ; t∈ I}) = 0

for all closed subintervals I ⊂ J. In such a case we write fn ⇒ f locally on J.

Of course, fn ⇒ f locally on J implies

lim
n→∞

‖fn(t)− f(t)‖X =0 for all interior points t of J.

5.1. Theorem. Let A, An ∈BV ([a, b ], L(X)), f, fn ∈G([a, b ], X), x̃, x̃n ∈X for n∈N. As-
sume (3.2), (4.4),

An ⇒ A locally on (a, b ] and fn ⇒ f locally on (a, b ], (5.1)

and that there is N ∈N such that (3.7) is true for all t∈ (a, b ] and all n∈N such that n ≥ N.

Then, for n∈N sufficiently large, there exist unique solutions x and xn on [a, b ] to (3.1)
and (3.13), respectively.

In addition, let (3.11) and

∀ ε > 0 ∃ δ > 0 such that ∀ t∈ (a, a + δ) ∃n0 ∈N such that∥∥∥(
∆+A(a) x̃+∆+f(a)

)
−

(
xn(t)− x̃n

)∥∥∥
X

< ε for n≥n0

 (5.2)

hold. Then
lim

n→∞
‖xn(t)− x(t)‖X =0 for any t∈ [a, b ]

and xn ⇒ x locally on (a, b ].

Proof. Without any loss of generality we may assume An(a) =A(a) = 0 and fn(a) = f(a) = 0
for n∈N. Due to assumptions (3.2) and (3.7), the existence and uniqueness of solutions
to (3.1) and (3.13) are guaranteed by Proposition 3.1 . Denote by x and xn the corresponding
solutions.

Let ε > 0 be given. Then, as x is regulated, there is δ0 > 0 such that

‖x(s)− x(a+)‖X < ε for all s∈ (a, a + δ0).
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Furthermore, by (4.4) there is n1≥N such that

‖x̃n − x̃‖X < ε for n≥n1 .

By (5.2) there is δ ∈ (0, δ0) such that for each t∈ (a, a+ δ) we can find n0≥n1 so that∥∥(
∆+A(a) x̃ + ∆+f(a)

)
− (xn(t)− x̃n)

∥∥
X

< ε for n≥n0 .

To summarize, for any t∈ (a, a+ δ0) and n≥n0, we have

‖x(t)− xn(t)‖X

≤ ‖x(t)− x(a+)‖X + ‖x(a+)− x̃ + x̃n − xn(t)‖X + ‖x̃− x̃n‖X

= ‖x(t)− x(a+)‖X + ‖∆+A(a) x̃ + ∆+f(a) + x̃n − xn(t)‖X + ‖x̃− x̃n‖X < 3 ε.

This implies also that limn→∞ ‖xn(t)− x(t)‖X = 0 for all t∈ [a, a + δ).
Now, let an arbitrary c∈ (a, a + δ) be given. Then

lim
n→∞

xn(c) = x(c).

Therefore, by Theorem 3.4 and due to the uniqueness of solutions to

xn(t) = xn(c) +
∫ t

c
d[An]xn + fn(t)− fn(c) , t∈ [c, b]

and

x(t) = x(c) +
∫ t

c
d[A]x + f(t)− f(c) , t∈ [c, b],

xn tend to x uniformly on [c, b ] as n→∞. More precisely,

lim
n→∞

(sup{‖xn(t)−x(t)‖X ; t∈ [c, b]}) = 0 .

Since c was arbitrary, this means that xn(t) → x(t) for each t∈ [a, b ] and xn ⇒ x locally on
(a, b ]. �

The result symmetrical to the previous theorem slightly differs. However, its proof is very
similar.

5.2. Theorem. Let A, An ∈BV ([a, b ], L(X)), f, fn ∈G([a, b ], X), x̃, x̃n ∈X for n∈N. As-
sume (3.2), (4.4) and

An ⇒ A locally on [a, b) and fn ⇒ f locally on [a, b) (5.3)

and that there is N ∈N such that (3.7) is true for all t∈ (a, b ] and all n∈N such that n ≥ N.

Then for n∈N sufficiently large there exist unique solutions x and xn to (3.1) and (3.13),
respectively.
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Let, in addition, (3.11) and

∀ ε > 0 ∃ δ > 0 such that ∀ t∈ (b− δ, b) ∃n0 ∈N such that∥∥∥(
∆−A(b)[I−∆−A(b)]−1x(b−)+[I−∆−A(b)]−1∆−f(b)

)
−

(
xn(b)−xn(t)

)∥∥∥
X

<ε

for n≥n0

 (5.4)

hold. Then xn ⇒ x locally on [a, b).

Proof. Similarly to the previous theorem, the existence and uniqueness of solutions to (3.1)
and (3.13) are guaranteed by Proposition 3.1. Denote by x and xn the corresponding solu-
tions. Then, due to Theorem 3.4 and due to the uniqueness of solutions to

xn(t) = xn(a) +
∫ t

a
d[An]xn + fn(t)− fn(a) , t∈ [a, c ]

and

x(t) = x(a) +
∫ t

a
d[A]x + f(t)− f(a) , t∈ [a, c ],

the sequence {xn} tends for each c∈ [a, b) to x uniformly on [a, c ] as n→∞. In particular,

lim
n→∞

xn(t) = x(t) for all t∈ [a, b).

It remains to show that limn→∞ ‖xn(b)− x(b)‖X = 0.

Let ε > 0 be given. By (5.4), there is δ > 0 such that for each t∈ (b− δ, b) we can find
n1 ∈N such that n1≥N and∥∥∥(

∆−A(b)[I−∆−A(b)]−1x(b−)+[I−∆−A(b)]−1∆−f(b)
)
−

(
xn(b)−xn(t)

)∥∥∥
X

<ε

holds for all n≥n0. As x is regulated on [a, b ], we can also assume that

‖x(s)− x(b−)‖X < ε for all s∈ (b− δ, b).

Now, choose and arbitrary τ ∈ (b− δ, b). Then xn(τ)→x(τ). Hence there is n0≥n1 such
that

‖xn(τ)− x(τ)‖X <ε for n≥n0.

To summarize, for n≥n0 we have

‖x(b)− xn(b)‖X

≤ ‖x(b)− (∆−A(b) x(b) +∆−f(b))−x(τ)‖X + ‖x(τ)−xn(τ)‖X

+ ‖xn(τ) +∆−A(b) x(b) +∆−f(b)−xn(b)‖X

= ‖x(b−)−x(τ)‖X + ‖x(τ)−xn(τ)‖X

+ ‖(xn(τ)− xn(b))−∆−A(b) [I −∆−A(b)]−1 (x(b−) +∆−f(b))‖X
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= ‖x(b−)−x(τ)‖X + +‖x(τ)−xn(τ)‖X

+ ‖(xn(τ)− xn(b))−∆−A(b) [I −∆−A(b)]−1 x(b−)− [I −∆−A(b)]−1 ∆−f(b))‖X

< 3 ε,

where we made use of the following well-known relations:

∆−x(b) = ∆−A(b) x(b) + ∆−f(b), x(b) = [I −∆−A(b)]−1 (x(b−) + ∆−f(b))
and

I + ∆−A(b)[I −∆−A(b)]−1 = [I −∆−A(b)]−1.

Therefore limn→∞ ‖xn(b)− x(b)‖X = 0 and this completes the proof. �

5.3. Remark. Let us notice that, due to Lemma 3.3, we can, instead of:
there is N ∈N such that (3.7) is true for all t∈ (a, b ] and all n∈N such that n ≥ N

assume only
there are an N ∈N and ∆ < 0 such that (3.7) is true for all t∈ (a, a+∆] and all n∈N

such that n ≥ N.

5.4 . Remark. It is easy to combine Theorems 5.1 and 5.2 to formulate a corresponding
result for the case that the uniform convergence is violated at finitely many points in [a, b ].
We leave it to the reader.
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[3] Brokate, M. and Krejč́ı, P.: Duality in the space of regulated functions and the play
operator. Math. Z. 245 (2003), 667–688.
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