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1 Introduction

In this contribution we study the influence of the error in a linear algebraic solver to the precission
of the finite element approximations. Since we focus on iterative solvers we call this error the
iteration error. In particular, we are interested in the relationship between the discretization
error and the iteration error.

For simplicity we restrict ourselves to the linear elliptic problems with smooth solutions solved
by the lowest-order (piecewise linear) finite elements. In this case, it is well known that the
discretization error behaves like O(h) if the discretization parameter h tends to zero. We recall
that h stands for the largest diameter of all elements. On the other hand, the condition number
κ(A) of the stiffness matrix A behaves like O(h2) for h → 0. Hence, the iteration error grows for
h → 0 while the discretization error decreases. Naturally, starting from a certain (small enough)
value of h the iteration error outweighs the discretization error and it starts to dominate.

In this paper we would like to reproduce this behavior numerically with the aim to quantify the
magnitudes of the discretization and iteration errors. For this purpose, we construct a simple
example for which we know the exact solution as well as the exact discrete solution. Hence,
we will be able to compute the discretization error exactly and, moreover, we will be able to
compute the iteration error numerically.

2 The model problem

As a model problem we choose the d-dimensional Poisson problem

−∆u = f in a domain Ω ⊂ R
d (1)

with the homogeneous Dirichlet boundary conditions.

To solve (1) by the finite element method [1, 3], we assume Ω to be a polytop. Further, we
introduce a simplicial partion Th of Ω and a space Vh of globally continuous and piecewise linear
functions. The dimension of Vh is denoted by n. The finite element solution uh ∈ Vh is defined
by

a(uh, vh) = F (vh) ∀vh ∈ Vh, (2)

where

a(u, v) =

∫

Ω

∇u · ∇v dx and F (v) =

∫

Ω

fv dx.

Problem (2) is equivalent to the system of linear algebraic equations

Ay = b, (3)
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where the entries of the stiffness matrix A ∈ R
n×n are Aij = a(ϕi, ϕj), i, j = 1, 2, . . . , n, the

entries of the load vector b ∈ R
n are bj = F (ϕj), j = 1, 2, . . . , n, and the vector y ∈ R

n contains
the expansion coefficients of the discrete solution uh with respect to the basis ϕ1, ϕ2, . . . , ϕn,
i.e.,

uh =

n
∑

i=1

yiϕi.

Practically, system (3) have to be solved by a suitable numerical method. This method delivers
an approximate solution y∗ ∈ R

n to (3) which yields the approximate finite element solution

u∗

h =
n

∑

i=1

y∗i ϕi.

Hence, the approximate discrete solution u∗

h is loaded by the round-off and iteration errors while
the exact discrete solution uh is not. In this contribution we are interested not only in the
discretization error e = u − uh but mainly to the iteration error eh = uh − u∗

h. It is well known
that the energy norm of the discretization error behaves like O(h). On the other hand much
less is known about the behavior of eh, cf. [2].

3 Numerical example

For the test purposes we use problem (1) with the simplest possible setting. Let d = 1, Ω = (0, 1),
f = 2, and hence u = x(1 − x). We discretize problem (1) on a uniform mesh with n + 1
elements. The size of each element is h = 1/(n+1) and the nodal points are denoted by xi = ih,
i = 0, 1, 2, . . . , n + 1. We define the standard finite element basis functions ϕi, i = 1, 2, . . . , n as
the piecewise linear and globally continuous functions in Ω = [0, 1] with the property

ϕi(xj) = δij , i = 1, 2, . . . , n, j = 0, 2, . . . , n + 1.

The finite element space is then spanned by these basis functions, i.e., Vh = span{ϕi, i =
1, 2, . . . , n}. The finite element solution uh ∈ Vh is uniquely determined by (2).

It is well known [3] that for the 1D Poisson problem (1) the (exact) discrete solution uh given
by (2) equals to the exact solution u in the mesh points, i.e.,

yi = uh(xi) = u(xi) = ih(1 − ih) for all i = 0, 1, 2, . . . , n + 1, (4)

where we recall that the values of the expansion coefficients yi equal to the nodal values of the
discrete solution. Moreover, in this simple setting we can use (4) to compute exactly the energy
norm of the discretization error e = u − uh as follows

‖e‖ =
√

a(e, e) =

√
3

3
h. (5)

To investigate the iteration error eh, we solve the stiffness system (3) by the conjugated gradients
method (CG). The stiffness matrix A is tridiagonal in this case with entries 2/h on the main
diagonal and with entries −1/h on the diagonals one above and one blow the main diagonal. A
system with this matrix is very easy to solve by a direct method but we use the CG for our test
purposes because CG are often used in the real-life problems.

We proceeds as follows. We assemble the tridiagonal matrix A and the load vector b. Let us
remark that bi = 2h for all i = 1, 2, . . . , n. Then we solve system (3) by CG to obtain the vector
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y∗. We stop the CG iteration process after n/2 iterations or if the relative residual drops below
10−4. The energy norm of the iteration error is then computed by

‖eh‖2 = a(eh, eh) = (y − y∗)T A(y − y∗), (6)

where the expansion coefficients y are computed by (4).
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Figure 1: The behavior of the discretization error ‖e‖ and the iteration error ‖eh‖ with respect
to the number of degrees of freedom (left panel). The same plot with the upper bound (7) is
shown in the right panel. Recall that Rrel = ‖r∗‖A/‖b‖A with r∗ = b − Ay∗.

Figure 1 shows the behavior of the discretization and iteration errors if the discretization param-
eter h decreases. The left panel contains the log-log plot of the energy norms ‖e‖ and ‖eh‖ as
functions of the number of degrees of freedom n = 1/h − 1. The right panel shows, in addition,
the condition number κ(A), the relative residual Rrel = ‖b − Ay∗‖A/‖b‖A and the upper bound
κ(A)Rrel on the relative error, see estimate (7) below.

The energy norm of the discretization error ‖e‖ can be computed analytically by (5) for any h.
However, to compute the energy norm of the iteration error ‖e‖ we have to run the CG iterations.
Here we are limited by the computer speed and the amount of the memory. Using Matlab, we
were able to reach n about 106. For these values of n, however, the iteration error is about 10−18

while the discretization error is about 10−7. Hence, there is still no danger of pollution of the
computed finite element solution u∗

h by the iteration error.

This is a bit surprising because theoretical estimates indicate much worst behavior, cf. Figure 1
(right). Indeed, for our simple problem, we may compute the following quantities explicitely
‖uh‖2 = (1 − h2)/3, κ(A) = (1 + cos hπ)/(1 − cos hπ), ‖b‖2

A = 8h, where ‖b‖2
A = bT Ab stands

for the discrete energy norm induced by the symmetric and positive definite stiffness matrix A.
We employ these relations in the well known estimate of the relative error of y∗ in terms of the
spectral condition number κ(A) and the relative residual:

‖eh‖
‖uh‖

=
‖y − y∗‖A

‖y‖A
≤ κ(A)

‖b − Ay∗‖A

‖b‖A
= κ(A)

‖r∗‖A

‖b‖A
, (7)

where r∗ = b − Ay∗. Due to the stopping criterion we imposed to the CG iterations we may
assume that ‖r∗‖A/‖b‖A ≈ 10−4. Summarizing these results, we may find from (7) such h that
‖eh‖ ≈ ‖e‖ =

√
3h/3, see (5). More precisely, we arrive at the following nonlinear equation for h

h√
1 − h2

=
1 + cos hπ

1 − cos hπ
10−4.
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Solving this equation, we obtain h ≈ 3 × 10−2. For this value of h we would expect the
discretization error and iteration errors to be comparable but the numerical results show that
for this h the iteration error is smaller then the discretization error by more then 20 orders of
magnitude. The conclusion from this simple analysis is that the estimate (7) overestimates the
relative error by several orders of magnitude in this case.

4 Conclusions

Figure 1 clearly shows the expected trend of growing iteration error. We may extrapolate and
say that for h about 10−8 the discretization and iteration errors will be both of the order 10−10.
More precise finite element solution u∗

h can not be computed in this way because further decrease
of h would lead to the increase of the iteration error which dominates over the discretization
error.

We remark that much more interesting would be to generalize the above one dimensional numer-
ical test to the higher spatial dimension. This can be done but we lose the important property
(4). For the Poisson problem in a square, we may obtain an analytic formula for the exact
discrete solution. This formula is based on the known eigenvectors of the corresponding stiffness
matrix. The computation of the exact discrete solution, however, requires multiplication of a
matrix with 25 % of nonzero entries by a vector. This multiplication is prohibitively slow for
large problems and, moreover, it leads to a cumulation of the round-off errors.

The deeper study of the influence of the iteration error to the precission of the finite element
solutions with emphasis to the higher spatial dimensions will be subjected to our future research.
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