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Abstract. In an earlier paper, the authors have shown that the convolution
of a function f continuous on the closure of a Cartan domain and a K-invariant
finite measure µ on that domain is again continuous on the closure, and, more-
over, its restriction to any boundary face F depends only on the restriction
of f to F and is equal to the convolution, in F , of the latter restriction with
some measure µF on F uniquely determined by µ. In this article, we give an
explicit formula for µF in terms of F , showing in particular that for measures
µ coresponding to the Berezin transforms the measures µF again correspond
to Berezin transforms, but with a shift in the value of the Wallach parameter.
Finally, for the special case of Cartan domains of type I and II we also obtain
a nice and simple description of the holomorphic retraction on these domains
which arises as the boundary limit of geodesic symmetries.

1. Introduction

Let Ω = G/K be an irreducible bounded symmetric domain in Cd in its Harish-
Chandra realization (i.e. a Cartan domain), with rank r and characteristic mul-
tiplicities a and b. Thus G is the identity connected component of the group of
all biholomorphic self-maps of Ω, and K ⊂ G the subgroup stabilizing the origin
0 ∈ Ω. Under the action of G, the topological boundary ∂Ω has a decomposition

∂Ω = ∂1Ω ∪ · · · ∪ ∂rΩ

into G-orbits; each ∂lΩ, l = 1, . . . , r, is a disjoint union of boundary faces, which
are also Cartan domains in their own right, except that they are of lower dimension
and have their center not at the origin but at some point v ∈ ∂lΩ. The group G
acts on ∂Ω by mapping the face Ω(v) centered at v ∈ ∂lΩ into Ω(ṽ) with some
ṽ ∈ ∂lΩ. Also, the Cartan domain Ω(v), v ∈ ∂lΩ, has the same multiplicities a, b
as Ω, and rank r − l; in particular, if l = r then Ω(v) reduces to a point, and ∂rΩ
is exactly the Shilov boundary of Ω.

For any K-invariant finite measure µ on Ω which is absolutely continuous with
respect to the Lebesgue measure, consider the convolution operator

(1) Bµ : f 7→ f ∗ µ

acting on functions on Ω. That is,

(2) Bµf(x) :=
∫

Ω

f ◦ φ dµ where φ ∈ G, φ(0) = x.
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Owing to the K-invariance of µ, the right-hand side does not depend on the choice
of φ, so the definition is unambiguous. One can take for φ e.g. the geodesic sym-
metry φx ∈ G interchanging x and the origin, or the transvection gx defined by
gx(z) := φx(−z). Note that for

(3) dµ = cνh(z, z)ν−p dz,

where h(x, y) is the Jordan triple determinant, p = (r−1)a+b+2 is the genus of Ω,
dz stands for the Lebesgue measure, and cν is the normalization constant making
dµ a probability measure, the operator Bν coincides with the celebrated Berezin
transform corresponding to the Wallach parameter ν > p− 1 [BCZ] [Pe] [UU] [AO]
[Zh] [Co] .

It was shown by Kaup and Sauter [KS] that if x → a ∈ ∂Ω, then gx → ga,
locally uniformly on Ω, where the limit ga is a holomorphic retraction of Ω onto
the boundary face containing a. Further, if a ∈ Ω(v) and α = a − v, then ga =
gvgα = gαgv, where in the last occurrence gα is understood in the Cartan domain
Ω(v) rather than in Ω.

In [AE], the present authors showed that the existence of the retraction ga has im-
portant consequences for the boundary behaviour of the convolution operators Bµ.
Namely, whenever f is a continuous function on Ω which extends continuously to
Ω∪Ω(v), then the convolution Bµf = f ∗µ is also continuous on Ω∪Ω(v); further,
the restriction of Bµf to Ω(v) depends only on the restriction of f to Ω(v), and the
operator

(4) f
∣∣
Ω(v)

7→ (Bµf)
∣∣
Ω(v)

is again an operator of the form (1), except that the convolution is taken in Ω(v)
rather than in Ω and in the place of µ there is some Kv-invariant finite measure µv

on Ω(v) (Kv being the K-group for Ω(v) ∼= Gv/Kv).
The actual determination of the measures µv from µ and v remained an open

problem in [AE]; in particular, it was conjectured there that for the case (3) of the
Berezin transforms, the operators (1) are also of that type, though possibly with
different ν.

The aim of this note is to prove the last conjecture in full: we exhibit an explicit
formula relating µ and µv, which implies in particular that if µ is of the form (3)
and v ∈ ∂lΩ, then µv is also of the form (3) — taken in the Cartan domain Ω(v)
instead of Ω — except that ν gets replaced by ν − la

2 . The proof goes by trans-
ferring everything, via the Cayley transform, from the bounded domain Ω into its
unbounded realization as Siegel domain of type II, where additional computational
machinery is available. This is done in Section 2.

Our second result is that for the special case of matrix balls and symmetric
matrix balls — i.e. of Cartan domains of types I and II in the notation of Hua’s
book [Hu] — the unbounded realization also yields a very simple formula for the
holomorphic retraction gv: namely, upon conjugation with the Cayley transform,
gv becomes simply the orthogonal projection onto (the image of) the corresponding
boundary face Ω(v). This is proved in Section 3. We conjecture that the last result
remains in force also for Cartan domains of the other types (III–VI).

2. The measures µv

As in the Introduction let Ω = G/K be a Cartan domain in Cd of type (r, a, b),
given in its Harish-Chandra realization; and let φx and gx, x ∈ Ω, be the geodesic
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symmetries interchanging x and the origin and the transvections gx(z) = φx(−z),
respectively.

We will use the language of Jordan theory, see e.g. [Lo], [FK] or [Ar] for the details
and notation. In particular, we let Z (∼= Cd) stand for the JB∗-triple whose unit
ball is Ω, {xyz} for the triple product of Z, D(x, y) for the multiplication operators
D(x, y)z = {xyz}, and Q(x) for the (antilinear) quadratic operator Q(x)z = {xzx}.
An element v ∈ Z is a tripotent if {vvv} = v. Two tripotents u, v are said to be
orthogonal if D(u, v) = 0 (this is equivalent to D(v, u) = 0). Associated to a
tripotent v is the Peirce decomposition

(5) Z = Z1(v)⊕ Z1/2(v)⊕ Z0(v),

with Zν(v) = Ker(D(v, v) − ν), ν = 0, 1
2 , 1. The subspace Z1(v) is a JB∗-algebra

under the product x◦y = {xvy}, with unit v and involution z∗ = {vzv}. A tripotent
is called minimal if dim Z1(v) = 1.

To a system e1, . . . , em of pairwise orthogonal tripotents, there is similarly asso-
ciated the joint Peirce decomposition

(6) Z =
⊕

0≤i≤j≤m

Zij

of Z into orthogonal subspaces

(7) Zij = {z ∈ Cd : D(ek, ek)z =
δik + δjk

2
z0 ∀k = 1, . . . , m},

of which (5) is a special case (for m = 1).
Any maximal system of pairwise orthogonal minimal tripotents e1, . . . , er is

called a Jordan frame; its cardinality r is the same for all Jordan frames and
equal to the rank of Ω. Any z ∈ Z can be written in the form

z = k(t1e1 + · · ·+ trer),

where k ∈ K and t1 ≥ t2 ≥ · · · ≥ 0; the numbers t1, . . . , tr are determined by z
uniquely (but k need not be). Further, z belongs to Ω, ∂Ω or ∂lΩ (l = 1, . . . , r),
respectively, if and only if t1 < 1, t1 = 1, or t1 = t2 = · · · = tl = 1 > tl+1; and
z is a tripotent in ∂lΩ (or, a tripotent of rank l) if and only if t1 = · · · = tl = 1,
tl+1 = · · · = tr = 0. For any such tripotent, the intersection

Ω0(v) := Ω ∩ Z0(v)

is a Cartan domain of type (r − l, a, b), and its translate

Ω(v) := v + Ω0(v)

is precisely the boundary face centered at v. It is a face both in the sense of convex
geometry (i.e. intersection of Ω with a supporting hyperplane in Cd ∼= R2d) and in
the sense of being a complex variety wholly contained in ∂Ω. All boundary faces
arise in this way.

The element
e := e1 + e2 + · · ·+ er

is a maximal tripotent : it satisfies Z0(e) = {0}.
Recall that in any Jordan algebra, an element z is called invertible if Q(z) is

an invertible operator, and the inverse z−1 is then defined by z−1 := Q(z)−1z∗.
It is known [Up, Chapter 4] that the inverse map is a rational map written in exact
(i.e. reduced) form as z−1 = p(z)/N(z), where p(z) is a polynomial (taking values
in the Jordan algebra) which plays the role of the matrix adjoint of z, and N(z) is
a polynomial (taking nonzero complex values) called the determinant polynomial,
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or Koecher norm, of the Jordan algebra. In particular, fixing a Jordan frame
e1, . . . , er of Z the above applies to the Jordan algebras Z1(e1 + · · · + ej), 1 ≤
j ≤ r; we denote the corresponding determinant polynomials by Nj and extend
them to all of Z by defining Nj(z) := Nj(P1j(z)), where P1j is the projection of
Z onto Z1(e1 + · · · + ej) given by the Peirce decomposition (5). For an r-tuple
m = (m1, . . . ,mr) of integers satisfying m1 ≥ m2 ≥ · · · ≥ mr ≥ 0, the conical
polynomial Nm associated with m is

Nm := Nm1−m2
1 Nm2−m3

2 . . . Nmr
r .

If z ∈ Z is such that Nj(z) > 0 for all j, then we can even define conical functions

Nλ := Nλ1−λ2
1 Nλ2−λ3

2 . . . Nλr
r

for any λ = (λ1, . . . , λr) ∈ Cr. This applies, in particular, to all z in the convex
cone

Λ := {x ◦ x : x = x∗ ∈ Z1(e), Nr(x) 6= 0}
of positive elements in Z1(e). Note that if λl+1 = λl+2 = · · · = λr = 0 for some l,
then

Nλ = Nλ1−λ2
1 . . . Nλl

l

makes sense for all (λ1, . . . , λl) ∈ Cl even for every z ∈ Z satisfying

(8) Nj(z) > 0 ∀j = 1, . . . , l.

The Cayley transform γ = γ[Ω,e] associated with the domain Ω and its maximal
tripotent e is defined by

(9)
γ(z) = (e− z1) ◦ (e + z1)−1 − 2{(e + z1)−1, e, z2}

= {e− z1 − 2z2, e, (e + z1)−1},
for z = z1 + z2 ∈ Z1(e) ⊕ Z1/2(e) = Z. Let F : Z1/2(e) × Z1/2(e) → Z1(e) be the
Z1(e)-valued Hermitian form

F (x, y) := {x, y, e},
and define

τ(z) :=
z1 + z∗1

2
− F (z2, z2).

Then the Cayley transform (9) maps Ω biholomorphically onto the Siegel domain

(10) S := {z ∈ Z : τ(z) ∈ Λ}.
Its inverse is given by

γ−1(w) = (e− w1) ◦ (e + w1)−1 − 4{(e + w1)−1, e, w2}
= {e− w1 − 4w2, e, (e + w1)−1}.

The following lemma is immediate from the definition (9) of γ. Note that γ maps
e into 0 and 0 into e.

Lemma 1. Let e = e1 + · · · + er be a maximal tripotent and v = e1 + · · · + el a
tripotent of rank l. Then for any x ∈ Z0(v),

γ(v + x) = 0 + γ[Ω0(v),e−v](x),

γ(0 + x) = v + γ[Ω0(v),e−v](x),

γ−1(v + x) = 0 + (γ[Ω0(v),e−v])−1(x),

γ−1(0 + x) = v + (γ[Ω0(v),e−v])−1(x),
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where γ[Ω0(v),e−v] stands for the Cayley transform associated with the Cartan do-
main Ω0(v) and its maximal tripotent e− v.

In particular, γ maps the boundary face Ω(v) of Ω biholomorphically onto the
boundary face S0(v) of S, where

S0(v) = the interior of S ∩ Z0(v)

(where the interior is understood in Z0(v), and the bar over S denotes the closure.)

It has been proved in [UU] and [AZ] that for “any” linear operator T on C∞(Ω)
which commutes with G, i.e.

T (f ◦ φ) = (Tf) ◦ φ ∀φ ∈ G,

the functions
eλ(z) := Nλ(τ(γ(z))), z ∈ Ω, λ ∈ Cr,

are eigenfunctions of T :

(11) Teλ = T̃ (λ)eλ,

for any λ for which eλ belongs to the domain of T . This applies, in particular, to all
G-invariant differential operators T on Ω, as well as to all convolution operators
T = Bµ of the form (1) with K-invariant finite measures µ. For the former, Teλ is
defined for any λ ∈ Cr and the map T 7→ T̃ (λ + ρ), where

ρj =
j − 1

2
a +

b + 1
2

, j = 1, . . . , r,

is known as the Harish-Chandra isomorphism; its image consists precisely all of
polynomials on Cr invariant under the group W generated by all permutations of
the coordinates λ1, . . . , λr and all sign changes λj 7→ ±λj . For T = Bµ, we will
write just µ̃(λ) instead of T̃ (λ); note that in view of the K-invariance of µ, we then
have Teλ = Tφλ where φλ are the spherical functions

φλ(z) :=
∫

K

eλ(kz) dk,

dk being the normalized Haar measure on K. It is known that, unlike eλ which is
always unbounded, φλ is a bounded function on Ω whenever λ belongs to the set

W := the closed convex hull of {ρ + πρ : π ∈ W}.
Since µ is assumed to be finite, µ̃ is thus defined at least for λ ∈ W (in particular
— on some open set containing ρ). Finally, for µ of the form (3) (so that Bµ is a
Berezin transform), the eigenvalues were computed explicitly by Unterberger and
Upmeier [UU]: the results is

(12) µ̃(λ) =
r∏

j=1

Γ(ν + λj − d
r − j−1

2 a)Γ(ν + 2ρj − λj − d
r − j−1

2 a)

Γ(ν − d
r − j−1

2 a)Γ(ν + 2ρj − d
r − j−1

2 a)
.

Theorem 2. Let µ be a K-invariant measure on Ω, absolutely continuous with
respect to the Lebesgue measure, v a tripotent of rank l, Ω(v) the boundary face
with center v and µv the associated measure on the Cartan domain Ω0(v). Then

µ̃v(λ1, . . . , λr−l) = µ̃(λ1, . . . , λr−l, 0, . . . , 0)

for all (λ1, . . . , λr−l, 0, . . . , 0) ∈ W .
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Proof. Choosing a suitable Jordan frame, we may assume that v = er−l+1+· · ·+er.
Let γ and S be the Cayley transform and the Siegel domain, respectively, associated
to the maximal tripotent e = e1 + · · · + er. We will use the subscript [v] or the
superscript [v] to denote objects corresponding to the Cartan domain Ω0(v) and the
boundary face Ω(v) = v + Ω0(v) instead of Ω; in particular, the ambient complex
space is Z[v] = Z0(v), the element

e[v] := e− v = e1 + · · ·+ er−l

is a maximal tripotent of Ω0(v), and the Cayley transform γ[v] associated to Ω0(v)
and e[v] coincides with the γ[Ω0(v),e−v] from Lemma 1, which also relates it to the
Cayley transform (9) associated with Ω and e. The same lemma also shows that
the corresponding Siegel domain S[v] = γ[v](Ω0(v)) coincides with the boundary
face γ(Ω(v)) = S0(v) of S. Further, Z

[v]
1/2(e[v]) = Z0(v) ∩ Z1/2(e) and F (x, y) =

{x, y, e} = {x, y, e[v]} = F[v](x, y) for x, y ∈ Z0(v) ∩ Z1/2(e); it follows that τ[v]

is just the restriction of τ to Z0(v), and its image is contained in Z0(v) ∩ Z1(e).
Finally, the Jordan algebras Z1(e1 + · · ·+ ej), 1 ≤ j ≤ r− l, are the same for Ω0(v)
as for Ω, since they are contained in Z0(v) ∩ Z1(e). It follows that

(13) N
[v]
j (τ[v](w)) = Nj(τ(w)) > 0 ∀j = 1, . . . , r − l ∀w ∈ S0(v),

and
N

(λ1,...,λr−l)
[v] (τ[v](w)) = N (λ1,...,λr−l,0,...,0)(τ(w)) ∀w ∈ S0(v)

where the right-hand side makes sense in view of (8) and (13).
Combining this with the facts about the Cayley transforms mentioned a few lines

above and with Lemma 1, we get

(14)
e
[v]

λ
(x) = Nλ

[v](τ[v](γ[v](x)))

= N (λ,0)(τ(γ(v + x))) = e(λ,0)(v + x) ∀x ∈ Ω0(v),

where, for brevity, we write (λ1, . . . , λr−l) = λ and (λ1, . . . , λr−l, 0, . . . , 0) = (λ, 0),
and e(λ,0) is extended continuously to Ω(v) via (13). Consequently, for any x ∈
Ω0(v),

µ̃v(λ)e[v]

λ
(x) = (B[v]

µv
e
[v]

λ
)(x) by (11)

= (Bµe(λ,0))(v + x) by the definition of µv

= µ̃(λ, 0)e(λ,0)(v + x) by (11) again

= µ̃(λ, 0)e[v]

λ
(x).

Since e
[v]

λ
does not vanish identically on Ω0(v) (for instance, e

[v]

λ
(0) = 1), we must

have µ̃v(λ) = µ̃(λ, 0), which proves the theorem. ¤
Corollary 3. If µ is of the form (3) for some ν > p−1, then µv is of the same form
(with respect to Ω0(v)) only with ν replaced by ν − la

2 , where l = rank v.

Proof. For µ as in (3) we have by (12)

µ̃(λ1, . . . , λr−l, 0, . . . , 0) =
r∏

j=1

Γ(ν + λj − d
r − j−1

2 a)Γ(ν + 2ρj − λj − d
r − j−1

2 a)

Γ(ν − d
r − j−1

2 a)Γ(ν + 2ρj − d
r − j−1

2 a)

=
r−l∏

j=1

Γ(ν + λj − d
r − j−1

2 a)Γ(ν + 2ρj − λj − d
r − j−1

2 a)

Γ(ν − d
r − j−1

2 a)Γ(ν + 2ρj − d
r − j−1

2 a)
.(15)
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On the other hand, for Ω0(v) =: Ω[v] in the place of Ω we have r[v] = r− l, a[v] = a,
b[v] = b, so ρ

[v]
j = ρj while

d[v]

r[v]
=

r[v] − 1
2

a[v] + b[v] + 1 =
r − l − 1

2
a + b + 1 =

d

r
− la

2
.

Thus for a measure η of the form (3) but on Ω0(v) and with σ in the place of ν
we have

η̃(λ1, . . . , λr−l) =
r−l∏

j=1

Γ(σ + λj − d[v]

r[v] − j−1
2 a[v])Γ(σ + 2ρ

[v]
j − λj − d[v]

r[v] − j−1
2 a[v])

Γ(σ − d[v]

r[v] − j−1
2 a[v])Γ(σ + 2ρ

[v]
j − d[v]

r[v] − j−1
2 a[v])

=
r−l∏

j=1

Γ(σ + λj − d
r + la

2 − j−1
2 a)Γ(σ + 2ρj − λj − d

r + la
2 − j−1

2 a)

Γ(σ − d
r + la

2 − j−1
2 a)Γ(σ + 2ρj − d

r + la
2 − j−1

2 a)
.(16)

Comparing (15) and (16), we see that µ̃ = η̃ if ν = σ + la
2 . Since the function η̃

determines η uniquely, this completes the proof. ¤

Note that since ρ[v] = ρ, we have W[v] = W ∩ (Cr−l × {0}), so that (λ, 0) ∈ W
whenever λ ∈ W[v].

We also remark that the relation σ = ν − la
2 can be rewritten as

ν − p− 1
2

= σ − p[v] − 1
2

.

In particular, ν > p− 1 implies that σ > p[v]+p
2 − 1 = p[v] − 1 + la > p− 1 as well.

3. The retraction ρv on domains of type I and II

In this section, we only consider Cartan domains of type I and II in Hua’s
notation [Hu]. Domains of type I are the matrix unit balls

IrR := {z ∈ Cr×R : ‖z‖CR→Cr < 1}, R ≥ r.

Domains of type II are

IIr := {z ∈ Irr : zt = z}, r ≥ 2,

where zt is the transpose of z. The restrictions R ≥ r and r ≥ 2 stem from the
isomorphisms IrR

∼= IRr and II1 = I1,1, respectively. The rank of IrR and IIr is
equal to r, the characteristic multiplicity a to 2, and the characteristic multiplicity
b to R− r and 0, respectively.

In both cases, the Jordan triple product is given by

{x, y, z} =
xy∗z + zy∗x

2
.

The matrices ej , 1 ≤ j ≤ r, whose (j, j)-entries equal one and all other entries
are equal to zero, form a Jordan frame. The corresponding maximal tripotent e is
given by

{e}jk =

{
1 if j = k,

0 if j 6= k,

where 1 ≤ j ≤ r, 1 ≤ k ≤ R for type IrR and 1 ≤ j, k ≤ r for type IIr.
Writing

(17) z = [X|Y ]
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where X is a square matrix of size r and Y is an r × (R − r) matrix for type IrR

and absent for type IIr, the Peirce decomposition Z = Z1(e)⊕ Z1/2(e) is given by

z = [X|0]⊕ [0|Y ].

The Jordan algebra Z1(e) is thus isomorphic to Irr with the usual matrix multipli-
cation as the product, and the usual operation of taking the adjoint (i.e. complex-
conjugate transpose) as the involution z 7→ z∗. It follows that the Cayley transform
associated with e is given by

(18) γ(z) = (I + X)−1 · [I −X| − Y ].

Here and below, I will always stand for the identity matrix of the appropriate size.
Let now v be the tripotent v = e1 + · · ·+ el, 1 ≤ l ≤ r. Splitting in (17) the rows

and the first r columns into two blocks of sizes l and r − l, respectively, we may
write v and e as

v =
[
I 0
0 0

∣∣∣∣
0
0

]
, e =

[
I 0
0 I

∣∣∣∣
0
0

]
;

similarly, for the general matrix z we refine (17) to

(19) z =
[
A B
C D

∣∣∣∣
E
F

]
.

The joint Peirce decomposition (6) corresponding to the tripotents v (as e1) and e−v
(as e2) is then given by

(20)
z11 =

[
A 0
0 0

∣∣∣∣
0
0

]
, z12 =

[
0 B
C 0

∣∣∣∣
0
0

]
, z22 =

[
0 0
0 D

∣∣∣∣
0
0

]
,

z01 =
[
0 0
0 0

∣∣∣∣
E
0

]
, z02 =

[
0 0
0 0

∣∣∣∣
0
F

]
.

Let P0v stand for the projection onto Z0(v) = Z02 ⊕ Z22:

P0v

[
A B
C D

∣∣∣∣
E
F

]
:=

[
0 0
0 D

∣∣∣∣
0
F

]
.

Theorem 4. The holomorphic retraction gv : Ω → Ω(v) corresponding to v (i.e. the
limit

gv := lim
Ω3x→v

gx

of the transvections gx on Ω) satisfies

(21) γ(gv(z)) = P0v(γ(z)).

Proof. Recall that gv is in general given by (see [KS] or [AE])

gv(z) = v + (z22 + z02)− {z12 + z01, (v + z∗11)
−1, z12 + z01}.

Using (20) therefore gives, for z as in (19),

gv(z) =
[
I 0
0 D

∣∣∣∣
0
F

]
−

[
0 B
C 0

∣∣∣∣
E
0

][
(I + A)−1 0

0 I

∣∣∣∣
0
0

]t[0 B
C 0

∣∣∣∣
E
0

]

=
[
I 0
0 D − d

∣∣∣∣
0

F − f

]
,

where

(22) d = C(I + A)−1B, f = C(I + A)−1E.
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Thus by (18)

γ(gv(z)) =
[

1
2I 0
0 (I + D − d)−1

] [
0 0
0 I −D + d

∣∣∣∣
0

−F + f

]

=
[
0 0
0 (I + D − d)−1(I −D + d)

∣∣∣∣
0

−(I + D − d)−1(F − f)

]
.(23)

On the other hand, by (18) again,

γ(z) =
[
I + A B

C I + D

]−1 [
I −A −B
−C I −D

∣∣∣∣
−E
−F

]
.

Setting [
I + A B

C I + D

]−1

=:
[∗ ∗
α β

]

(where the stars denote entries which will not be needed), we thus have

P0v(γ(z)) =
[
0 0
α β

] [
0 −B
0 I −D

∣∣∣∣
−E
−F

]

=
[
0 0
0 −αB + β(I −D)

∣∣∣∣
0

−αE − βF

]
.

Comparing with (23), we thus see that we need to prove that

(24)
−αB + β(I −D) = (I + D − d)−1(I −D + d),

αE + βF = (I + D − d)−1(F − f).

For brevity, let us write temporarily U := I + A and V := I + D. Then[
U B
C V

]
=

[
I 0
X I

][
U 0
0 V − CU−1B

][
I Y
0 I

]

where
X = CU−1 and Y = U−1B,

provided U−1 exists. Consequently,
[
U B
C V

]−1

=
[
I −Y
0 I

][
U−1 0

0 (V − CU−1B)−1

][
I 0
−X I

]

=
[
U−1 + Y (V − CU−1B)−1X −Y (V − CU−1B)−1

−(V − CU−1B)−1X (V − CU−1B)−1

]
.

Hence
β = [I + D − C(I + A)−1B]−1, α = −βC(I + A)−1.

By (22), β = (I + D − d)−1. Consequently,

−αB + β(I −D) = βC(I + A)−1B + β(I −D)

= β(I −D + C(I + A)−1B)

= β(I −D + d)

= (I + D − d)−1(I −D + d),

while

αE + βF = −βC(I + A)−1E + βF

= −βf + βF

= (I + D − d)−1(F − f).
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Thus (24) holds, which finishes the proof. ¤
Denote

ρv(z) := gv(z)− v.

This is a holomorphic retraction of Ω onto Ω0(v); see [AE].

Corollary 5. Using again the notation γ[v] for the Cayley transform in Z0(v)
associated with the Cartan domain Ω0(v) and its maximal tripotent e− v, we have

ρv(z) = γ−1
[v] (P0v(γ(z))).

That is,
ρv = γ−1

[v] ◦ P0v ◦ γ.

Proof. Immediate from (21) and Lemma 1. ¤
We expect that Theorem 4 and Corollary 5 remain in force on any Cartan do-

main.
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