
Online scheduling of equal-length jobs on

parallel machines

Jihuan Ding1,2, Tomáš Ebenlendr3, Jǐŕı Sgall3, and Guochuan Zhang1

1 Dept. of Mathematics, Zhejiang Univ., Hangzhou 310027, China.
{dingjh,zgc}@zju.edu.cn

2 College of Operations Research and Management Science, Qufu Normal Univ.,
Rizhao 276826, China. dingjihuan@hotmail.com

3 Institute of Mathematics, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic.
{ebik,sgall}@math.cas.cz

Abstract. We study on-line scheduling of equal-length jobs on parallel
machines. Our main result is an algorithm with competitive ratio de-
creasing to e/(e − 1) ≈ 1.58 as the number of machine increases. For
m ≥ 3, this is the first algorithm better than 2-competitive greedy algo-
rithm.

Our algorithm has an additional property called immediate decision: at
each time, it is immediately decided for each newly released job if it
will be scheduled, and if so, then also the time interval and machine
where it is scheduled is fixed and cannot be changed later. We show that
for two machines, no deterministic algorithm with immediate decision is
better than 1.8-competitive; this lower bound shows that our algorithm
is optimal for m = 2 in this restricted model. We give some additional
lower bounds for algorithms with immediate decision.

1 Introduction

We study a problem in the area of real-time scheduling. We are given an input
sequence of jobs with equal processing times p. Each job has its release time
and deadline, specifying the time window in which it needs to be scheduled; all
the parameters are integers. The desired output is a nonpreemptive schedule
on m identical machines, possibly only for a subset of the jobs on input. Each
scheduled job must be executed between its release time and deadline, and dif-
ferent jobs cannot overlap if they are scheduled on the same machine. The term
“nonpreemptive” means that each job must be executed without interruptions,
in a contiguous interval of length p. The objective is to maximize the number of
completed jobs.

In the online version, each job is released at its release time, and its deadline
is revealed at this time, too. The number of jobs and future release times are
unknown. At each time step when some machine is available (it just completed
a job or was idle), we have to decide whether to start some jobs, and if so, to
choose which ones, based only on the information about the jobs released so far.

Preprint, Institute of Mathematics, AS CR, Prague. 2007-12-10 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic

An online algorithm is called c-competitive if on every input instance it schedules
at least 1/c as many jobs as the optimum schedule.

This type of problems is extensively studied. In addition to the results men-
tioned below, there is a vast literature on real-time scheduling of jobs with ar-
bitrary (not equal) processing times, weights, and so on. In these more general
variants, often preemption is necessary to achieve reasonable competitive ratio,
and still the ratio depends on various parameters.

For our problem with equal jobs and non-preemptive scheduling, it is known
that a greedy algorithm performs reasonably well, namely it is 2-competitive
for any number of machines. Note that in this type of problems it is usual and
natural that more machines make performance better, as it is possible to keep in
some time interval some fraction of the total capacity of the machines available
for later arriving jobs. Nevertheless, for this very basic problem, no non-trivial
algorithm was known for m ≥ 3 before this work.

1.1 Previous results

Most of the previous results deal only with the case of a single machine. In
this case, it is known that a greedy algorithm is 2-competitive for this prob-
lem [2], and that this is optimal for deterministic algorithms [5]. There exists a
5/3-competitive randomized algorithm [3] and no better than 4/3-competitive
randomized algorithm exists [5].

For two machines, independently Goldwasser and Pedigo [7] and Ding and
Zhang [4] designed 1.5-competitive deterministic algorithms, and this competi-
tive ratio is optimal. Their algorithms and analysis are fairly complicated, and
it seems that this is necessary, as very precise timing is needed to obtain the
optimal competitive ratio.

For more machines, 2-competitive greedy algorithm is known, which is an
easy generalization of the single machine result. To our best knowledge, no better
algorithms for m ≥ 3, deterministic or randomized, were known prior to our
work. A lower bound of 6/5 is known [4], using the same idea as the lower
bound of 4/3 for randomized algorithms on a single machine. For deterministic
algorithms, it actually gives a slightly higher lower bound, but it still approaches
6/5 for large m.

In the offline case, it is known that the problem is polynomially solvable for
any fixed number of machines [1]. The complexity with the number of machines
as the part of the input is still open.

1.2 Our results

Our main result is algorithm BestFit with competitive ratio decreasing to
e/(e − 1) ≈ 1.582 for large m. The exact ratio for m machines is

Rm =
1

1 −
(

m
m+1

)m .

For m = 2, this competitive ratio is 1.8. Compared to the known algorithms for
m = 2, both the algorithm and its analysis are very simple; the proof uses a
charging scheme extending the analysis of the greedy algorithm for m = 1.

Immediate decision. Our algorithm has an additional property introduced in [4]
which is called immediate decision: At each time t, it is immediately decided for
each newly released job j (i.e., with rj = t) if it will be scheduled, and if so, then
also the time interval and machine where it is scheduled are fixed and cannot be
changed later.

The second main contribution of our paper is a study of the power of the
restricted model with immediate decision. We give several lower bounds showing
that this restriction is quite severe.

For m = 2, we show that no deterministic algorithm with immediate deci-
sion is better than 1.8-competitive. Thus our algorithm BestFit is optimal for
m = 2 in this restricted model. This shows that immediate decision is a strong
requirement, as for m = 2 the optimal competitive ratio in the unrestricted
model is 1.5 smaller.

We also give a simple lower bound of 4/3 for arbitrary m with immediate
decision, which holds even for randomized algorithms.

Finally, we give some lower bounds for jobs with small processing times.
With immediate decision for m = 2, we prove that deterministic algorithms are
at least 1.6-competitive for p = 1 and 5/3-competitive for p = 2. The previously
mentioned lower bound of 1.8 holds for any p ≥ 3.

Scheduling with immediate decision is somewhat similar to the model of jobs
arriving one by one, also called list scheduling, with an additional restriction
that the jobs are ordered according to their release times. The models are the
same for instances with all the release times distinct. In a model with continuous
time, it is possible to slightly perturb the release times and deadlines, and the
models are thus equivalent. For large p, our model with discrete time approaches
the continuous time model and thus also the model of jobs arriving one by one
consistently with the release times.

The requirement of immediate decision should also be compared with the no-
tion of immediate notification introduced in [6]. Immediate notification requires
that upon release of each job, we immediately decide (i.e., notify the user) if
the job will be completed or not; however, its exact timing and the choice of a
machine may depend on subsequent jobs. It seems to be the case that in all cases
studied so far, it is possible to provide immediate notification without changing
the performance of the algorithms. In contrast, our results show that this is no
longer the case when the requirement is strengthened from immediate notifica-
tion to immediate decision. Then the competitive ratio must increase at least in
the case of two machines.

1.3 Preliminaries

Each job is described by a pair of numbers (rj , dj) denoting its release time
and deadline, respectively. All the release times, deadlines and starting times

of jobs are assumed integral, as is usual in scheduling literature. Saying that
a job is running at time t is equivalent to saying that it is running in time
interval [t, t + 1). (However, we note that our algorithm and proofs work also
for continuous time and non-integral rj , dj . The choice of the discrete model is
mainly a matter of taste and tradition in the literature.)

Given a particular schedule, Sj denotes the starting time of job j. Each
scheduled job needs to be scheduled so that rj ≤ Sj ≤ dj − p. Let C(Mi) denote
the completion time of machine Mi, i.e., the first time t such that no job is
scheduled to run on machine Mi at or after t.

In the online problem, each job is released at time rj . However, in the more
complicated lower bounds using adversary arguments, it is often convenient to
say that at time t, based on the previous actions of the algorithm, we release some
set of jobs, possibly including (rj , dj) with rj > t. This should be interpreted
so that we commit to releasing such job(s) and we actually reveal them to the
algorithm only at time rj .

2 The algorithm

We now present our algorithm. It simply tries to schedule each job without any
idle time on the most full machine where it can be completed by its deadline.
So, for example, a sequence of jobs with huge deadlines is scheduled on a single
machine, leaving all other machines available for future jobs.

Algorithm BestFit.

At each time t, as an invariant, each machine Mi is committed to
execute jobs from t until its completion time C(Mi) with no idle time
inserted. A machine Mi is called feasible for job j if C(Mi) ≤ dj − p.

At time t, consider the newly released jobs one by one. If no feasible
machine for job j exists, the job is rejected. Otherwise j is scheduled on
a machine with largest C(Mi), among all the feasible machines; job j is
then scheduled to start execution at time C(Mi).

For the analysis it is important to keep track of the order in which the
jobs have been considered by the algorithm. We refer to this moment as to the
decision. So, we have a linear ordering of jobs given by which job was decided
earlier, which extends the ordering by release times. Also, a schedule at the time
when a job was decided refers to the schedule at its release time, just before
BestFit processed this job and fixed its schedule. Thus this schedule contains
exactly all the jobs decided before the current one, possibly including some of
the jobs with the same release time.

Before we present the proof for general m, we sketch the simplest case m = 2.
To prove that the algorithm is 1.8-competitive, we present a charging scheme.

Consider a schedule A generated by the algorithm and an arbitrary (offline,
adversarial) schedule Z. The charging scheme assigns each job in Z to some jobs
in A. The assignment is allowed to be fractional, i.e., some fractions of a job in
Z may be assigned to different jobs in A, assuming the total of these fractions

is 1. We then show that each job in A is charged at most 1.8, which completes
the proof.

The charging scheme is defined as follows: Let t be the starting time of some
job i in Z. If at time t, both machines in A are idle, then job i is charged 1 to
itself in A. If at t one machine is busy in A, then i is charged 0.4 to the job
running on that machine in A and 0.6 to itself in A. In both previous cases,
charging to i is well-defined: Job i has to be scheduled in A, since there exists
a feasible machine for i, namely the machine which is running no job at time t
in the final schedule, and thus was also feasible for i at when BestFit decided
i. Finally, if both machines are busy at t in A, then i is charged to the two jobs
running in A at time t so that 0.4 is charged to the job that was decided first
by the algorithm and 0.6 is charged to the other job. If job j is scheduled on a
machine with the larger completion time at the time when BestFit decided j,
then at any time when it is running in A j is the first job decided of the two
currently running; thus j is charged at most 2 ∗ 0.4 + 1 = 1.8 from the two jobs
started during its execution in Z and from itself. If job j is scheduled on the
other machine in A, then the first machine is busy at all times when j can start
in Z and thus j is charged at most 2 ∗ 0.6 + 0.6 = 1.8.

The instance showing that BestFit is no better than 1.8-competitive for
m = 2 and p ≥ 3 consists of these jobs: 3 jobs (0, 6p+2), scheduled by BestFit

on the first machine from time 0 to 3p; 2 jobs (1, 3p+2), scheduled on the second
machine from time 1 to 2p + 1; and finally 4 jobs (2, 2p + 2) that are rejected.
The optimum schedules all 9 jobs (essentially in the reverse order).

Now we are ready to present the full proof for a general m.

Theorem 1. The competitive ratio of the algorithm BestFit is

Rm =
1

1 −
(

m
m+1

)m .

For m → ∞, Rm decreases to e/(e − 1) ≈ 1.582; R2 = 1.8, and R3 = 64/37 ≈
1.730.

Proof. Let

Yk = (m + 1)k−1mm−k and Xk =
Yk

(m + 1)m − mm
.

Note that Yk and Xk both increase with k and X1 + · · · + Xm = 1.
The upper bound is proved by a charging scheme. Consider a schedule A

generated by the algorithm and an arbitrary schedule Z. Let i be a job in schedule
Z and t its starting time in Z. Let j1, . . . , jk be all the jobs running (or just
started) at time t in the schedule A, in the order they were decided by BestFit.
We charge the total of 1 of job i in Z to jobs j1, . . . , jk, and i in the schedule A
so that we charge the amount of Xα to each jα, α = 1, . . . , k and the amount of
Xk+1 + · · ·+Xm to i. Charging to i is well-defined: If k < m then i is scheduled
in A, as there exists a feasible machine for it at the time when it is considered,

namely the machine which is running no job at time t in A. Otherwise, if k = m,
the amount to be charged to i is 0. We observe that the total charged is always
equal to X1 + · · · + Xm = 1, and thus the definition of the charging scheme is
sound.

To prove that the algorithm is Rm-competitive, it remains to show that each
job in A is charged at most the amount of Rm; then the competitive ratio Rm

follows by summing over all jobs. Suppose that some job j is scheduled on a
machine with the kth largest C(Mi) (since the first k − 1 machines are not
feasible). Then at any time from rj up to (and including) dj − p at least k − 1
machines are executing jobs decided before j. Thus j may be charged at most
Xk + · · · + Xm from itself. Furthermore, at any time j is running in A, it is at
most kth job decided by BestFit. It follows that the charge to j from each of
the at most m other jobs started in Z while A is running j is at most Xi for some
i ≤ k, and this is at most Xk due to monotonicity of Xi’s. The total charge to j
is at most mXk + Xk + · · · + Xm. We claim that mXk + Xk + · · · + Xm = Rm,
for any k: We have mXk + Xk = mXk+1 for any k < m, thus all the values are
equal, and the last value is mXm + Xm = Rm. This completes the proof of the
desired competitive ratio.

An instance showing that BestFit is no better than Rm-competitive is this:
Let p > m. First we present Ym jobs (0, 2Ymp+m). Then, for each k = m−1, m−
2, . . . , 1, we have Yk jobs (m − k, Yk+1p + m). Finally, mY1 jobs (m, Y1p + m)
arrive.

It can be verified that the algorithm first schedules all Ym jobs with rj = 0
on one machine, then all Ym−1 jobs with rj = 1 on the next machine, and so
on, and it rejects the mY1 jobs with rj = m. On the other hand, the optimal
solution is idle until time m, then schedules the mY1 jobs with rj = m, then
schedules the Y1 jobs with rj = m − 1, and so on, completing all the jobs. The
ratio is equal to Rm. ⊓⊔

3 The lower bounds for immediate decision

If the instance starts by a modest number of jobs with a very large deadline,
BestFit schedules them on one machine close to time 0. Apparently this gives
a big advantage to the adversary, who can then focus on the region where these
jobs are scheduled. It would seem reasonable to try to improve the performance
by spreading these jobs somehow uniformly over the whole feasible time interval.
However, perhaps surprisingly, for m = 2, we can prove that no such strategy
helps and in fact BestFit is an optimal algorithm with immediate decision.

In the lower bound proof for m = 2, we try to force the algorithm to schedule
the first jobs so that both processors are busy at some time steps. Then we
release pairs of tight jobs that must be rejected. Typically, we create two such
problematic times after scheduling of 5 jobs. This results in two additional pairs,
i.e., a total of 9 jobs of which the algorithm schedules only 5. The optimum always
schedules all the jobs. The first jobs have a very long feasible intervals, so in an
optimal schedule they can always be moved so that they do not conflict with

any other jobs. The optimal schedule of tight jobs is determined, so it remains
to verify in each case that the remaining jobs can be scheduled without conflicts
with the tight jobs. The number of cases is relatively high also due to the fact
that some of the jobs may be rejected.

Theorem 2. Let A be a deterministic algorithm with immediate decision for
m = 2 machines and p ≥ 4. Then A is no better than 1.8-competitive.

Proof. We start by releasing three jobs (0, 100p). Now we wait for the algorithm
to decide the schedule of these jobs. Note that this means that time advances to
1 and we cannot release more jobs with rj = 0. We note that optimal schedule
can always schedule these jobs so that they do not overlap with a feasible time
interval of any other job. Thus in the rest of the proof it is sufficient to verify
that the other jobs can be scheduled. First we analyze the case of all three jobs
accepted. We renumber them so that their start times are S1 ≤ S2 ≤ S3.

1. There exist two times t2 > t1 ≥ p, where two jobs are running. This includes
the case of two jobs overlapping for more than one time step.
[In this case the algorithm essentially gives up.]
We release two tight jobs (t1 − p + 1, t1 + 1) and two tight jobs (t2, t2 + p).
This is possible since t1 −p+1 ≥ 1. The algorithm has to reject all four new
jobs. The optimal schedule schedules all seven jobs, since t2 ≥ t1 + 1. Thus
the competitive ratio is no better than 7/3.

2. We have S3−S2 ≤ 2p−1 and S2 ≥ p. Since the previous case does not hold,
we also have S3 − S2 ≥ p − 1.
[This case matches the behavior of BestFit.]
We release two jobs, 4 and 5, with (rj , dj) = (S3 − p − 2, S3 + 2p − 1). This
is possible as S3 − p − 2 ≥ S2 − 3 ≥ 1.
If any of jobs 4 and 5 gets scheduled, then it overlaps the schedule of jobs 2
or 3.
Depending on the schedule of jobs 4 and 5, we schedule two pairs of tight jobs,
choosing from pairs with (rj , dj) equal to (S3−p−1, S3−1), (S3−1, S3+p−1),
or (S3 + p − 1, S3 + 2p − 1). We choose the pairs as follows.

(a) If the algorithm scheduled both jobs 4 and 5, it can be verified that two
of the slots for the tight jobs contain a time when both machines are
busy. Release these two pairs.

(b) If the algorithm schedules only one of jobs 4 and 5, there will be one
slot for the tight jobs containing a time when both machines are busy.
Release this pair and an arbitrary additional pair.

(c) If the algorithm rejects both jobs 4 and 5, release arbitrary two pairs.

In every case it can be checked that the algorithm schedules at most 5 of
the total 9 jobs. Also, the optimum schedules all jobs, as 4 and 5 can be
scheduled in the unused slot for tight jobs.

3. We have S3 − S2 ≥ 2p and S2 ≥ p.
[This case is most interesting, as it kills attempts at algorithms that try to
spread the jobs with long feasible intervals.]

We release job 4 with (r4, d4) = (S2 − 2, S2 + 2p − 1). Depending on its
schedule, we release two tight jobs 5 and 6 as follows: if S4 ≤ S2 − 1, then
they are (S2 − 1, S2 + p − 1), otherwise (S2 + p − 1, S2 + 2p − 1) (including
the case when job 4 is rejected). The algorithm can schedule only one job of
4, 5, and 6.
We continue similarly by job 7 with (r7, d7) = (S3−2, S3+2p−1). Depending
on its schedule, we release two tight jobs 8 and 9 as follows: if S7 ≤ S3 − 1,
then they are (S3−1, S3+p−1), otherwise (S3+p−1, S3+2p−1) (including
the case when job 7 is rejected). The algorithm can schedule only one job of
7, 8, and 9.
Note that r7 ≥ d4 − 1. This guarantees that the optimum can schedule both
jobs 4 and 7, no matter which tight jobs are released.
Overall, the competitive ratio is at least 9/5.

4. It remains to handle the case when S2 < p.
[It is not very smart if the algorithm overlaps the jobs at the very begin-
ning, but it seems that unfortunately we need to handle this case separately,
revisiting some of the previous cases.]
We release two tight jobs 4 and 5 with a slot (1, p + 1), which get rejected,
and two jobs 6 and 7 with (rj , dj) = (1, 100p). Out of the four jobs 1, 2, 4,
and 5, the algorithm schedules only two.
If there is a time t ≥ p + 1 when both machines are busy, we conclude the
proof by another pair of tight jobs. Similarly, if one of the jobs 6 and 7 is
rejected, release a pair of tight jobs with rj ≥ p + 1 overlapping job 3.
Otherwise, renumber jobs 3, 6, and 7 to 1, 2, and 3, subtract t from all
times, and iterate the case of three released and scheduled jobs once more.
Since the three jobs do not overlap, we end up in case 2 or 3. It can be
easily verified that the optimum can schedule all the jobs from the first and
second iterations together. The ratio is at least 9/5 for the second iteration,
so including the 4 jobs in the first iteration, the overall ratio is strictly worse
than 9/5.

Now it remains to analyze the case that algorithm rejected some of the first
three jobs. If the algorithm rejects at least two jobs then the ratio is at least 3.

If the algorithm rejects one job, renumber the jobs so that S1 ≤ S2 and 3
is rejected. If S2 < 3, release two tight jobs (1, p + 1), and the ratio is 5/2. If
S2 ≥ 3, we release job 4 with (r4, d4) = (S2 − 2, S2 + 2p − 1). Depending on its
schedule, we release two tight jobs 5 and 6 as follows: if S4 ≤ S2 − 1, then they
are (S2 − 1, S2 + p − 1), otherwise (S2 + p − 1, S2 + 2p − 1) (including the case
when job 4 is rejected). The algorithm can schedule only one job of 4, 5, and 6.
Thus it schedules only 3 jobs, while the optimum schedules all 6. ⊓⊔

For an arbitrary m, we prove a lower bound of 4/3 even for randomized algo-
rithms. This is an easy adaptation of the standard bounds for a single machine.

Theorem 3. Let A be an algorithm (possibly randomized) with immediate de-
cision for m machines and p ≥ 2. Then A is no better than 4/3-competitive.

Proof. Release m jobs (0, 2p + 1). If the expected number of jobs that start at
time 0 or 1 is at least m/2, release m jobs (1, p + 1). Otherwise, release m jobs
(p, 2p). In both cases, the algorithm schedules at most 3m/2 jobs, while the
optimum is 2m. ⊓⊔

4 Jobs with a small length

The previous lower bounds hold only for sufficiently large p. It is an interesting
question what happens for smaller values of p, in particular for unit jobs, i.e.,
p = 1. Note that without the requirement of immediate decision, for p = 1,
it is easy to generate an optimal schedule online for any number of machines:
Always schedule the m jobs with the smallest deadlines among those which are
still feasible.

With immediate decision for m = 2, we prove that deterministic algorithms
are at least 1.6-competitive for p = 1 and 5/3-competitive for p = 2. Finally, for
p = 3, we revisit the proof of Theorem 2 and show that by handling one case
more carefully we obtain the same lower bound of 1.8 as for p ≥ 4.

For the case of unit jobs, we need an auxiliary lemma.

Lemma 1. Suppose we have a discrete interval I = [1..N], non-negative integral
weights wi, i ∈ I, such that

∑

i∈I wi = N/2, and an arbitrary number k ≤ n.
Then there exist three disjoint subintervals I1, I2, I3 of I, each with total weight
∑

i∈Iα

wi ≥ |Iα|/2, with total length |I1| + |I2| + |I3| = k, such that in addition
I1 contains 1 and I3 contains N .

Proof. If there exists an interval I2 of length k with weight at least k/2, we set
I1 = I3 = ∅ and we are done. Otherwise by averaging there exists two intervals
[1..i] and [i′..N], with total length k and total weight at least k/2. Thus one of
these intervals has weight at least half of its length. W.l.o.g. assume that the
interval [1..i] has weight at least i/2. Since the interval [1..k] has weight less
than k/2, it follows that for some j, i ≤ j < k, the interval [1..j] has weight
exactly j/2. Then we apply the lemma recursively on the interval I − [1..j] and
with k − j in place of k. We merge the interval [1..j] with I1 resulting from the
recursive application. ⊓⊔

Theorem 4. Let A be a deterministic algorithm with immediate decision for
m = 2 and p = 1. Then A is no better than 1.6-competitive.

Proof. Let M be large. In the first phase, we release 2M jobs (0, 4M). If some
job is not scheduled, we assign it to any time arbitrarily but so that at no time
two jobs are scheduled or assigned.

We apply Lemma 1 to the interval [0..4M − 1] and k = 3M with the weights
equal to the number of jobs scheduled at or assigned to the given time. It follows
that there exist three intervals [ti, t

′

i), i = 1, 2, 3, such that denoting Ti = t′i − ti
their lengths, their total length is T1 + T2 + T3 = 3M and each interval contains
at least Ti/2 jobs. Denote ni the number of jobs scheduled in [ti, t

′

i) or assigned
to a time in [ti, t

′

i).

Next, in the second phase, for each interval i = 1, 2, 3, we release max{3Ti/2−
ni − 2, 0} jobs (ti + 1, t′i). Note that there are at most Ti new jobs. Assign all
unscheduled jobs and reassign all the jobs from the first phase assigned originally
to this interval to times in this interval arbitrarily but so that at no time two
jobs are scheduled or assigned. (It may be necessary to reassign some job from
the first phase, since the algorithm schedules a job to the same time.)

As there are total 3Ti/2−2 jobs in the interval [ti, t
′

i) from the first two phases,
there are at least Ti/2 − 2 times when two jobs are scheduled or assigned. For
exactly Ti/2 − 4 of such times t > ti + 1 release two tight jobs (t, t + 1) in the
third phase. (We have to omit the first two times in each interval, since after
observing the assignment of the jobs from the second phase released at ti +1 we
cannot use them.)

The optimum can schedule all the jobs: The tight jobs take less than Ti/2
times in each interval, and the at most Ti jobs from the second phase can be
scheduled in the remaining available Ti/2 times in the interval. The jobs from
the first phase exactly fit outside the three chosen intervals.

In the first two phases, there are at most 2M + T1 + T2 + T3 = 5M jobs
which may be scheduled by the algorithm. In the third phase, there are exactly
2(T1/2 + T2/2 + T3/2)− 24 = 3M − 24 jobs, all rejected by the algorithm. Thus
the competitive ratio is at least (8M − 24)/5M , which is arbitrarily close to 1.6
for large M . ⊓⊔

Theorem 5. Let A be a deterministic algorithm with immediate decision for
m = 2 machines and p = 2. Then A is no better than 5/3-competitive.

Proof. First, we release M jobs (0, 100M), for a large M . Next we search the
current schedule from beginning to end for times where both machines are busy.
We start at time 1, as we are not allowed to release other jobs with rj = 0.
Whenever we find such time t, we release two jobs (t, t + 2). We group them
with the two jobs scheduled at t and also with the last job scheduled before t,
if it is not included in the previous group. So we have groups of at most 5 jobs,
such that the algorithm rejects two jobs in each group. We continue the search
at time t + 2.

Now no two remaining jobs (i.e., those not in any group) overlap in the
schedule. Moreover for each remaining job j, we released no tight job overlapping
with the interval [Sj , Sj + 4).

Next, we examine the remaining jobs again from beginning of the schedule
to end. We skip the first job as it may be scheduled at time 0 or 1 (this is why
we need M large). Suppose that we are examining job j.

If there is no remaining job scheduled in time [Sj , Sj +4), we release two jobs
(Sj − 1, Sj + 4). Then, if one of them is scheduled and starts at time Sj + 1 or
earlier, we release two tight jobs (Sj , Sj +2); otherwise we release two tight jobs
(Sj + p, Sj + p + 2). We create a group of j and these four jobs. The algorithm
schedules at most 3 out of this group of 5 jobs.

Otherwise, there is some job j′ with Sj′ ≤ Sj + 3. We release only one job
(Sj−1, Sj+4). Again we continue with two tight jobs (Sj , Sj+2) or (Sj+2, Sj+4),

so that the algorithm can schedule only one of the three new jobs. Again j, j′

and these three jobs form a new group. We skip j′ and continue examining the
following jobs.

Now we have all jobs but the first one in groups of 5. Each group has at most
3 jobs scheduled by A. In an optimal schedule, all tight jobs can be scheduled,
then all jobs with dj = rj + 5 can be scheduled with Sj = rj + 1 or Sj = rj + 3.
Finally, there is plenty of room for the remaining jobs (released at time 0). Thus
any optimal schedule schedules all the jobs.

For M large enough, this proves that no algorithm is (5/3 − ε)-competitive
for ε > 0. ⊓⊔

Theorem 6. Let A be a deterministic algorithm with immediate decision for
m = 2 machines and p ≥ 3. Then A is no better than 1.8-competitive.

Proof. We need to revisit the proof for p ≥ 4. All cases but 2 can be analyzed
exactly same way. Case 2 must be handled more carefully. If the algorithm does
not reject any job among 1, 2, 3, and S2 = 3, S3 = 5 we cannot follow the case 2
as we would need to release a job with r4 = 0. In this case we release six jobs
(1, 10). Algorithm can accept only two of them, so overall it schedules only 5 out
of 9 jobs. ⊓⊔

5 Conclusions, open problems, acknowledgments

The main open problem in this area remains to design optimal or at least good
algorithms for the unrestricted model and m > 2. Despite the good progress we
have been able to achieve using algorithms with immediate decision, one would
expect that also for m > 2, the best algorithms will use the flexibility of the
unrestricted model. However, no such algorithms are known.

We know that for m = 2, immediate decision increases the optimal competi-
tive ratio and our new algorithm is optimal in the restricted model. For m ≥ 3
we would expect the same to be true, but we have no lower bounds. It would be
also interesting to prove more in the case of unit jobs, either for m = 2 or for
larger m.

Finally, virtually nothing is known about randomized algorithms for m ≥ 2.

We are grateful to anonymous referees for many comments that helped us to
improve the presentation of this paper. T. Ebenlendr and J. Sgall were partially
supported by Institutional Research Plan No. AV0Z10190503, by Inst. for Theor.
Comp. Sci., Prague (project 1M0545 of MŠMT ČR), and grant 201/05/0124 of
GA ČR. G. Zhang was partially supported by NSFC (60573020).

References

1. P. Baptiste, P. Brucker, S. Knust, and V. Timkovsky: Ten notes on equal-

execution-time scheduling. 4OR 2 (2004), pp. 111-127.

2. S. K. Baruah, J. Haritsa, and N. Sharma: On-line scheduling to maximize task

completions. J. Comb. Math. Comb. Comput., 39 (2001), pp. 65–78. A preliminary
version appeared in Proc. 15th Real-Time Systems Symp., IEEE, 1994, pp. 228–
236.

3. M. Chrobak, W. Jawor, J. Sgall, and T. Tichý: Online scheduling of equal-

length jobs: Randomization and restarts help. In Proc. 31st International Collo-
quium on Automata, Languages, and Programming (ICALP), vol. 3142 of Lecture
Notes in Comput. Sci., Springer, 2004, pp. 358–370. To appear in SIAM J. Comput.

4. J. Ding and G. Zhang: Online scheduling with hard deadlines on parallel ma-

chines. In Proc. 2nd International Conf. on Algorithmic Aspects in Information
and Management (AAIM), vol. 4041 of Lecture Notes in Comput. Sci., Springer,
2006, pp. 32–42.

5. S. A. Goldman, J. Parwatikar, and S. Suri: Online scheduling with hard dead-

lines. J. Algorithms, 34 (2000), pp. 370–389.
6. M. H. Goldwasser and B. Kerbikov: Admission control with immediate notifi-

cation. J. Sched., 6 (2003), pp. 269–285.
7. M. H. Goldwasser and M. Pedigo: Online, non-preemptive scheduling of equal-

length jobs on two identical machines. In Proc. 10th Scandinavian Workshop on
Algorithm Theory (SWAT), vol. 4059 of Lecture Notes in Comput. Sci., Springer,
2006, pp. 113–123.

