
TOEPLITZ OPERATORS AND LOCALIZATION OPERATORS

MIROSLAV ENGLIŠ

Abstract. We show that for any localization operator on the Fock space with
polynomial window, there exists a constant coefficient linear partial differential
operator D such that the localization operator with symbol f coincides with
the Toeplitz operator with symbol Df . An analogous result also holds in the
context of Bergman spaces on bounded symmetric domains. This verifies a
recent conjecture of Coburn and simplifies and generalizes recent results of Lo.

1. Introduction

Let F be the Fock, or Segal-Bargmann, space of all entire functions on Cn

square-integrable with respect to the Gaussian

dµ(z) := e−‖z‖
2/2 dz

(2π)n
,

dz being the Lebesgue volume measure on Cn. It is well known (and easy to check)
that the Weyl operators

(1) Waf(z) := e〈z,a〉/2−‖a‖2/4 f(z − a), a ∈ Cn,

are unitary on L2(Cn, dµ) and on F . For w ∈ F and f ∈ L∞(Cn), the Gabor-
Daubechies localization operator L

(w)
f with “window” w and “symbol” f is the

operator on F defined by

(2) 〈L(w)
f u, v〉 = (2π)−n

∫

Cn

f(a) 〈u,Waw〉〈Waw, v〉 da, u, v ∈ F .

On the other hand, for f ∈ L∞(Cn), the Toeplitz operator Tf with symbol f is the
operator on F defined by

(3) Tfu = P (fu), u ∈ F ,

where P : L2(Cn, dµ) → F is the orthogonal projection. Using the fact that the
exponentials

Ky(z) := K(z, y) := e〈z,y〉/2

serve as the reproducing kernel for F , in the sense that

f(x) = 〈f,Kx〉 =
∫

Cn

f(y) K(x, y) dµ(y) ∀f ∈ F , ∀x ∈ Cn,
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2 M. ENGLIŠ

we can also express Tf as an integral operator

(4) Tfu(x) =
∫

Cn

f(y) u(y) K(x, y) dµ(y), u ∈ F , x ∈ Cn.

It is immediate from (3) that for f ∈ L∞(Cn), Tf is bounded and

(5) ‖Tf‖ ≤ ‖f‖∞.

In principle, it is possible to define Tf by the formula (3) or (4) even for some
unbounded symbols f — for instance, for all f such that fKy ∈ L2(Cn, dµ) for all
y ∈ Cn. Then Tf is a densely defined, closed operator on F . Similarly, (2) can be
extended also to some unbounded symbols f as a densely defined operator.

It was observed by Coburn [C2], [C3] that for w = 1,

L
(w)
f = Tf

for all f ∈ L∞(Cn), while for w(z) = 2−1/2z1 and w(z) = 2−3/2z2
1 , respectively,

L
(w)
f = Tf+2∂1∂1f ,

L
(w)
f = Tf+4∂1∂1f+2(∂1∂1)2f ,

for any f which is either a polynomial in z, z or belongs to the algebra Ba(Cn)
of Fourier-Stieltjes transforms of compactly supported complex measures on Cn.
(Here ∂1 = ∂/∂z1 and ∂1 = ∂/∂z1.) This allows the amalgamation of the sub-
stantial work already done in studying Tf [Be] [BC1] [BC2] [BC3] [C1] [Ja] [Zh]
and L

(w)
f [D1] [D2] [FN] [Wo]. Coburn’s most general result was that for any poly-

nomial w ∈ F there exists a linear partial differential operator D = D(w), whose
coefficients are polynomials in z and z, such that

(6) L
(w)
f p = TDfp

for any polynomial p ∈ F and any polynomial f in z and z. He also conjectured
that D was actually a constant coefficient linear differential operator and (6) held
also for all f ∈ Ba(Cn). This conjecture was verified by M.-L. Lo [Lo], who showed
that (6) holds for any polynomials p, w ∈ F and any f ∈ E(Cn), where

(7) E(Cn) := {f ∈ C∞(Cn): for any multiindex k, there exist M, α > 0
such that |Dkf(z)| ≤ M eα‖z‖ ∀z ∈ Cn}

contains both Ba(Cn) and all polynomials in z and z.
Lo’s proof went by a brute-force computation to establish the result for polyno-

mials f (in z and z), and then an approximation argument was used to extend it
to all f ∈ E(Cn).

In this note, we present a simpler proof of these results, which also yields a bit
more precise information for “nicer” symbols f .

Theorem 1. For any polynomial w ∈ F , there exists a constant coefficient linear
partial differential operator D = D(w) such that for any f ∈ BC∞(Cn) (the space
of all C∞ functions on Cn whose partial derivatives of all orders are bounded),

(8) L
(w)
f = TDf on F .

Explicitly, the operator D is given by

(9) D(w) =
[
e∆/2|w(z)|2

]
z 7→−2∂
z 7→−2∂

.
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Here e∆/2 should be understood as the infinite series

e∆/2 =
∞∑

k=0

∆k

k!2k
.

This infinite sum makes sense since, as w is assumed to be a polynomial, ∆k|w|2
vanishes as soon as k > deg w, thus there are only finitely many nonzero terms.
Note also that for f ∈ BC∞ both sides of (8) are bounded operators, so the validity
is not restricted to polynomials p as in (6). In fact, the left-hand side in (8) is a
bounded operator for any f ∈ L∞(Cn) (see Proposition 2), so (8) tells us that
Toeplitz operators can even be defined and nice (i.e. bounded) for the fairly wild
symbols Df , f ∈ L∞ (which are distributions at best).

One more virtue of our proof is that it uses solely harmonic analysis methods, and
thus easily extends also to other situations than the Segal-Bargmann space on Cn

— for instance, to the standard weighted Bergman spaces on bounded symmetric
domains, thus making contact with the work of Arazy and Upmeier [AU], de Mari
and Nowak [MN], and others.

The paper is organized as follows. In Section 2, we review some preliminar-
ies from Segal-Bargmann analysis. In Section 3, Theorem 1 is proved, and also
extended to a wider class of functions f (including the polynomials, the algebra
Ba(Cn), and the space E(Cn) from (7)). Generalizations to bounded symmetric
domains are described in the final Section 4.

A substantial portion of this work was done during the Finnish Mathematical
Society Visitor Program 2005–2006 in Helsinki and Joensuu; the author expresses
his gratitude for the support and the nice time for research he had there.

2. Berezin symbols

In addition to Ka, we also consider the normalized reproducing kernels

ka(z) :=
Ka(z)
‖Ka‖ = e〈z,a〉/2−‖a‖2/4.

Note that the Weyl operators (1) can then be written simply as

Waf(z) = ka(z)f(z − a).

In particular, as k0 = 1 (the function constant one),

(10) ka = Wa1, ∀a ∈ Cn.

One checks easily that Wa satisfy the composition law

(11) WaWb = e(ab−ab)/4 Wa+b, ∀a, b ∈ Cn.

Consequently, W ∗
a = W−a and

(12)
Wakb = e(ab−ab)/4 ka+b,

W ∗
a kb = e(ab−ab)/4 kb−a.
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In particular, for w = 1 we get for any u, v ∈ F ,

〈L(1)
f u, v〉 = (2π)−n

∫

Cn

f(a)〈u, ka〉〈ka, v〉 da

=
∫

Cn

f(a)〈u,Ka〉〈Ka, v〉 dµ(a)

=
∫

Cn

f(a)u(a)v(a) dµ(a)

= 〈fu, v〉
= 〈Tfu, v〉,

so that indeed

(13) L
(1)
f = Tf .

The next proposition is thus an analogue of (5) for an arbitrary window w. An anal-
ogous assertion is valid even in the much more general context of any square-
integrable irreducible unitary representation of a unimodular group, see for instance
Wong [Wo], Proposition 12.2, or [E] for an even further generalization; in the very
special case that we have here, it is possible to give a simple direct proof based on
the Fourier transform.

Proposition 2. For any w ∈ F and f ∈ L∞(Cn), the localization operator L
(w)
f

is bounded, and
‖L(w)

f ‖ ≤ ‖f‖∞ ‖w‖2.
Proof. It is more convenient to pass from F to L2(Rn), via the Bargmann transform

βf(z) := cn

∫

Rn

f(x) exz−x2/2−z2/4 dx.

With the proper choice of the constant cn, this is a unitary isomorphism of L2(Rn)
onto F ; see e.g. Folland [Fo]. (Here x2 = x2

1 + · · · + x2
n for x ∈ Rn, and similarly

for xz and z2.) Its inverse is given by

β−1F (x) = c′n

∫

Cn

F (z) exz−x2/2−z2/4 e−‖z‖
2/2 dz,

and the Weyl operators (1) satisfy Wu+iv = βUu,vβ−1, where the unitary operators
Uu,v on L2(Rn) are given by

Uu,vf(x) = eiuv/2−ivx f(x− u), x, u, v ∈ Rn.

It follows that

β−1L
(w)
f β = (2π)−n

∫

Rn

∫

Rn

f(u + iv) 〈 · , Uu,vH〉〈Uu,vH, · 〉 du dv,

where H = β−1w. To prove the proposition, it therefore suffices to show that
∣∣∣(2π)−n

∫

Rn

∫

Rn

f(u + iv) 〈F, Uu,vH〉〈Uu,vH,G〉 du dv
∣∣∣ ≤ ‖f‖∞ ‖H‖2 ‖F‖ ‖G‖

for all F,G ∈ L2(Rn).
By the Cauchy-Schwarz inequality, the left-hand side is bounded by

(2π)−n‖f‖∞
(∫

Rn

∫

Rn

|〈F, Uu,vH〉|2 du dv
)1/2( ∫

Rn

∫

Rn

|〈G,Uu,vH〉|2 du dv
)1/2

.
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It is therefore enough to prove that

(14) (2π)−n

∫

Rn

∫

Rn

|〈F, Uu,vH〉|2 du dv ≤ ‖F‖2 ‖H‖2

for any F,H ∈ L2(Rn). However,

〈F,Uu,vH〉 =
∫

Rn

F (x) e−iuv/2 eivx H(x− u) dx = (2π)n/2e−iuv/2ĥu(v),

where ĥu is the Fourier transform of the function hu(x) = F (x)H(x− u). Thus by
Parseval

(2π)−n

∫

Rn

∫

Rn

|〈F,Uu,vH〉|2 du dv

=
∫

Rn

∫

Rn

|ĥu(v)|2 du dv

=
∫

Rn

∫

Rn

|hu(x)|2 du dx

=
∫

Rn

∫

Rn

|F (x)|2 |H(x− u)|2 du dx

=
∫

Rn

|F (x)|2
[ ∫

Rn

|H(x− u)|2 du
]
dx

=
∫

Rn

|F (x)|2
[ ∫

Rn

|H(y)|2 dy
]
dx (y := x− u)

= ‖F‖2 ‖H‖2, q.e.d.

¤
Remark. We see that we have in fact an equality in (14). On the general level of
square-integrable irreducible representations of an arbitrary unimodular group, this
is of course just an immediate consequence of the Schur orthogonality relations. ¤

Recall that for a bounded linear operator T on F , the Berezin symbol of T is
the function T̃ on Cn defined by

T̃ (x) := 〈Tkx, kx〉.
Again, the definition makes sense even for unbounded operators, as long as the
reproducing kernels kx are in the domain of T , for all x. The following proposition
records some properties of the Berezin symbol which we will need.

Proposition 3. (a) The function T̃ is real-analytic;
(b) T̃ vanishes identically only if T = 0;
(c) ‖T̃‖∞ ≤ ‖T‖;
(d) for any a ∈ Cn,

(15) (W ∗
a TWa)̃ = T̃ ( · + a).

Proof. All this is well known, but here is the proof for completeness. Note that
T̃ (x) is the restriction to the diagonal x = y of the function

〈TKy,Kx〉
〈Ky,Kx〉 = e−〈x,y〉/2〈Te〈 · ,y〉/2, e〈 · ,x〉/2〉 = e−〈x,y〉/2(Te〈 · ,y〉/2)(x)

= e−〈x,y〉/2(T ∗e〈 · ,x〉/2)(y)
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which is holomorphic in x and y; in particular, T̃ is a real-analytic function. Further,
it is known that such functions are uniquely determined by their restriction to the
diagonal (see e.g. Folland [Fo], Proposition 1.69); hence T̃ ≡ 0 only if 〈TKy,Kx〉 =
TKy(x) = 0 ∀x, y, which implies that T = 0 since the linear combinations of Ky,
y ∈ Cn, are dense in F . Finally, (c) is immediate from the Schwarz inequality, and
the covariance property (15) is immediate from (12). ¤

3. Main results

Proof of Theorem 1. From the definition of the localization operators L
(w)
F , we have

for any c ∈ Cn

(16)

L
(w)
f( ·+c) = (2π)−n

∫
f(a + c) 〈 · ,Waw〉Waw da

= (2π)−n

∫
f(x) 〈 · , Wx−cw〉Wx−cw dx

= W ∗
c L

(w)
f Wc,

by (11). In particular, for w = 1 we get by (13)

Tf( ·+c) = W ∗
c TfWc.

By Proposition 2, and parts (a), (c) and (d) of Proposition 3, we thus see that the
two maps

f 7→ L̃
(w)
f , f 7→ T̃f ,

both map L∞(Cn) continuously into bounded real-analytic functions on Cn, and
commute with translations. Recall now (see e.g. [Ru], Theorem 6.33) that for any
continuous linear map V from D(Cn) into C(Cn) which commutes with translations
there is a unique distribution v ∈ D′(Cn) such that V f = v ∗ f for all f ∈ D. Thus
there exist distributions k = k(w) and h = k(1) on Cn such that

(17)
L̃

(w)
f = k ∗ f,

T̃f = h ∗ f,
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for all f ∈ D(Cn). To find what k and h are, note that for any f ∈ L∞(Cn) and
z ∈ Cn,

L̃
(w)
f (z) = 〈L(w)

f kz, kz〉

= (2π)−n

∫
f(a) 〈kz,Waw〉〈Waw, kz〉 da

= (2π)−n

∫
f(a) |〈W ∗

a kz, w〉|2 da

= (2π)−n

∫
f(a) |〈kz−a, w〉|2 da by (12)

= (2π)−n

∫
f(z − y) |〈ky, w〉|2 dy

= (2π)−n

∫
f(z − y) |〈Ky, w〉|2 e−‖y‖

2/2 dy

= (2π)−n

∫
f(z − y) |w(y)|2 e−‖y‖

2/2 dy

= (f ∗ (2π)−n|w|2e−‖·‖2/2)(z).

Thus k is not only a distribution but a function, given by

(18) k(z) = (2π)−n|w(z)|2 e−‖z‖
2/2,

and, taking w = 1,

(19) h(z) = (2π)−n e−‖z‖
2/2.

It also follows from the last computation that (17) holds not only for f ∈ D(Cn),
but for any f ∈ L∞(Cn).

Observe now that for any multiindices j, k, the Leibniz formula implies that

(20) ∂j∂
k
e−‖z‖

2/2 = e−‖z‖
2/2

[(
− 1

2

)|j+k|
zjzk + lower order terms

]
.

By a straightforward induction argument, it follows that there exists a unique
differential operator D = D(w) with constant coefficients such that

De−‖·‖
2/2 = |w|2 e−‖·‖

2/2,

i.e. Dh = k. By the properties of convolution,

(21) h ∗Df = Dh ∗ f = k ∗ f

for any reasonable f (for instance, whenever all derivatives of f up to the order of
D are bounded). Consequently,

T̃Df = h ∗Df = k ∗ f = L̃
(w)
f

for any f ∈ BC∞(Cn). By part (b) of Proposition 3, this implies that

TDf = L
(w)
f ,

thus completing the proof of (8).
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It remains to show that the operator D is given by the formula (9). To this end,
write out the “lower order terms” in (20) explicitly:

∂j∂
k
e−‖z‖

2/2 = ∂j
[(
− z

2

)k

e−‖z‖
2/2

]

=
∑

l⊂j

(
j

l

)(
− 1

2

)|k| k!
(k − l)!

zk−l
(
− z

2

)j−l

e−‖z‖
2/2

=
∑

l

j!
(j − l)!

zj−l k!
(k − l)!

zk−l
(
− 1

2

)|j+k−l| e−‖z‖
2/2

l!

=
(
− 1

2

)|j+k|
e−‖z‖

2/2
∑

l

(∂
l
zj) · (∂lzk)

(−2)|l|

l!

=
(
− 1

2

)|j+k|
e−‖z‖

2/2
∞∑

L=0

(−2)L

L!

∑

|l|=L

(
L

l

)
∂l∂

l
zjzk

=
(
− 1

2

)|j+k|
e−‖z‖

2/2
∞∑

L=0

(−2)L

L!

(∆
4

)L

zjzk

=
(
− 1

2

)|j+k|
e−‖z‖

2/2e−∆/2zjzk.

It follows that for any polynomial p in two variables with complex coefficients,

p(−2∂,−2∂)e−‖z‖
2/2 = e−‖z‖

2/2e−∆/2p(z, z).

Thus if we choose

p(z, z) = e∆/2|w(z)|2

then p(−2∂,−2∂) = D. This completes the proof of Theorem 1. ¤

Corollary 4. Let w1, w2 ∈ F be polynomials. Then the following two assertions
are equivalent:

(a) There exists a constant coefficient linear differential operator D such that

(22) L
(w2)
f = L

(w1)
Df

for all f ∈ D(Cn).
(b) The polynomial e∆/2|w2|2 is divisible by the polynomial e∆/2|w1|2.

Further, if (a) or (b) are fulfilled, then D is of order 2(deg w2 − deg w1) and (22)
holds for all f ∈ BC∞(Cn).

Proof. Immediate from (8) and (9). ¤

Note that we have proved (8) not only for f ∈ BC∞, but in fact for any f ∈ L∞

whose derivatives up to the order of D are bounded. Going through the above
arguments with some care, it is not difficult to extend this even further. Let r be
the degree of w and denote

(23) Mr := {f ∈ C2r(Cn): for any multiindices j, k with |j|, |k| ≤ r

and any a > 0, ea‖·‖|∂j∂
k
f | e−‖·‖2/2 ∈ L∞(Cn)}.
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Observe that the condition implies that for any m ≥ 0 and |j|, |k| ≤ r, ‖z‖m|∂j∂
k
f |·

e−‖z‖
2/2 belongs to L1 and vanishes at the infinity. Integrating by parts in

∫
f(z − x)De−‖x‖

2/2 dx

it therefore follows that

f ∗Dh = Df ∗ h ∀f ∈Mr,

i.e. (21) still holds for f ∈Mr. Thus again

T̃Df = L̃
(w)
f .

Since now TDf and L
(w)
f need no longer be bounded in general, it is not clear

whether this implies TDf = L
(w)
f ; however, from the proof of part (b) of Proposi-

tion 3 it is clear at least that TDfKz = L
(w)
f Kz for any z ∈ Cn. Thus we arrive at

the following strengthening of Theorem 1.

Theorem 5. Let w ∈ F be a polynomial of degree r, and let Mr be as in (23).
Then for any f ∈Mr, TDf and L

(w)
f coincide on the linear span of Kz, z ∈ Cn.

Note that E(Cn) ⊂ Mr for any r; thus, in particular, the last theorem covers
completely the main result of [Lo] (except that the polynomials p are replaced by
linear combinations of Kz).

We conclude this section by a generalization in a different direction. It may
seem a little artificial at first sight, but becomes very natural after we pass to the
bounded symmetric domains in the next section. For any bounded linear operator
A on F , we may define a “localization operator” with symbol f and “window” A by

(24) L
(A)
f := (2π)−n

∫

Cn

f(a) WaAW ∗
a da.

The localization operators L
(w)
f considered so far are recovered upon choosing A =

〈 · , w〉w.
We then have the following generalizations of Proposition 2 and Theorem 1.

Proposition 6. If A is trace-class, then the integral (24) converges in the weak
operator topology for any f ∈ L∞(Cn), and

‖L(A)
f ‖ ≤ ‖f‖∞ ‖A‖tr,

where ‖ · ‖tr denotes the trace norm.

Theorem 7. Let A be a finite sum

A =
∑

j

〈 · , uj〉vj ,

where uj , vj ∈ F are polynomials. Then there exists a unique linear partial differ-
ential operator D = D(A) such that

L
(A)
f = TDf ∀f ∈ BC∞(Cn).
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The proof of Proposition 6 can (again in a much more general setup) be found
in [E], or carried out directly along the lines of the proof of Proposition 2. Similarly,
Theorem 7 can be proved either by mimicking the proof of Theorem 1, or from
Theorem 1 directly using the linearity in A and the familiar polarization identity

〈 · , w1〉w2 =
3∑

k=0

i−k〈 · , w1 + ikw2〉(w1 + ikw2).

4. Bounded symmetric domains

Throughout this section we let Ω be an irreducible bounded symmetric domain
in Cn (i.e. a Cartan domain) in its Harish-Chandra realization (so Ω is circular
with respect to the origin and convex). Let G be the group of all biholomorphic
self-maps of Ω; then G acts transitively on Ω, so denoting by K the stabilizer of the
origin 0 ∈ Ω in G, Ω can be identified with the coset space G/K. For each z ∈ Ω,
there exists a unique so-called geodesic symmetry gx ∈ G interchanging x and the
origin, i.e. gx is an involution (that is, gx = g−1

x ), gx(0) = x, gx(x) = 0, and gx

has only isolated fixed-points. We refer e.g. to [Ar], [Ko] or [Up] for an overview of
bounded symmetric domains.

Let dz be the Lebesgue measure on Ω normalized so that Ω has total mass one.
Abusing the notation a little, we will denote by the same letter K also the Bergman
kernel Ky(x) = K(x, y) of Ω, i.e. the reproducing kernel of the subspace H =
L2

hol(Ω, dz) of all holomorphic functions in L2(Ω, dz). We will also use the same
notation kz = Kz/‖Kz‖ as before for the normalized reproducing kernels.

From the familiar formula for the change of variables, it is immediate that the
operators

(25) Ug : f 7→ jg−1 · (f ◦ g−1), g ∈ G,

are unitary on L2(Ω) andH; here jg denotes the complex Jacobian of the mapping g.
From the chain rule for derivatives it follows that

Ug1Ug2 = Ug1g2 , ∀g1, g2 ∈ G,

so that g 7→ Ug is a unitary representation of G in H. In particular, U∗
g = Ug−1 .

From the computation

〈f, Ugkz〉 = 〈Ug−1f, kz〉 = K(z, z)−1/2(Ug−1f)(z)

= K(z, z)−1/2 jg(z) f(g(z))

= K(g(z), g(z))1/2 K(z, z)−1/2 jg(z) 〈f, kg(z)〉, ∀f ∈ H,

it follows that Ugkz = const · kg(z); since Ug is unitary and kz, kg(z) are both unit
vectors, the constant must be unimodular, i.e.

(26) Ugkz = εg,zkg(z), |εg,z| = 1,

which is an analogue of (12).
Yet another consequence of the change-of-variable formula is the equality

K(x, y) = jg−1(x)K(g−1(x), g−1(y)) jg−1(y),

from which it follows that the measure

dµ(z) := K(z, z) dz, z ∈ Ω,

is G-invariant.
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Denoting by dg the Haar measure on G, we may now define for any bounded
linear operator (“window”) A on H and any function (“symbol”) f on G the “lo-
calization operator”

L(A)
f :=

∫

G

f(g) UgAU∗
g dg.

Comparing this with (24), we immediately see the drawback that our symbols f now
live on G, not on Ω. As shown in [AU] and [E], this can be resolved by restricting
to operators A which are K-invariant, in the sense that

AUk = UkA ∀k ∈ K.

Indeed, then for any g ∈ G we have

UgkAU∗
gk = UgUkAU∗

k U∗
g = UgAU∗

g .

Thus UgAU∗
g depends only on the coset gK of g in G/K, i.e. only on g(0) ∈ Ω.

We can therefore define unambiguously the operator Az, for any z ∈ Ω, by

Az := UgAU∗
g for any g ∈ G such that g(0) = z,

and the localization operator

(27) L
(A)
f :=

∫

Ω

f(z) Az dµ(z).

Such operator calculi were studied in [E]. It was shown there, for instance, that
(27) converges in the weak operator topology whenever f is bounded and A is
trace-class, and

‖L(A)
f ‖ ≤ ‖f‖∞ ‖A‖tr,

an analogue of Propositions 2 and 6. Our goal in the rest of this section will be to
establish also an analogue of Theorems 1 and 7. Before stating the latter, we need
to review some facts about the structure of K-invariant operators.

It is known that under the action Uk of the group K, the space H decomposes
into an orthogonal direct sum of irreducible subspaces (Peter-Weyl decomposition)

H =
⊕
m

Pm.

Here m ranges over all signatures, i.e. r-tuples m = (m1, . . . , mr) of integers satis-
fying m1 ≥ m2 ≥ · · · ≥ mr ≥ 0; the number r is the rank of Ω. One has P(0,...,0) =
{the constant functions}, P(1,0,...,0) = {the linear functions}, and, in general, the el-
ements of Pm are homogeneous polynomials of degree |m| := m1+· · ·+mr. Let Pm

be the orthogonal projection in H onto Pm. By construction, Pm is a K-invariant
operator. Conversely, if A is any K-invariant operator, then it follows from Schur’s
lemma that the restriction of A to each Pm is a multiple of the identity. Thus,
K-invariant operators on H are precisely the operators of the form

A =
∑
m

cmPm, cm ∈ C.

Clearly A is bounded if and only if {cm} is a bounded sequence, and A is trace-class
if and only if

∑
m cm dimPm < ∞.

The simplest K-invariant operator is thus

A = P(0,...,0) = 〈 · ,1〉1,
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the projection onto the constants. By (26), in that case

Az = 〈 · , kz〉kz

and

L
(A)
f =

∫

Ω

f(z) 〈 · , kz〉kz dµ(z)

=
∫

Ω

f(z) 〈 · ,Kz〉Kz dz

= Tf ,

the Toeplitz operator with symbol f .
We now have the following analogue of Theorems 1 and 7.

Theorem 8. Let A be a K-invariant operator on H of the form

A =
∑

finite

cmPm.

Then there exists a unique G-invariant linear partial differential operator D = D(A)

on Ω such that
L

(A)
f = TDf ∀f ∈ D(Ω).

Proof. The proof is completely parallel to that of Theorem 1, so we will be brief.
Using linearity, it is enough to prove the theorem for A = Pm, which we will assume
from now on. For any bounded linear operator T on H, we again define its Berezin
symbol T̃ by

T̃ (z) = 〈Tkz, kz〉, z ∈ Ω.

The proof of Proposition 3 extends to the present setting without any changes,
so that again ‖T̃‖∞ ≤ ‖T‖, T̃ is real-analytic, and T̃ ≡ 0 only if T = 0. By a
similar computation as for the Fock space, for any f ∈ L∞(Ω),

L̃
(A)
f (z) = 〈L(A)

f kz, kz〉 =
∫

Ω

f(x) 〈Axkz, kz〉 dµ(x).

Let gx ∈ G be the geodesic symmetry interchanging x and the origin, so that
gx = g−1

x , gx(0) = x and gx(x) = 0. Then 〈Axkz, kz〉 = 〈AU∗
gx

kz, U
∗
gx

kz〉 =
〈Akgx(z), kgx(z)〉, by (26). Since gx(gz(0)) = gx(z) = ggx(z)(0), there exists k ∈ K
such that gxgz = ggx(z)k; taking inverses gives kgzgx = ggx(z), whence gx(z) =
ggx(z)(0) = k(gz(gx(0))) = k(gz(x)). As A is K-invariant, 〈Akgx(z), kgx(z)〉 =
〈AUkkgz(x), Ukkgz(x)〉 = 〈Akgz(x), kgz(x)〉 = Ã(gz(x)). Thus

L̃
(A)
f (z) =

∫

Ω

f(x) Ã(gz(x)) dµ(x).

The last integral is the definition of convolution (in G) of f and Ã [H]:

L̃
(A)
f = f ∗ Ã.

As A = Pm we have

Ã(z) = 〈Pmkz, kz〉 = K(z, z)−1 (PmKz)(z)

= K(z, z)−1 Km(z, z),
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where Km(x, y) is the reproducing kernel of the subspace Pm ⊂ H. In particular,
for m = (0, . . . , 0), we have P̃(0,...,0)(z) = K(z, z)−1.

Now it was shown by Ørsted and Zhang [OZ], Proposition 3.15, that there exists
a unique G-invariant linear partial differential operator D = Dm on Ω such that

DK(z, z)−1 = Km(z, z)K(z, z)−1.

Arguing as in the Fock-space case, it follows that

(28)

L̃
(A)
f = f ∗ P̃m = f ∗DP̃(0,...,0)

= Df ∗ P̃(0,...,0)

= T̃Df ,

whence L
(A)
f = TDf by part (b) of Proposition 3. This completes the proof. ¤

Remark. Again, it is evident from the proof that (28) holds not only for f ∈ D(Ω),
but for any f ∈ C∞(Ω) whose derivatives do not grow too fast at the boundary,
so that the partial integration implicit in the third equality in (28) is legitimate. ¤
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