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Abstract

We propose a new model of restricted branching programs specific to solving GEN problems,
which we call incremental branching programs. We show that syntactic incremental branching pro-
grams capture previously studied models of computation for the problem GEN, namely marking
machines [Co74] and Poon’s extension [Po93] of jumping automata on graphs [CoRa80]. We then
prove exponential size lower bounds for our syntactic incremental model, and for some other vari-
ants of branching program computation for GEN. We further show that nondeterministic syntactic
incremental branching programs are provably stronger than their deterministic counterpart when
solving a natural NL-complete GEN subproblem. It remains open if syntactic incremental branching
programs are as powerful as unrestricted branching programs for GEN problems.

1 Introduction

Is the complexity class L consisting of problems solvable in deterministic logarithmic space properly
contained in the class P of problems solvable in polynomial time? This question arose in the late 1960’s
[Co71] and remains open today. As is well known, L is captured by polynomial size branching programs.
To separate L from P, it thus suffices to identify a language in P that no polynomial size branching
program can recognize.

In this paper we focus on the problem GEN, a P-complete problem having natural NL-complete
and L-complete subproblems [Co74, JoLa77, BaMc91]. We consider a restriction on branching programs
specific to solving GEN problems. We call branching programs obeying this restriction incremental
branching programs. While it is not hard to come up with examples of branching programs that do
not satisfy our condition (e.g. by locally ruining the property), as far as we know, all the currently
known best size bounds on branching programs solving GEN and its subproblems can be achieved by
incremental branching programs. The incrementality condition is tied to a natural notion of progress
associated with solving GEN instances. Previously studied “special purpose” models for solving GEN
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problems include marking machines [Co74] and Poon’s extension [Po93] of jumping automata on graphs
[CoRa80]. In fact, as we show, our model captures these previously studied models.

As in other restricted branching program models, we consider syntactic and semantic versions of the
model: the syntactic restriction imposes a condition on all the graph-theoretic paths in the branching
program, and the semantic restriction imposes a condition only on the paths actually traversed by an
input. We prove exponential size lower bounds for syntactic incremental branching programs computing
GEN.

We also obtain exponential lower bounds for some other variants of branching program computations
for GEN, that can be viewed in a common framework with incremental branching programs, but do not
require the incrementality restriction. We refer to this more general framework as tight computation.
This framework is specific to the n-way branching program model of [BoCo82]. The models captured by
this framework include read-once branching programs and an extension of monotone nondeterministic
branching programs to n-way branching programs (called S-monotone programs where S is a subset of
the possible values of the variables), in addition to incremental branching programs. Tight computation
places no restrictions on the model itself, but instead requires correctness of the computation in a slightly
stronger sense.

Here are our main reasons for considering incremental branching programs:

1. The model that we propose offers a new perspective on the known lower bounds for GEN problems.

2. Our analysis of incremental branching programs reveals certain properties that any purported
subexponential-size branching program solving GEN must have (Remark 4.5). Hence the analysis
of incremental branching programs may lead to new insights into computation of unrestricted
branching programs for GEN.

3. All currently known upper bounds for GEN and its various subproblems can be achieved by syn-
tactic incremental branching programs, and it remains open if syntactic incremental branching
programs are as powerful as unrestricted branching programs for GEN problems.

4. While so far we have not been able to analyze them, semantic incremental branching programs
may provide the answer to Cook’s [Co74] and Edmonds’ [EPA99] requests for a computational
model intermediate between marking machines and NNJAG’s on the one hand, and unrestricted
branching programs on the other.

We show that strong exponential size lower bounds for syntactic incremental branching programs for
GEN follow from [Co74, PTC77] via our Symmetrization lemma, and slightly weaker lower bounds can
be derived from monotone circuit depth lower bounds [RaMc99], revealing an informative connection. In
particular, marking machine lower bounds (albeit weaker than those from [Co74, PTC77]) follow from
monotone circuit depth lower bounds. Figure 1 summarizes our main bounds on the sizes of syntactic
incremental branching programs and {1}-monotone nondeterministic n-way branching programs solving
the n×n instances of the P-complete problem GEN, of the NL-complete GEN restriction GEN(2rows) and
of the L-complete problem GEN(1row). For GEN(2rows), we note a super-polynomial separation between
the power of deterministic and nondeterministic syntactic incremental branching programs.

Our proofs are based on reductions of varying degrees of difficulty and they rely on the lower bounds
from [Co74, PTC77, RaMc99, EPA99]. Our work raises the following open questions: Are f(n)-size
semantic incremental branching programs strictly more powerful than O(f(n))-size syntactic incremental
branching programs? Can unrestricted (n-way) branching programs for GEN be simulated by semantic,
or even by syntactic incremental branching programs without a significant size blowup? It should be
noted that in the context of read-k-times branching programs, the semantic variant is provably much more
powerful than its syntactic counterpart [Ju95, BJS01], indicating that semantic incremental branching
programs may also behave quite differently from their syntactic counterparts.
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Deterministic Nondeterministic Nondeterministic
syntactic syntactic {1}-monotone

incremental incremental
GEN O(n22n) ∩ Ω(2cn/ logn) O(2n) ∩ Ω(2cn/ logn) O(2n) ∩ Ω(2n

δ

)

GEN(2rows) nΘ(logn) O(n2) O(n2)

GEN(1row) O(n2)

Figure 1: Main size bounds presented in this paper. Here δ and c are specific constants.

2 Preliminaries

2.1 GEN problems

We write [n] for {1, 2, . . . , n}. When T ⊆ [n]× [n]× [n] and S ⊆ [n], we write 〈S〉T for the closure of S
under T , defined as the smallest S′ ⊇ S such that the following holds for every (i, j, k) ∈ [n]× [n]× [n]:
if i ∈ S′ and j ∈ S′ and (i, j, k) ∈ T then k ∈ S′. We will work with the following problems:

Problem GEN
Given: A function g : [n]× [n]→ [n] prescribing T g ⊆ [n]× [n]× [n].
Determine: Whether n ∈ 〈{1}〉T g .

Problem RELGEN
Given: An n3-length bit string prescribing a set T ⊆ [n]× [n]× [n].
Determine: Whether n ∈ 〈{1}〉T .

We will talk about n-GEN and n-RELGEN when only a particular value n is considered, this will
be necessary since we work in nonuniform models. (The name GEN comes from “Generation Problem”
and the name RELGEN comes from the relational version of the Generation Problem.) We will view
n-RELGEN as a Boolean function of n3 variables (n-RELGEN : {0, 1}n3 → {0, 1}), and n-GEN as a
function over n2 n-ary variables (n-GEN : [n]n

2 → {0, 1}). Note that n-RELGEN is a monotone Boolean
function while the Boolean version of n-GEN (over n2 log2 n variables obtained by encoding the values
of the n2 n-ary variables as log2 n-length bit strings) is not monotone. We call an instance T of GEN or
RELGEN positive if n ∈ 〈{1}〉T otherwise the instance T is negative. It is known that

• GEN (and thus RELGEN) is P-complete [Co74, JoLa77],

• GEN(2rows), namely the restriction of GEN in which i ∗ j 6= 1⇒ i ≤ 2, is NL-complete [BaMc91],

• GEN(1row) namely the restriction of GEN in which i ∗ j 6= 1⇒ i = 1, is L-complete [BaMc91].

Fix n > 0. We call [n] the set of n-GEN elements. Both an n-GEN instance and an n-RELGEN
instance define a set of triples (i, j, k) ∈ [n] × [n] × [n] which we denote “i ∗ j = k” even when k is not
uniquely defined from i and j. Recall that an n-GEN instance is defined by a function g : [n]× [n]→ [n],
thus the corresponding set of triples T g has the property that for each pair (i, j) ∈ [n] × [n] there is
exactly one value k ∈ [n] such that (i, j, k) ∈ T g. On the other hand, n-RELGEN instances may involve
arbitrary sets T ⊆ [n]× [n]× [n], including the possibility that some i ∗ j is not assigned any value, that
is (i, j, k) 6∈ T for any k. (The name RELGEN indicates that the underlying set of triples corresponds
to a relation, rather than a function.)
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2.2 Branching programs

Since n-GEN is defined over n-ary input variables, it is convenient for us to work with n-way branching
programs, first defined by Borodin and Cook [BoCo82]. We also need the nondeterministic extension of
the model, defined by Borodin, Razborov and Smolensky [BRS93].

Definition 2.1 [BRS93] A nondeterministic n-way branching program is a directed acyclic rooted multi-
graph with a distinguished sink node labeled ACCEPT. The edges out of non-sink nodes are either unla-
beled, or labeled “xi = j” for some variable xi and j ∈ [n]. Only inputs satisfying the statement on the
label may follow the labeled edges, all inputs are allowed to follow the unlabeled edges. An input x1, . . . , xt
is accepted by the program if there is at least one directed path leading from the root to the ACCEPT node,
such that the input x1, . . . , xt is allowed to follow it. (As there may be multiple edges between two nodes in
a branching program by a path we always understand a sequence of edges (v1, v2), (v2, v3), . . . , (vm−1, vm)
rather than just a sequence of vertices v1, v2, . . . , vm.) A nondeterministic n-way branching program
computes a function f : [n]t → {0, 1} if f(x1, . . . , xt) = 1 if and only if x1, . . . , xt is accepted by the
program. A deterministic n-way branching program must satisfy the additional restrictions that it has
no unlabeled edges, and there are exactly n edges out of each non-sink node with the n possible labels
x = j for j = 1, . . . , n for the same variable x.

The size of a branching program is the number of its nodes. If the program contains other sink
nodes in addition to the ACCEPT node, they are labeled REJECT. Note that deterministic programs
computing non-constant functions have at least one REJECT node, but REJECT nodes may be omitted
from nondeterministic programs. Note also that the nondeterministic model defined above is usually
called a switching-and-rectifier network if the underlying graph is not required to be acyclic.

A path is called consistent if for every variable xi and for all values j1 6= j2, the labels xi = j1 and
xi = j2 do not both appear on the path. Note that since no input will follow an inconsistent path, the
correctness of the program in itself gives no requirements for inconsistent paths.

Definition 2.1 contains as a special case (deterministic or nondeterministic) Boolean branching pro-
grams if n = 2 (using the values 0 and 1 instead of 1 and 2, of course). Several slightly different definitions
of nondeterministic branching programs have appeared in the literature, in particular they may involve
introducing guessing nodes. The size necessary to compute a given function under these different defini-
tions remains polynomially related (see e.g. [Ra91]), note however that this is not automatically inherited
in various restricted versions of the models. We refer the reader to [We00] for more details on branching
programs.

For a function f : [n]t → {0, 1} let fbin : {0, 1}t log2 n → {0, 1} be the Boolean function obtained from
f by encoding its variables as binary strings. If f can be computed by deterministic n-way branching
programs of size s(n) then fbin can be computed by Boolean branching programs of size n · s(n). In the
case of nondeterministic n-way branching programs of size s(n) for f , we get nondeterministic Boolean
branching programs of size at most log n · s(n)2 for fbin. No size increase occurs in the reverse direction.
Thus, proving super-polynomial size lower bounds for deterministic or nondeterministic n-way branching
programs computing n-GEN would separate P from L or NL, respectively.

3 Definitions

For i ∈ [n], we write χn(i) for the n-bit string 0i−110n−i (i.e. the characteristic vector of the singleton
set {i}), and we write χ(i) for χn(i) when n is understood. Given an n-GEN instance g, we write χn(g)
(or χ(g) when n is understood) for the length-n3 n-RELGEN instance χ(g(1, 1))χ(g(1, 2)) · · ·χ(g(n, n)).
Note that for any n-GEN instance g, GEN(g) = RELGEN(χn(g)).

An n-RELGEN instance w ∈ {0, 1}n3
is considered as divided up into n2 n-bit blocks denoted wi∗j

for (i, j) ∈ [n] × [n] and concatenated to form w. We will refer to the Boolean variables of n-RELGEN
as wi,j,k.
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Recall that the n-RELGEN instances w ∈ {0, 1}n correspond to relations. For an n-GEN instance g,
the relation χn(g) has the property that it has exactly one nonzero entry per block, e.g. in this special
case the relation is a function. On the other hand, RELGEN is defined on arbitrary relations, including
those represented by strings with empty blocks, or strings with two or more bits equal to 1 in some
blocks.

A block wi∗j is said to be heavy if two or more of its bits are 1. With this terminology, a relation
with no heavy blocks has at most one nonzero bit in each block, and possibly may have empty blocks.
Thus, in general a relation with no heavy blocks corresponds to either a function, or a partial function.

A triple of the form i ∗ j = 1 for some i and j is called a trivial triple (since the element 1 is always
trivially included in the closure 〈{1}〉T ). For an n-RELGEN instance w ∈ {0, 1}n3

, we write trivext(w)
(for trivial extension) to mean w∨(10n−1)n

2
, that is, the n-RELGEN instance obtained from w by adding

to the set of triples represented by w all the trivial triples, setting wi,j,1 = 1 for each i, j ∈ [n].

3.1 Tight computation of GEN

Given a (deterministic or nondeterministic) n-way branching program P computing n-GEN, we denote
by mon(P ) the nondeterministic Boolean branching program obtained from P as follows: replace each
edge label of the form i ∗ j = k of P by the label wi,j,k = 1.

Since mon(P ) uses only edge labels of the form x = 1, it computes a monotone Boolean function,
which we denote by fmon(P ). Note that for any n-GEN instance g, we have

GEN(g) = RELGEN(χ(g)) = fmon(P )(χ(g)).

On the other hand, the fact that P computes n-GEN in itself does not place any requirements on the value
of fmon(P ) over inputs w ∈ {0, 1}n3

that are not of the form χ(g) for any n-GEN instance g. In particular,
while we know that mon(P ) computes a monotone Boolean function that agrees with RELGEN on inputs
of the form χ(g), we have no reason to expect that mon(P ) would actually compute n-RELGEN, or even
agree with n-RELGEN on any other inputs except what is implied by the monotonicity of fmon(P ).

It turns out that the following additional requirement on n-way branching programs computing n-
GEN is sufficient to obtain exponential lower bounds. We require that in addition to inputs of the form
χ(g), fmon(P ) agrees with RELGEN also on the trivial extensions trivext(χ(g)). Since fmon(P ) is
monotone, this is equivalent to just requiring that if fmon(P )(χ(g)) = 0 then fmon(P )(trivext(χ(g))) =
0 as well. Thus, we just require that for any n-GEN instance g that has no accepting path in P , no path
of P can reach the ACCEPT node if the only edges used in addition to the edges that g could traverse
are labeled by trivial triples of the form i ∗ j = 1.

Definition 3.1 We say that a (deterministic or nondeterministic) n-way branching program P tightly
computes n-GEN if it computes n-GEN, and for any n-GEN instance g

if fmon(P )(χ(g)) = 0 then fmon(P )(trivext(χ(g))) = 0.

Note that the requirements for tight computation involve only relations of the form trivext(χ(g)),
that is, trivial extensions of functions.

Definition 3.2 We say that a Boolean function f : {0, 1}n3 → {0, 1} represents n-GEN if f(χ(g)) =
RELGEN(χ(g)) for any n-GEN instance g.

We say that a Boolean function f : {0, 1}n3 → {0, 1} tightly represents n-GEN if it represents n-GEN
and f(trivext(χ(g))) = RELGEN(trivext(χ(g))) for any n-GEN instance g.

The following is immediate from the above definitions:
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Proposition 3.3 An n-way branching program P computes n-GEN if and only if fmon(P ) represents
n-GEN, and an n-way branching program P tightly computes n-GEN if and only if fmon(P ) tightly
represents n-GEN.

Note that in models where inconsistent paths are excluded, for example in deterministic read-once
branching programs, tight computation is automatically guaranteed. Next we define two versions of the
model that guarantee tight computation of GEN without excluding inconsistent paths in general: {1}-
monotone nondeterministic n-way branching programs and syntactic incremental branching programs.

3.2 Monotone nondeterministic n-way branching programs

In the case of nondeterministic Boolean branching programs, Definition 2.1 can easily be modified to
define monotone nondeterministic Boolean branching programs, by simply forbidding labels of the form
x = 0 (using the values 0 and 1 instead of 1 and 2, of course), see e.g. [Ra91].

It is not clear what would be the analogous restriction for nondeterministic n-way branching programs
when n > 2. Here we consider a restriction on nondeterministic n-way branching programs that extends
the definition of monotone nondeterministic Boolean branching programs to n > 2. Similarly to the
Boolean case, we simply forbid some of the n possible values to be used in edge labels. Just like in
the case of Boolean branching programs, “monotonicity” makes more sense in the nondeterministic
framework, and not every n-ary function can be computed under this restriction.

Definition 3.4 Let ∅ 6= S ⊂ [n]. A nondeterministic n-way branching program is S-monotone if edge
labels x = j with j ∈ S do not appear in the program.

Definition 3.5 Let x, y ∈ [n]t and ∅ 6= S ⊂ [n]. We say that x <S y if for any i ∈ [t] either xi = yi or
xi ∈ S and yi 6∈ S. A function f : [n]t → {0, 1} is S-monotone, if for any x, y ∈ [n]t such that x <S y,
we have f(x) ≤ f(y).

Note that our definition of S-monotone functions includes both monotone and anti-monotone Boolean
functions as a special case. Clearly, S-monotone branching programs can compute only S-monotone
functions. Notice that GEN is a {1}-monotone function, and the variant of GEN where the problem is
to determine whether n is in the closure of some fixed starting set S is an S-monotone function. We can
match the current best upper bounds for various GEN subproblems by {1}-monotone nondeterministic n-
way branching programs without significant increase in size. That is, so far we have no results separating
the power of monotone and non-monotone nondeterministic n-way branching programs for computing
GEN.

3.3 Incremental branching programs

It seems natural for an n-way branching program solving n-GEN to try to find the elements in the
closure 〈{1}〉T g “incrementally”, that is by asking questions i ∗ j =? only for elements i, j already known
to be in 〈{1}〉T g . In fact all the current best branching program upper bounds (known to us) for various
subproblems of GEN can be achieved by branching programs that have this property. Note however, that
here we do not consider constructions designed only for specific GEN instances, e.g. various pebbling
strategies for specific families of graphs. We formally define the incrementality property below.

Let P be a (deterministic or nondeterministic) branching program computing n-GEN. For each vertex
u of P , we will define the set A(u) (“available set”) of elements that have already been generated along
every path reaching u.

Given a path π from the root to some vertex u in P , let Tπ be the set of triples that appear as edge
labels along π. Let paths(u) denote the set of all graph theoretic paths in P starting from the root and
reaching u. Let

A(u) =
⋂

π∈paths(u)

〈{1}〉Tπ .
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We obtain a potentially larger set, if we only require that its elements are generated along every path
reaching u that may be followed by some GEN instance. Recall that a path in P is consistent if for every
pair (i, j) and for all values k1 6= k2, the labels i ∗ j = k1 and i ∗ j = k2 do not both appear along the
path. If π is consistent then Tπ ⊆ T g for some n-GEN instance g. On the other hand, no GEN instance
can follow an inconsistent path. We denote by genpaths(u) the set of all consistent paths starting from
the root and reaching u. Let

AGEN(u) =
⋂

π∈genpaths(u)

〈{1}〉Tπ .

Note that genpaths(u) ⊆ paths(u), and thus A(u) ⊆ AGEN(u).

Definition 3.6 A (deterministic or nondeterministic) n-way branching program for n-GEN is (se-
mantic) incremental if for every edge with label i ∗ j = k directed out of a node u the condition
{i, j} ⊆ AGEN(u) holds. The program is syntactic incremental if for every edge with label i ∗ j = k
directed out of a node u the stronger condition {i, j} ⊆ A(u) holds.

Let P be a branching program that computes n-GEN and let π = (v0, v1), (v1, v2), . . . , (v`, v`+1) be
a path in P . In particular, we allow ` = 0 so the path may consist of a single edge. We say that i ∈ [n]
is useful for π if the last edge (v`, v`+1) of π is labeled by i ∗ j = k or by j ∗ i = k for some j, k ∈ [n],
and none of the edges (vt, vt+1) for 0 ≤ t < ` is labeled by k ∗ j = i for any j, k ∈ [n]. For a node u of P ,
let U(u) be the set of elements that are useful for some path π starting in u and leading to an arbitrary
node of P . We denote by maxU(P ) the maximum size of U(u) for any node u in P .

Proposition 3.7 The program P is syntactic incremental if and only if U(u) ⊆ A(u) for every node u
of P .

Proof. Assume U(u) ⊆ A(u) for every node u of P . Let (u, v) be an edge directed out of a node u
with label i ∗ j = k. Then, by the definition of U(u), we have {i, j} ⊆ U(u), and thus by the assumption
{i, j} ⊆ A(u).

Assume that the program P is syntactic incremental. Consider an arbitrary node u with nonempty
U(u) and some i ∈ U(u). By the definition of U(u), there is some path π starting at u such that i is
useful for π. Let v be the starting point of the last edge of π. Since P is syntactic incremental, we have
i ∈ A(v). Let π′ be an arbitrary graph theoretic path starting from the root and ending in u, and let π′′

be the concatenation of π′ with π. Thus π′′ ∈ paths(v) and i ∈ 〈{1}〉Tπ′′ must hold. But this is possible
only if i ∈ 〈{1}〉Tπ′ and thus we get i ∈ A(u).

4 Lower bounds derived from monotone circuit depth bounds

We will need the following well known statement. For completeness, we include a proof.

Proposition 4.1 Let f : {0, 1}t → {0, 1} be a monotone Boolean function computed by a monotone
nondeterministic Boolean branching program of size s(t). Then f can be computed by a monotone Boolean
circuit with fan-in 2 AND/OR gates in depth O((log2 s(t))2).

Proof. Let M be a monotone nondeterministic Boolean branching program computing f . For a given
input z ∈ {0, 1}t let Gz be the directed graph obtained from M by keeping those edges whose labels
are satisfied by z. By definition, f(z) = 1 if and only if Gz has a directed path from the root to the
ACCEPT node. This can be decided by monotone circuits in NC2 using the adjacency matrix of the
graph as input. The adjacency matrix of Gz can be determined from z as follows: for each pair of nodes
(u, v) of the branching program M , we set the matrix entry (u, v) to 1 if the edge (u, v) is unlabeled, to
0 if there is no edge from u to v in M , and to zi if the edge is labeled by zi = 1 for some variable zi.
Since M is monotone, no other edge labels are possible. This gives a monotone circuit over the variables
zi computing f with depth O((log2 s(t))2).
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4.1 Lower bounds in models without requiring incrementality

By the definitions of the previous section, every n-way branching program P computing GEN has an
associated monotone nondeterministic Boolean branching program mon(P ) computing some function
fmon(P ) that represents GEN. Thus, by Proposition 4.1, proving that every monotone function rep-
resenting GEN requires large monotone circuit depth would be sufficient to obtain lower bounds for
unrestricted (deterministic or nondeterministic) n-way branching programs computing GEN. We can
even define specific monotone Boolean functions representing GEN such that monotone circuit depth
lower bounds for them would imply lower bounds for every monotone function representing GEN1. Un-
fortunately, we do not know how to prove monotone circuit depth lower bounds for these functions.

However, the monotone circuit depth lower bounds of [RaMc99] for the RELGEN function are suffi-
cient to derive the following statement.

Theorem 4.2 For some γ > 0 and any t large enough, any function f : {0, 1}t → {0, 1} that tightly
represents GEN requires monotone circuits of depth tγ .

Proof. We start with an outline of the proof. Recall that RELGEN can be viewed as a monotone
function. We will use the lower bound of Raz and McKenzie [RaMc99] on the depth of monotone circuits
computing RELGEN. By the definition of tight representation, any function f that tightly represents
GEN must agree with RELGEN on inputs that are trivial extensions of functions. We will use this
property of f to construct a monotone projection, that maps any relation w ∈ {0, 1}n3

to a relation
ŵ ∈ {0, 1}m3

, where m = n2 + 2n, such that RELGEN(w) = f(ŵ). Thus, a small depth monotone
circuit for f would imply the existence of a small depth monotone circuit for RELGEN, contradicting
the lower bound of [RaMc99].

Let δ > 0 be such that n-RELGEN requires monotone circuit depth nδ (as proved in [RaMc99,
Corollary 3.6]). Consider an n-RELGEN instance w ∈ {0, 1}n3

. We claim that a monotone projection
can produce an m-RELGEN instance ŵ ∈ {0, 1}m3

, for m = n2 + 2n, such that RELGEN(w) = f(ŵ).
We conclude the proof of the theorem from the claim as follows. Suppose to the contrary that f

can be computed in monotone depth tγ for γ = δ/9. On input w ∈ {0, 1}n3
, we apply the monotone

projection above and we feed the result into the circuit for f (over inputs of length t = m3). This
construction gives a monotone circuit with n3 Boolean inputs of depth (m3)γ < (n2.1)3γ < nδ computing
n-RELGEN, contradicting the fact that n-RELGEN requires monotone depth nδ.

It remains to construct the monotone projection as promised. We take ŵ = trivext(w′), where
w′ ∈ {0, 1}m3

is a partial function, that is, w′ has no heavy blocks. As we show below, the desired
property will follow by choosing w′ to be a partial function such that RELGEN(w) = RELGEN(w′)
holds.

To construct w′ we introduce dummy elements n + 1, n + 2, . . . ,m = n2 + 2n that will simulate the
effect of a heavy block wi∗j without the need for heavy blocks in w′. Since w′ is a partial function, it
is convenient to describe it using function notation, that is describe the blocks w′i∗j by specifying the
results i ∗ j when they are defined.

The elements n+1, n+2, . . . , 2n will be generated from the RELGEN source 1 in all cases, as follows:

1 ∗ 1 = n+ 1, 1 ∗ (n+ 1) = n+ 2, . . . , 1 ∗ (2n− 1) = 2n.

Then, for 1 ≤ i, j ≤ n, writing tij = 2n+ (j − 1)n+ i for convenience, we coerce each former wi∗j block
into generating the single element tij (except for t11) for (1, 1) 6= (i, j) ∈ [n]× [n]:

i ∗ j = tij

and we let
(n+ 1) ∗ (n+ 1) = t11.

1For example, the n2-th slice function of n-RELGEN has this property. See e.g. [Be81, We87] for more on slice functions.
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Finally, we make each tij responsible, together with the elements n+ 1, n+ 2, . . . , n+ n that are always
available, for generating the elements implied by the former wi∗j as follows: for each 1 ≤ i, j, k ≤ n if
the k-th entry of the block wi∗j is 1, we set

tij ∗ (n+ k) = k.

All the other w′p∗q blocks, 1 ≤ p, q ≤ m, such that p ∗ q is not defined above are set to 0m. It should be
clear that a monotone projection {0, 1}n → {0, 1}m3

can produce w′. Relabeling the element n as the
target (instead of m) for m-RELGEN, we get RELGEN(w) = RELGEN(w′).

To see that RELGEN(w′) = f(trivext(w′)), define w′′ from w′ by adding selectively to each all-zero
block w′p∗q the trivial triple p ∗ q = 1. Clearly, RELGEN(w′′) = RELGEN(w′). Now by construction,
w′ contained no heavy block thus w′ is a partial function and w′′ is a function. Thus, w′′ = χm(g) for
some m-GEN instance g, and since f represents GEN we have f(w′′) = RELGEN(w′′). Since f tightly
represents GEN, we also have RELGEN(w′′) = f(trivext(w′′)). But trivext(w′′) = trivext(w′),
proving the claim.

Remark 4.3 In the proof of theorem 4.2, w′′ could not have been constructed monotonely from w′.
This is what keeps us from getting the statement for any function representing GEN, which would give
unrestricted branching program lower bounds for GEN.

By Propositions 3.3 and 4.1, Theorem 4.2 yields the following.

Theorem 4.4 For some ε > 0 and all n large enough, any (deterministic or nondeterministic) n-way
branching program that tightly computes n-GEN has size 2n

ε

.

Remark 4.5 Tight computation places no restrictions on the model itself, but instead requires correct-
ness of the computation in a slightly stronger sense: it places requirements regarding acceptance on
some graph-theoretic paths that no GEN instance would follow. Correctness in the usual sense places no
requirements on the computation along such paths. However, tight computation places no requirements
on paths with inconsistencies that do not involve trivial triples. Hence the significance of Theorem 4.4 is
that any purported subexponential size branching program P solving GEN would need to make critical
use of trivial triples, although such triples appear oblivious to any progress. More precisely, P would
need to “maximize its acceptance ability” by incorporating graph-theoretic paths, inconsistent solely
by virtue of their trivial triples, and carrying the trivial extension of some negative GEN instances to
ACCEPT. The twisted sort of progress afforded hence by the seemingly inconsequential implications
i ∗ j = 1 and our resulting inability to handle these constitute the one – and major – obstacle preventing
us from obtaining unrestricted lower bounds for GEN.

As noted at the end of Section 3.1, tight computation is automatically guaranteed in read-once
deterministic branching programs, thus we automatically get the following corollary.

Corollary 4.6 For some ε > 0 and all n large enough, any read-once deterministic n-way branching
program computing n-GEN has size 2n

ε

.

We also obtain the following.

Proposition 4.7 Any {1}-monotone nondeterministic n-way branching program computing n-GEN com-
putes n-GEN tightly.

Proof. We just need to prove that for any n-GEN instance g such that GEN(g) = 0, no path can reach
the ACCEPT node if the only edges used in addition to the edges that g could traverse are labeled by
trivial triples of the form i ∗ j = 1. But a {1}-monotone nondeterministic n-way branching program has
no edges labeled by trivial triples at all, so this cannot happen.

By Theorem 4.4 this yields the following.

Theorem 4.8 For some ε > 0 and all n large enough, any {1}-monotone nondeterministic n-way
branching program computing n-GEN has size 2n

ε

.
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4.2 Lower bounds for syntactic incremental branching programs

Proposition 4.9 Any (deterministic or nondeterministic) syntactic incremental n-way branching pro-
gram computing n-GEN computes n-GEN tightly.

The statement will follow from the following much stronger statement.

Proposition 4.10 Let P be a (deterministic or nondeterministic) syntactic incremental n-way branch-
ing program computing n-GEN. Then, for every w ∈ {0, 1}n3

such that RELGEN(w) = 0, fmon(P )(w) =
0 as well.

We use the following claim.

Claim 4.11 Any incremental branching program (syntactic or semantic), can be transformed preserving
both incrementality and correctness and without increasing the size of the program so that the following
holds: all edges having the ACCEPT node as their endpoint are labeled i ∗ j = n for some pair (i, j).

Proof. First suppose that there is an edge (u, v) with label i ∗ j = n but its endpoint v is not the
ACCEPT node. Since the program is incremental, we know that for any n-GEN instance g that can
traverse this edge, n ∈ 〈{1}〉T g must hold. Thus, we can redirect this edge such that its new endpoint
is the ACCEPT node. Thus, we can assume without loss of generality, that all edges labeled i ∗ j = n
have the ACCEPT node as their endpoint. Now suppose that there is an edge (u,ACCEPT ) with
label i ∗ j = k for some k 6= n. If no n-GEN instance can traverse this edge, we can simply delete it
from the program, or in the case of deterministic programs redirect it to a REJECT sink. Otherwise,
if some n-GEN instance g traverses this edge, then GEN(g) = 1 and thus n ∈ 〈{1}〉T g must hold, and
thus n ∈ AGEN(u) must hold as well. But that is only possible if n appears in some edge label along
a path from the root to u, which is a contradiction. To see that the above transformations preserve
incrementality, note that for any given vertex u, we may have only removed some of its incoming edges
but never added any new incoming edge (except for the ACCEPT or REJECT node). Thus the sets
A(u) and AGEN(u) could only have increased.

Proof.(of Proposition 4.10) Let w ∈ {0, 1}n3
such that RELGEN(w) = 0. First assume that w has

no heavy blocks. This is possible in two cases: either w = χ(g) for some n-GEN instance g or w can be
extended to χ(g) of some n-GEN instance g by adding trivial triples to the empty blocks of w. In the first
case, fmon(P )(w) = 0 must hold since fmon(P )(χ(g)) = RELGEN(χ(g)) holds for every g. In the second
case, RELGEN(w) = 0 implies RELGEN(χ(g)) = 0 since χ(g) is obtained from w by adding only trivial
triples and thus fmon(P )(χ(g)) = 0, since RELGEN(χ(g)) = fmon(P )(χ(g)) for every g. Since fmon(P )

is monotone, fmon(P )(χ(g)) = 0 implies that fmon(P )(w) = 0 as well. Note that the above argument
actually holds for any n-way program, we did not use incrementality yet. The harder case is when w has
heavy blocks. In this case, the paths of mon(P ) that w can follow may correspond to inconsistent paths
in P . By the claim, we can assume that all the edges reaching the ACCEPT node of P have labels of
the form i ∗ j = n. Thus, any graph theoretic path of P that reaches ACCEPT includes an edge with
label i ∗ j = n. In a syntactic incremental branching program, this means that n ∈ A(ACCEPT ), which
implies that no path followed by w can reach the accept node, thus fmon(P )(w) = 0 must hold.

By Theorem 4.4 this yields the following.

Corollary 4.12 Any (deterministic or nondeterministic) syntactic incremental n-way branching pro-
gram computing n-GEN has size 2n

ε

for some ε > 0.

5 Syntactic incremental branching programs and pebbling

In this section we study the relationship of syntactic incremental branching programs to previously
studied computational models of marking machines and jumping automata on graphs. Marking machines
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were defined by Cook [Co74] as a model for computing GEN. Jumping automata on graphs were defined
by Cook and Rackoff [CoRa80] as a computational model for solving graph s-t-connectivity; Poon [Po93]
defined an extension of this model called node-named jumping automata on graphs (NNJAG). We show
in this section that syntactic incremental branching programs can be efficiently simulated by marking
machines and NNJAG’s, and vice versa.

An instrumental tool in these efficient simulations is the relationship that exists between maxU(P )
and size(P ) of a branching program P . We establish that relationship in the Symmetrization Lemma.
Because of the efficient simulations, known lower bounds for marking machines and node-named jumping
automata on graphs provide us with lower bounds on the size of various types of syntactic incremental
branching programs.

5.1 Marking machines

Marking machines were defined by Cook in [Co74]. We adapt his definition to our terminology while
using a slightly different set of rules for moves of a marking machine than Cook uses in his original
definition. (Note that the results in [Co74] hold with respect to this set of rules as well.) The rules we
state are analogous to the pebbling rules of the games on graphs introduced by Paterson and Hewitt
[PaHe70]. We discuss the difference between these rules more in the Appendix. A marking machine M
operates on an instance T ⊆ [n]× [n]× [n] of n-GEN. Each configuration of M is one of the subsets of [n];
it identifies the set of marked elements of [n]. The initial configuration of M is the empty set. At each
step of a computation, M (nondeterministically) changes its configuration C to C ′ in one of the following
ways: M marks the element 1, i.e., C ′ = C∪{1}, or M removes a mark from an arbitrary element r ∈ C,
i.e., C ′ = C \ {r}, or it marks an element z 6∈ C provided that (x, y, z) ∈ T for some x, y ∈ C, i.e.,
C ′ = C ∪ {z}. A configuration C is accepting if n ∈ C. M accepts input T if and only if there is a
sequence of configurations C0, C1, . . . , Cm, where C0 is the initial configuration, Ci follows from Ci−1 by
a legal move and Cm is an accepting configuration. We call the sequence C0, C1, . . . , Cm an accepting
computation. We say that M accepts T using only ` markers if there is an accepting computation of M
on T in which all configurations are of size at most `.

We first establish the relationship between incremental branching programs and marking machines.
As the main measure of size of marking machines is the number of marks used it should not come as a
surprise that this measure relates to maxU(·) of branching programs.

Proposition 5.1 1. If P is a (deterministic or nondeterministic) syntactic incremental n-way branch-
ing program computing n-GEN then there is a marking machine M that accepts every positive
instance of n-GEN using at most maxU(P ) markers.

2. If M is a marking machine M that accepts every positive instance of n-GEN using at most `
markers then there is a nondeterministic syntactic incremental n-way branching program P of size

1 +
(∑`

i=1

(
n
i

))2

that computes n-GEN.

Proof. Both of the parts are easy to prove. For the first part. Let u1, u2, . . . , um be an accepting
path of P on an instance T of n-GEN. Then inserting steps that remove markers when appropriate into
the sequence ∅, U(u1), U(u2), . . . , U(um) we get an accepting computation of M on T that uses at most
maxU(P ) markers. By the definition of U(u), in any branching program (not necessarily incremental)
for any edge (u, v) with label i∗j = k U(v)\U(u) ⊆ {k} and also {i, j} ⊆ U(u). To see that the sequence
obtained this way is indeed a legal sequence of steps for marking machines, it is enough to observe that
by Proposition 3.7 in a syntactic incremental branching program U(u) ⊆ A(u) for any node u.

For the second part, we will construct a branching program P that simulates the computation of M .
P will consists of t = 1 +

∑`
i=1

(
n
i

)
layers of nodes. For every 1 ≤ i < t and every non-empty set S ⊆ [n]

of size at most ` the i-th level will contain a node labeled (S, i). The t-th level will contain only the
node ACCEPT. Let (S, i) be at level 1 ≤ i < t − 1. For each p, q ∈ S ∪ {1}, k ∈ [n] and S′ ⊆ S ∪ {k},
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|S′| ≤ `, there is an edge from (S, i) leading to (S′, i+ 1) that is labeled by p ? q = k. Furthermore, from
each node (S, t) there are edges leading to ACCEPT that are labeled by p ? q = n, for all p, q ∈ S ∪ {1}.
The initial node of P is ({1}, 1). It is straightforward to verify that if M accepts all positive instances
of GEN using at most ` markers then P computes n-GEN.

Proposition 5.1 means that lower bounds on the number of markers needed by a marking machine to
solve arbitrary instances of n-GEN imply lower bounds on maxU(P ) for syntactic incremental branching
programs computing n-GEN. Such lower bounds can be further translated into lower bounds on the size
of these branching programs as the following lemma indicates.

Lemma 5.2 (Symmetrization lemma) Let k, n ≥ 2 be integers. Let P be a nondeterministic syntac-
tic incremental kn-way branching program that computes kn-GEN. Then there is a nondeterministic syn-
tactic incremental n-way branching program P ′ that computes n-GEN and such that size(P ′) ≤ size(P )
and maxU(P ′) ≤ 2 + logk size(P ).

Proof.
Let P be a syntactic incremental branching program that solves kn-GEN. For each set S ⊆ {2, . . . , kn−

1} of size n− 2 pick a one-one mapping hS : {1, . . . , n} → S ∪ {1, kn} with hS(1) = 1 and hS(n) = kn,
and define a branching program PS as follows: Take P and remove from it all edges with labels that refer
to an element in {2, . . . , nk − 1} \ S. Then simultaneously for each i, j, q ∈ {1, . . . , n} replace each edge
label hS(i) ? hS(j) = hS(q) by i ? j = q. Clearly this gives a syntactic incremental branching program
that solves n-GEN. Finally remove all nodes that cannot be reached on any n-GEN instance to obtain
PS . It is easy to verify that for any node u in PS , the size of U(u) in PS is at most the size of U(u) in
P since removing edges cannot increase the number of useful elements. Also, a node u from P can be in
PS only if U(u) in P is a subset of S ∪{1, kn} as otherwise u got removed as an unreachable node, since
by Proposition 3.7 U(u) ⊆ A(u) in a syntactic incremental branching program.

For a node u of P and S taken uniformly at random, one can see that PrS [U(u) ⊆ S ∪ {1, kn})] ≤∏|U(u)|−2
i=1 (n − 1 − i)/(kn − 1 − i) ≤ k−|U(u)|+2, where for the first inequality we assume that U(u) can

contain both elements 1 and kn. Let ` = 2 + logk size(P ). PrS [ there is u in P such that |U(u)| > `
and U(u) ⊆ S ∪ {1, kn}] ≤ size(P ) · k−(`+1)+2 ≤ 1/k < 1. Hence, for some S, all nodes u in PS have
|U(u)| ≤ `. That is our program P ′.

A similar symmetrization lemma holds for deterministic syntactic incremental branching programs.
In [Co74] Cook proves that there are instances of n-GEN that cannot be accepted by marking machines

with o(
√
n) markers. This was later improved by Paul et al. in [PTC77]:

Proposition 5.3 ([PTC77]) There is a constant c > 0 such that for all n ≥ 2 there is an instance T
of n-GEN that cannot be accepted by any marking machine using less than cn/ log n markers.

Note that [PTC77] gives a bound on the number of pebbles in a pebbling game on graphs, but this
easily translates into marking machine lower bounds for GEN.

The previous three claims give us the following corollary.

Theorem 5.4 There is a constant c > 0 such that for all n large enough if a nondeterministic syntactic
incremental n-way branching program P solves n-GEN then it has size at least 2cn/ logn.

Proof. Assume that for every constant c > 0 and infinitely many n, there is a nondeterministic incre-
mental n-way branching program of size less than 2cn/ logn that computes n-GEN. Hence, for infinitely
manym = bn/2c, there is a branching program P of size less than 2c(2m+1)/ log 2m that solves 2m-GEN. By
the symmetrization lemma there is a nondeterministic syntactic incrementalm-way branching program P ′

of size less than 2c(2m+1)/ log 2m that computes m-GEN and such that maxU(P ′) ≤ 2+c(2m+1)/ log 2m.
For m large enough, 2 + c(2m + 1)/ log 2m ≤ 3 + 2cm/ logm ≤ 3cm/ logm. Hence, by the first part
of Proposition 5.1, for all c > 0 and infinitely many m there is a marking machine M that accepts all
positive instances of m-GEN using at most 3cm/ logm markers. However, this is a contradiction to
Proposition 5.3.
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5.2 Jumping automata on graphs

Graph s-t-connectivity is the major complete problem for the class of problems solvable in nondetermin-
istic logarithmic space. We define it as follows.

Problem STCONN
Given: A directed graph G on vertices {1, . . . , n} with each vertex having out-degree two,
where self-loops are allowed.
Determine: Whether there is a path from vertex 1 to vertex n.

By n-STCONN we denote the sub-problem of STCONN restricted to graphs on n vertices. Given
an instance G of n-STCONN we define an instance genG of n+ 1-GEN(2rows) in the following way: we
let genG(1, 1) = 2, genG(2, 1) = 1 and furthermore if (i, j1) and (i, j2) are the two edges outgoing from
vertex i in G, then we let genG(1, i+ 1) = j1 + 1 and genG(2, i+ 1) = j2 + 1. Clearly, 1 is connected to
n in G if and only if n+ 1 ∈ 〈{1}〉T genG .

Extending the definition of Cook and Rackoff [CoRa80], Poon [Po93] defined node-named jumping
automata on graphs (NNJAG) as a computational model to solve STCONN. A (deterministic) NNJAG
J is a finite state automaton with p distinguished pebbles, q states and a transition function δ. (p, q and
δ can non-uniformly depend on n.) The input to J is an instance G of STCONN. A configuration of J
is the pair (s,Π) where s is the current state and Π is a mapping Π : [p] → [n] specifying the current
position of each pebble on the input graph G. The initial configuration of J is a specific state s0 with all
pebbles placed on the vertex 1. When J is in the configuration (s,Π) the transition function determines
the next move of J based on the state s and the mapping Π. A move can be either a walk or a jump.
A walk (r, i, s′) consists of moving the pebble r along the i-th edge that comes out of the vertex Π(r)
in G and then assuming state s′. A jump (r, r′, s′) consists of moving pebble r to the vertex Π(r′) and
assuming state s′. J accepts graph G if it ever enters an accepting state during its computation on G.
NNJAG solves n-STCONN if on every instance G of n-STCONN, J accepts G if and only if there is a
path from vertex 1 to vertex n in G. The size of a NNJAG J is the number of its possible configurations,
i.e., qnp.

We first establish the simulation lemma between NNJAG’s and incremental branching programs.

Proposition 5.5 1. For any deterministic syntactic incremental n2-way branching program P that
computes n2-GEN(2rows) there is a NNJAG of size at most 5n4 · size(P )2 that solves n-STCONN.

2. If J is an NNJAG solving n-STCONN then there is a deterministic syntactic incremental n-way
branching program P of size at most O(n2 + n3(size(J))2) that computes n-GEN(2rows).

Proof. For the proof of the first part, consider a deterministic syntactic incremental n2-way branching
program P that computes n2-GEN(2rows). Using the technique from the proof of the Symmetrization
Lemma we can build a deterministic syntactic incremental n+1-way branching program P ′ that computes
n + 1-GEN(2rows) whose size is at most size(P ) and for which maxU(P ′) ≤ 2 + logn size(P ). We will
construct a NNJAG J solving n-STCONN with p = 2 + maxU(P ′) pebbles and with the set of states
consisting of nodes of P ′ (main states) with additional four intermediate states for each main state.
NNJAG J on input G will simulate the computation of P ′ on genG. Whenever J will be in a main state
u, the pebbles will be located at all vertices J(u) = {i − 1; i ∈ U(u) and i ≥ 2} ∪ {1} so that the first
pebble will be located at vertex 1. Notice |J(u)| < p. The initial state of J is the starting node of P ′

with all the pebbles placed at vertex 1. The accepting state of J is the ACCEPT node of P ′. A step of
computation of P ′ will be simulated in five steps of computation of machine J . Let u be a main state of
J and let i ? j =? be the query asked by P ′ at node u. If j > 1 then J proceeds as follows.

1. In state u, let Π be the current mapping of the pebbles to vertices of G. Pick a pebble r such that
there is another pebble r′ with Π(r′) = Π(r). Jump pebble r to vertex 1, i.e., to the location of
pebble 1, and assume state u1.
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2. In state u1, jump pebble 1 to the location of pebble Π−1(j − 1) and assume state u2.

3. In state u2, walk pebble 1 along the i-th edge leaving vertex j − 1 and go to state u3.

4. In state u3, let Π′ be the current mapping of the pebbles. Let v be the node of P that is reached
from u via the edge labeled by i ∗ j = (Π′)−1(1) + 1. While there is a pebble r 6= 1 such that
Π′(r) 6∈ J(v) jump r to vertex 1 and stay in state u3. If there is no such a pebble do the following.
If Π′(1) ∈ J(v) then jump a pebble r, for which there is another pebble r′ such that Π′(r) = Π′(r′),
to the location of pebble 1 and assume state u4. If Π′(1) 6∈ J(v) assume state u4 and do not move
any pebble.

5. In state u4, jump pebble 1 to vertex 1 and assume state v.

If j = 1 and i = 1, let v be the node of P ′ that is reached from u by the edge labeled 1 ? 1 = 2. Then
J in state u is going to move no pebbles and will just assume state v. Similarly, if j = 1 and i = 2 then
J is going to move from state u to a state v that is reached from u via the edge labeled 2 ? 1 = 1 in P ′.

Clearly, all the moves described above are legal NNJAG moves that depend only on the current state
of J and mapping of the pebbles. It is straightforward to verify that J on G simulates a computation of P ′

on genG, hence J accepts G if and only if P ′ accepts genG. As the size of J is 5 ·size(P ′) ·n2+maxU(P ′) ≤
5n4 · size(P )2, J is the required NNJAG.

A statement similar to the second part of our claim is implicitly proven in [EPA99]. Edmonds et
al. simulate NNJAG’s by pebble redundant NNJAG’s and then by branching programs. The resulting
branching programs can be seen to be syntactic incremental under an appropriate notion of incremen-
tality. In our context the proof is much simpler, since the argument in [EPA99] was aimed at proving a
different statement. We present a direct proof below.

Let g be an instance of n-GEN(2rows). The syntactic incremental branching program P will have two
parts. The first part will try to decide whether n ∈ 〈{1}〉T g , under the assumption that 2 6∈ 〈{1}〉T g .
The second part of P will decide whether n ∈ 〈{1}〉T g provided that 2 ∈ 〈{1}〉T g .

If 2 6∈ 〈{1}〉T g , then g can be treated as an instance of n-GEN(1row) by considering only its first row.
The first part of the program P that we construct, on an instance g of n-GEN(2rows) checks if either 2
or n is generated by just the first row of g. This can be done in size O(n2) as described in Theorem 6.6.
Note also that 2 ∈ 〈{1}〉T g if and only if it is generated by just the first row. If 2 6∈ 〈{1}〉T g , then P
rejects or accepts based on whether or not n is generated by just the first row. If 2 ∈ 〈{1}〉T g , P will
enter the starting node v0 of the second part of P , i.e., all edges of the first part of P establishing that
2 ∈ 〈{1}〉T g will lead to the node v0.

The second part of P will simulate the computation of J on a graph G, an instance of n-STCONN with
the property that n ∈ 〈{1}〉T g if and only if n is reachable from 1 in G. The graph G is determined by the
instance g. The simulation is straightforward if J has the property that the graph of its configurations
has no loops, and it works correctly also on every multi-graph of out-degree two, i.e., a graph with
possible multiple edges between vertices (the two edges leaving a vertex may lead to the same vertex).
We will argue below that we can modify J so that this is the case. Let us assume for now that J has
the required property, i.e., it has no loops and works correctly on multi-graphs. We let G have vertices
{1, . . . , n} and if i ? 1 = j1 and i ? 2 = j2 in g then we let the first edge from i in G lead to j1 and the
second edge lead to j2. Clearly, G is of out-degree two and n ∈ 〈{1}〉T g if and only if n is reachable from
1 in G.

The second part of the program P starting at v0 is constructed as follows. The name of each node of
P specifies some state of J together with some mapping of currently pebbled vertices of the input graph.
This specifies a configuration of the NNJAG J . Since J is deterministic, this also specifies a move, which
can either be a jump or a walk. In case it is a walk, it involves a specific vertex i of G and one of the
edges leaving the given vertex. Since we consider only graphs of outdegree two, in our case this will give
a pair of the form either i ∗ 1 or i ∗ 2. We will think of this pair as the question associated with the given
node of the program P , thus the n edges leaving the given node will be labeled i ∗ 1 = k for k = 1, . . . , n
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(or i ∗ 2 = k for k = 1, . . . , n, respectively). For each edge there is exactly one node (that is, a pebble
location/state pair) which corresponds to the configuration of J following the corresponding move, and
we use that node as the endpoint of the given edge. If the move of J corresponding to a given node of
P is a jump, we put in n edges labeled 1 ∗ 1 = k for k = 1, . . . , n all leading to the same node of P
corresponding to the configuration of J after the jump. It is easy to see that the program constructed
this way is syntactic incremental, since the moves of J only involve vertices of its input graph that are
already pebbled. It remains to modify P so that all edges leading to an accepting configuration of J will
lead to the node ACCEPT, and edges to rejecting configurations will lead to REJECT. The program
constructed this way will always correspond to simulating J on a (multi-)graph G of out-degree two, and
since n ∈ 〈{1}〉T g if and only if there is a path from 1 to n in G, the program will be correct.

It remains to argue that we can modify J so that it will compute correctly on multi-graphs and its con-
figuration graph will have no loops. This modification increases the size of J to at most O(n3(size(J))2).

It is standard to eliminate loops of the computation by at most squaring the number of configurations:
this can be achieved by adding a time step counter to the name of each configuration. To deal with
multiple edges, we note that for any graph G of out-degree two where at least one of the edges from the
vertex 1 leads to another vertex, the following graph G′ has no multiple edges, and n is reachable from
1 in G′ if and only if n is reachable from 1 in G. Let the first edge from i lead to j1 and the second edge
from i lead to j2 in G. If j1 6= j2, we put in the same two edges for i in G′. If j1 = j2 6= 1 then we let
the first edge from i in G′ lead to j1 and the second edge lead to 1. Otherwise j1 = j2 = 1 and we let
the first edge of G′ to lead to vertex 1 and the second one will form a self loop at i. Clearly, G′ is of
out-degree two and has the desired properties.

We modify J so that it would compute on a graph G as if it were computing on the corresponding
graph G′. We equip J with three additional auxiliary pebbles. We will leave one of them at vertex 1
during the whole computation. Using one of the auxiliary pebbles we can first verify that at least one
edge from the vertex 1 leads to another vertex in G. If not J immediately rejects (assuming 1 6= n).
Otherwise J computes as before with the following modifications.

For each configuration where the next move of J on G is a walk involving the second edge out of
some vertex i we invoke the following subprogram. We jump two auxiliary pebbles to the vertex i and
move one of these pebbles along the first edge from i and the other one along the second edge from i. If
the two auxiliary pebbles do not coincide we move the pebble r that J would move originally along the
second edge. If the two auxiliary pebbles coincide but they are not at vertex 1 we jump the pebble r
to the vertex 1, i.e., the location of the third auxiliary pebble. Otherwise all the three auxiliary pebbles
coincide and we keep pebble r at vertex i. In all three cases J assumes the state that it would originally
assume. It is clear from the construction that the modified J will compute on G as if J would compute on
G′. Also, our modification multiplies the number of states of J by a factor of at most five and increases
the number of pebbles by three, hence it increases the size of J by only the allowed amount.

There is a long sequence of lower bounds for various types of jumping automata on graphs. The
strongest one was obtained by Edmonds, Poon and Achlioptas.

Proposition 5.6 [EPA99] If NNJAG J solves n-STCONN then J has size at least nΩ(logn).

As a corollary we obtain a lower bound for syntactic incremental branching programs.

Theorem 5.7 There is a constant c > 0 such that for all n large enough if a deterministic syntactic
incremental n-way branching program P solves n-GEN(2rows) then it has size at least nc logn.

We should note here that Edmonds et al. in fact prove a lower bound for probabilistic NNJAG’s. (A
probabilistic NNJAG is defined as a probability distribution over deterministic NNJAG’s where its size
is the size of the largest NNJAG with a non-zero probability under that distribution. See [EPA99] for
more details.) Their lower bound thus implies also a lower bound for appropriately defined probabilistic
syntactic incremental branching programs.
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6 Upper bounds

In this section we state and prove several upper bounds on the size of incremental branching programs.

Theorem 6.1 n-GEN can be computed by nondeterministic syntactic incremental branching programs
and by {1}-monotone nondeterministic n-way branching programs of size 2n−2 + 1.

Proof. For each S ⊆ {2, . . . , n− 1} we create a node labeled by S. The program will consist of these
2n−2 nodes and a sink node labeled ACCEPT. The node labeled by S will have an outgoing edge labeled
i∗ j = k for each triple such that {i, j} ⊆ S ∪{1} and k 6∈ S ∪{1}. (For S 6= ∅ the edges labeled 1∗1 = k
can be omitted.) Each edge with label i ∗ j = n goes to ACCEPT. An edge labeled i ∗ j = k out of the
node labeled by S goes to the node labeled S ∪ {k}.

We did not use labels of the form i ∗ j = 1, thus the program is {1}-monotone. Let us denote by uS
the node with label S. We have A(uS) = S ∪ {1} for each S, thus the program is syntactic incremental.

Theorem 6.2 n-GEN can be computed by deterministic syntactic incremental branching programs of
size O(n22n−2).

Proof. The previous construction can be modified to obtain a deterministic program as follows.
Replace the node labeled S by a group of nodes labeled < S, i, j >, for pairs {i, j} ⊆ S∪{1} (omitting the
pair (1, 1) for S 6= ∅). Order the nodes within each group in an arbitrary way. The group corresponding
to the empty set consists of a single node labeled < ∅, 1, 1 >, and this node will be the root. Each edge
with label i ∗ j = n goes to ACCEPT. Out of the node with label < S, i, j > the edges labeled i ∗ j = k
where k 6∈ S ∪ {1} go to the first node of the group corresponding to S ∪ {k}. For all but the last node
of each group, send the edges with label i ∗ j = k to the next node of the same group if k ∈ S ∪ {1}. For
the last node of each group, the edges labeled i ∗ j = k with k ∈ S ∪ {1} go to REJECT. For each node
u whose label starts with S we have A(u) = S ∪ {1}, thus the program is syntactic incremental.

Theorem 6.3 n-GEN(2rows) can be computed by nondeterministic syntactic incremental branching pro-
grams and by {1}-monotone nondeterministic n-way branching programs of size O(n2).

Together with Theorem 5.7, this gives a super-polynomial separation between the power of determin-
istic and nondeterministic syntactic incremental branching programs.

Proof. The program has n layers of nodes. The first and last layers consist of a single node: the root
on the first layer, and the ACCEPT node on the last layer. The second layer has n − 2 nodes called t2
and w(2,3), . . . , w(2,n−1). Layers l = 3, . . . , n− 1 have 2n− 5 nodes each, called tl, w(l,3), . . . , w(l,n−1) and
u(l,3), . . . , u(l,n−1).

There are n − 1 edges leaving the root labeled 1 ∗ 1 = k going to nodes w(2,k) for k = 3, . . . , n − 1,
the edge 1 ∗ 1 = 2 goes to t2, and 1 ∗ 1 = n goes to ACCEPT. The nodes w(l,j) for l ≤ n− 2 have n− 1
edges labeled 1 ∗ j = k going to nodes w(l+1,k) for k = 3, . . . , n− 1, the edge 1 ∗ j = 2 goes to t(l+1), and
1 ∗ j = n goes to ACCEPT.

There are 3(n− 1) edges leaving each node tl for l ≤ n− 2, labeled 1 ∗ 2 = k, 2 ∗ 1 = k and 2 ∗ 2 = k
going to t(l+1) if k = 2 and going to the node u(l+1,k) for k = 3, . . . , n− 1, and to the ACCEPT node if
k = n.

For l = 3, . . . , n− 2, and j = 3, . . . , n− 1, there will be 2(n− 1) edges leaving the node u(l,j), labeled
1 ∗ j = k and 2 ∗ j = k for k = 2, . . . , n. The edges with labels 1 ∗ j = k and 2 ∗ j = k go to the node
u(l+1,k) for k = 3, . . . , n − 1, and to t(l+1) if k = 2. All edges labeled i ∗ j = n go to ACCEPT. For the
last layer, each node u(n−1,j) and w(n−1,j) has only two outgoing edges labeled 1 ∗ j = n and 2 ∗ j = n
going to ACCEPT. The node t(n−1) has 3 outgoing edges labeled 1 ∗ 2 = n, 2 ∗ 1 = n and 2 ∗ 2 = n
going to ACCEPT. The program is clearly syntactic incremental. Since we never use labels of the form
i ∗ j = 1, the program is also {1}-monotone.
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It remains to prove that the program is correct. To see this, we represent each n-GEN(2rows) instance
g by a graph Gg with n nodes. There will be an edge going from node j to node k with label 1 ∗ j = k
(2 ∗ j = k) if (1, j, k) ∈ T g ((2, j, k) ∈ T g, respectively). There is a path from the node 1 to the node n
in Gg if and only if n ∈ 〈{1}〉T . Moreover, if there is at least one path from 1 to n, then a path from 1
to n of length at most n visiting each node at most once must also exist. Thus, for any positive instance
g, such a path can be found in Gg. But notice that for any path π of Gg from 1 to n visiting each node
i at most once the program we constructed must contain a path from the root to the ACCEPT node
with the exact same sequence of edge labels as π, and g can follow this path in the branching program.
Thus our program accepts every positive instance g. On the other hand, since the program is syntactic
incremental and all edges adjacent to the ACCEPT node have labels of the form i ∗ j = n, the program
must reject every negative instance g.

The following theorem shows, that a stronger (e.g. exponential) separation between determinism and
nondeterminism is not possible.

Theorem 6.4 If P is a nondeterministic syntactic incremental branching program that computes n-GEN
then there is a deterministic syntactic incremental branching program P ′ of size at most size(P )O(log size(P ))

that computes n-GEN.

Proof. Let P be a nondeterministic syntactic incremental branching program that computes n-GEN.
By standard techniques we can convert it into an equivalent nondeterministic syntactic incremental
branching program of size m ∈ O(n · (size(P ))2) computing n-GEN that has at most two edges outgoing
from every node. Hence, we assume P has this form. We will view P as a graph. Let g be an instance of
n-GEN. Deciding whether P accepts g is the same as deciding whether there is a path from the initial
node to the accepting node of P in which all the edges that are labeled inconsistently with g are removed.

Cook and Rackoff’s results [CoRa80] imply that there is a deterministic NNJAG J that has O(m4)
internal states and uses O(logm) pebbles and that on any directed graph G of size m with all vertices
of out-degree at most two computes so that every vertex in G that is reachable by a path from vertex
1 contains a pebble (is pebbled) at some point during the computation. (Here the definition of behavior
of NNJAG’s is extended so that if an NNJAG requests a walk of a pebble along a non-existent edge
then the pebble stays at its current location and only the internal state of the NNJAG changes.) From
properties of NNJAG’s it follows that if a vertex u of G is pebbled during a computation of an NNJAG
on G then there is a path in G from vertex 1 to u so that some pebble is walked along every edge of this
path at some point of the computation prior to pebbling u.

Our deterministic syntactic incremental branching program P ′ on an input instance g of n-GEN will
simulate J on P in which all edges that are inconsistent with the input instance g are removed. In the
names of its nodes P ′ will record the internal state of J , positions of its pebbles on P and the number
of steps it computed so far. Let J have q internal states and use p pebbles. The set of nodes of P ′ will
be [qmp + 1] × [q] × [m]p ∪ {ACCEPT,REJECT}. Let v0 be the initial node of P and s0 be the initial
state of J . Node (1, s0, v0, v0, . . . , v0) is the initial node of P ′. ACCEPT is the accepting node of P ′.

Let edges of P ′ be defined as follows. Let 1 ≤ t ≤ qmp. Let J in state s with pebbles located at
u1, . . . , up walk a pebble r along d-th outgoing edge from node ur and assume state s′. Assume that
the d-th outgoing edge from node ur in P is labeled by i ? j = k, and that it leads to a node v. If
v 6=ACCEPT then there is an edge labeled i ? j = k in P ′ leading from node (t, s, u1, . . . , up) to node
(t + 1, s′, u1, . . . , ur−1, v, ur+1, . . . , up) and for all k′ ∈ [n] \ {k}, there are edges labeled i ? j = k′ from
(t, s, u1, . . . , up) to (t + 1, s′, u1, . . . , up). If v =ACCEPT then let there be an edge labeled i ? j = k
leading from (t, s, u1, . . . , up) to ACCEPT and let for all k′ ∈ [n] \ {k}, there be edges labeled i ? j = k′

from (t, s, u1, . . . , up) to (t + 1, s′, u1, . . . , up). Assume now that the d-th outgoing edge from node ur
in P is unlabeled and that it leads to a node v. Then for all k ∈ [n], there will be an edge labeled
by 1 ? 1 = k going from (t, s, u1, . . . , up) to node U where U = (t + 1, s′, u1, . . . , ur−1, v, ur+1, . . . , up) if
v 6= ACCEPT , and U = ACCEPT otherwise. If there is no d-th outgoing edge from ur then for all
k ∈ [n], there will be an edge labeled by 1?1 = k going from (t, s, u1, . . . , up) to node (t+1, s′, u1, . . . , up).
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If J in state s with pebbles located at nodes u1, . . . , up jumps a pebble r to pebble r′ and assumes
state s′ then for all k ∈ [n], let there be an edge labeled 1 ? 1 = k leading from (t, s, u1, . . . , up) to
(t+ 1, s′, u1, . . . , ur−1, ur′ , ur+1, . . . , up). All other edges in P ′ lead to REJECT.

Clearly, the size of P ′ is at most q2m2p + 2 ≤ size(P )O(log size(P )) as n ≤ size(P ). The fact that P ′

computes n-GEN follows from the fact that P computes n-GEN and J traverses all nodes of P reachable
on an input instance of n-GEN.

It remains to argue that P ′ is syntactic incremental. To see that let us consider a query “i?j =?” asked
at some node (t, s, u1, . . . , up). Let π be an arbitrary path from the initial node of P ′ to (t, s, u1, . . . , up).
Because of the properties of J and the construction of P ′ there must be paths π1, . . . , πp in P that lead
from the initial vertex of P to nodes u1, . . . , up so that P ′ asks all the queries that appear as labels along
paths π1, . . . , πp. Since the query “i ? j =?” is indeed a query of P at one of the nodes u1, . . . , up and
P is syntactic incremental, both i and j must be in 〈{1}〉Tπ1 ∪ · · · ∪ 〈{1}〉Tπp . Hence, it also must be in
〈{1}〉Tπ . Thus, P ′ is syntactic incremental.

Note that the above construction is similar to the simulation of NNJAG’s by branching programs
in [EPA99], but it involves some additional ideas to obtain the relationship between deterministic and
nondeterministic syntactic incremental branching programs.

A similar relation between determinism and nondeterminism holds also for semantic incremental
branching programs. We obtain as a corollary:

Theorem 6.5 n-GEN(2rows) can be computed by deterministic syntactic incremental branching programs
of size nO(logn).

This follows from the previous theorem and Theorem 6.3.

Theorem 6.6 n-GEN(1row) can be computed by deterministic syntactic incremental branching programs
of size (n− 2)2 + 3.

Proof. The construction is similar to the construction in the proof of Theorem 6.3, in fact in some
sense it is a subprogram of it. Now we have (n− 2) layers of (n− 2) nodes each for l, k = 2, . . . , n− 1, in
addition to the root u(1,1), an ACCEPT and a REJECT node. Out of each non-sink node u(l,j), we have
exactly n outgoing edges, labeled 1∗ j = k, for k = 1, . . . , n. If l ≤ n−2, the edges for k = 2, . . . , n−1 go
to u(l+1,k) (at the next layer). All edges with label 1∗ j = k for k 6= n from the last layer go to REJECT,
and all edges with label 1 ∗ j = 1 (from any layer) go to REJECT. All edges with label 1 ∗ j = n (from
any layer) go to ACCEPT.
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7 Appendix

7.1 Cook vs Paterson and Hewitt rules

In this section we discuss the difference between marking machines that follow the marking rules of Cook
[Co74] and those that follow the pebbling rules of Paterson and Hewitt [PaHe70]. There are three types
of moves of a marking machine: 1. mark the source element 1; 2. remove a mark from some marked
element; 3. the inductive move. The definition of Cook differs from the definition of Paterson and Hewitt
in the inductive move. We use the inductive move of Paterson and Hewitt which on a relation T may
mark a new element z of the universe if there exist two marked elements x and y such that (x, y, z) ∈ T .
The inductive move of Cook also marks the new element z if there are two marked elements x and y
such that (x, y, z) ∈ T but at the same time it removes a mark from either x or y. Hence the inductive
move of Cook corresponds to moving the mark from either x or y to z.

We claim that the rules of Paterson and Hewitt [PaHe70] result in more efficient marking machines
than the ones defined by Cook [Co74]. We call the marking machines that follow the rules of Paterson
and Hewitt fat, and we call the machines that follow the rules of Cook slim. For every n ≥ 2 we present
here a relation Tn on [2n] such that the target element 2n can be marked by a fat marking machine using
only 4 marks whereas slim marking machines need at least n marks.

For n ≥ 2, let Tn be the ternary relation on [2n] which contains the following elements: (1, 1, 2), (1, 1, 3)
and (2n− 2, 2n− 1, 2n) are in Tn and for every 1 ≤ i < n− 1, (2i, 2i+ 1, 2i+ 2) and (2i, 2i+ 1, 2i+ 3)
are in Tn. (This relation corresponds to a layered graph with n+ 1 levels each of size at most two, where
edges go from one level to the next.) If is straightforward to verify that a fat marking machine needs
only four marks to mark the target element 2n. However, we claim that a slim marking machine requires
at least n marks to mark 2n.

Claim 7.1 For n ≥ 2, on Tn a slim marking machine needs at least n marks to mark the element 2n.

Proof. Let n ≥ 2 and let C0, C2, . . . , Ct be an accepting computation of a slim marking machine
on Tn. Let C be an arbitrary configuration of this computation. Let 1 ≤ m ≤ n. We say that layers
m, . . . , n are full in C if at least n + 1 − m elements among {2m, 2m + 1, . . . , 2n} are marked in C.
Clearly, layers n, . . . , n are full (is full) in Ct. Let 1 ≤ m be the smallest integer such that layers m, . . . , n
are full in some configuration of the accepting computation. We claim that m = 1.

For a contradiction assume that m > 1. The only way how the number of marked elements among
{2m, 2m + 1, . . . , 2n} can increase is by moving there a mark from elements {2m − 2, 2m − 1}. Let Cl
be the first configuration when layers m, . . . , n are full. Then in Cl−1 both elements 2m− 2 and 2m− 1
are marked. But that means that layers m− 1,m, . . . , n are full in a contradiction to the minimality of
m. The statement now follows.
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