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DISCRETE ACTIONS IN INFORMATION-CONSTRAINED
TRACKING PROBLEMS

FILIP MATĚJKA AND CHRISTOPHER A. SIMS

ABSTRACT. Optimal actions of an agent facing a Shannon capac-
ity constraint on the translation of an uncertain signal into an ac-
tion can easily turn out to be discretely distributed, even when
the objective function and the initial distribution of uncertainty
contain no discrete elements. We show this result analytically in
a broad class of cases. It has implications for the interpretation of
observed intervals between changes in prices or other economic
choice variables in micro-data as indicators of costs of adjustment
or of the degree of “stickiness” in responses to aggregate policy
changes or business cycle fluctuations.

ABSTRACT. Optimálnı́ akce agentů s omezenou Shannonovou ka-
pacitou mohou mı́t diskretnı́ rozdělenı́, i když jsou užitková funkce
i počátečnı́ rozdělenı́ nejistoty spojité. Tento výsledek dokazu-
jeme analyticky pro širokou třidu přı́kladů. Toto poznánı́ ma důležité
implikace pro interpretaci pozorovaných časových intervalů mezi
změnami cen nebo jiných ekonomických proměnných v datech
na mikro úrovni. Délka těchto intervalů je totiž napřı́klad ukaza-
telem mı́ry rigidity reakcı́ na měnovou politiku.
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1. INTRODUCTION

Prices of individual products in most markets do not change con-
tinually, but instead stay fixed for spans of time, then jump to new
values. We have simple theories that imply such behavior of prices
is optimal (menu costs models) or treat such behavior as a constraint
(Calvo pricing). As fine-grained micro-data on individual product
prices has become available, however, we can see that in at least
some markets (e.g. grocery stores) prices not only stay fixed for
spans of time, when they do change they sometimes move back and
forth across a finite array of values. Our simple models explain the
fixity for spans of time, but on their face imply that when a price
change occurs, the change should be continuously distributed. We
don’t explain why the price should change, then come back to exactly
the same price as before the change, for example.

Rational inattention (RI) theory models individuals as having fi-
nite information-processing “capacity” in the sense of Shannon (see
MacKay (2003) for a textbook treatment). It is a theory about why,
when information appears to be available at little or no cost, individ-
uals may not respond to it, or may respond erratically. It has intuitive
appeal — most of us, most days, do not look up the term structure of
interest rates and make corresponding fine adjustments in our check-
ing account balances, even though, with an internet connection this
could be done very easily. RI also has qualitative implications about
delay and noise in reactions to information that roughly match em-
pirical relationships among macro variables.1

In a simple model he interpreted as a two-period savings problem,
Sims (2006) found that numerical solutions for optimal behavior,
even when exogenous randomness was continuously distributed,
implied discretely distributed behavior. Matějka (2010a) explored a
model he interpreted as describing a Shannon-capacity constrained
monopolistic seller with random costs and showed there again that
numerical solution tended to imply discretely distributed behavior.
In fact, the time paths of prices emerging from his simple model
matched many of the qualitative features of individual product time
paths shown in, e.g., Eichenbaum, Jaimovich, and Rebelo (2008).

1The intuition and this qualitative match are discussed at more length in Sims
(2003).
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Matějka (2010b) considered the behavior of a monopolistic price
setter that is not information-constrained, facing consumers who have
finite capacity. The consumers will choose discretely distributed be-
havior, and this turns out to imply that it is optimal for the seller to
set discretely distributed prices.

The question of whether “stickiness” reflects something like menu
costs, or instead rational inattention, is important for macroeconomic
policy modeling. If stickiness reflects RI, its form will change system-
atically if the stochastic process followed by the economy changes.
RI implies that rational expectations models, developed to explain
how a change in policy behavior could change the non-policy part
of a model, are themselves subject to a similar critique.

Perhaps more important, models that explain stickiness via ad-
justment costs of one sort or another imply that rapid change in the
sticky choice variables is costly or distasteful. RI models, which ex-
plain stickiness as reflecting information processing costs, do not im-
ply that rapid change is in itself costly or distasteful. On the other
hand, they imply that there is a cost to processing information that
existing theories do not take into account. If, for example, an envi-
ronment of high inflation requires individual consumers and pro-
ducers to devote more attention to tracking prices, there may be
a cost that is not captured in the behavior of direct arguments of
production and utility functions. RI therefore does not necessarily
generically imply that cyclical fluctuations are more or less impor-
tant than in adjustment-cost models, but it could imply quite differ-
ent estimates of welfare costs — and thus different conclusions about
optimal policy.

In this paper we consider a restricted class of models that look
somewhat like Matĕjka’s information-constrained pricing model and
show analytically that in this class of models, for a wide class of sit-
uations where all the inputs to the problem — the distribution of ex-
ogenous randomness and the objective function — are very smooth,
behavior of RI agents is nonetheless discrete. This provides some
reassurance that the apparent discreteness in the computational so-
lutions in previous work was not an anomaly, and also may give
us some insight into the conditions under which RI solutions are
likely to emerge as discrete. We also display classes of examples
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in which capacity-constrained agents will choose continuously dis-
tributed behavior, to supply qualitative guidance as to when capac-
ity constraints are likely to lead to discrete behavior.

2. THE TRACKING PROBLEM

The problem is

max
f ,µx

∫
U(|x− y|) f (x, y) µx(dx) µy(dy)

− α−1
(∫

log( f (x, y)) f (x, y) µx(dx) µy(dy)

+
∫

log
(∫

f (x, y′) µy(dy′)
)

f (x, y) µx(dx) µy(dy)
)
(1)

subject to
∫

f (x, y) µx(dx) = g(y) , a.s. µy (2)

f (x, y) ≥ 0 , all x, y , (3)

where µx and µy are each a σ-finite Borel measure on R, possibly but
not necessarily Lebesgue measure, f is the joint pdf of the choice x
and the target y, g is the given pdf for y, before information collec-
tion, U(|y− x|) is the objective function being maximized, and α is
the inverse of the cost of information (or of the Lagrange multiplier
on the information constraint).

The objective function is concave in the measure on xy space de-
fined by f , µy and µx

2, and the constraints are linear, so we can be
sure that a solution to the first order conditions (FOC’s) is a solution
to the problem. However the non-negativity constraints can be bind-
ing, so that exploration of which constraints are binding may make
solution difficult.

2Expected utility is linear in this probablity measure, and mutual information
between two random variables is a convex function of their joint distribution, so
expected utility minus θ times the mutual information is concave in the measure.
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The FOC’s of the problem with respect to f imply that at all values
of x, y with f (x, y) > 0 and g(y) > 0

U(x, y) = θ(y) + α−1 log
(

f (x, y)∫
f (x, y) dy

)
(4)

∴ f (x, y) = p(x)eαUh(y) (5)

∴ p ∗ eαU · h = g , (6)

where p is the pdf of the action x and h is a function that is non-
zero where g is non-zero, zero otherwise. The “∗” symbol denotes
convolution. At points x where f (x, y) = 0, the FOC’s require that
the left hand side of (4) be less than or equal to the right hand side.
Note that if p(x) =

∫
f (x, y) dy > 0, the right hand side of (4) is

minus infinity wherever f (x, y) = 0, so with bounded U we can
conclude that f (x, y) = 0 for a particular x, y only if f (x, y) = 0 for
all y, i.e. p(x) = 0.

At points x with p(x) = 0, the right-hand side of (4) is undefined.
However we can reparameterize f (x, y) as p(x)q(y | x) and take the
first order condition with respect to p. Since at points with p(x) = 0
the value of q(· | x) makes no marginal contribution to the objective
function or the constraints, the first order condition with respect to
p at points with p(x) = 0 becomes

max
q

E[U(x, y)− θ log
(
q(y | x)

)
− λ(y) | x] ≤ 0 . (7)

These FOC’s do not take explicit account of the possibility of vary-
ing µx. Adding or deleting a point x with non-zero µx probability is
accounted for, since that can be treated as setting p(x) to a zero or
non-zero value at a point where µx(x) > 0. If µx puts discrete prob-
ability π on a point x0, we can, though, derive an additional FOC by
considering changing the location of x0. If we change the location
of x0 to a nearby x∗ 6= x0 that initially had probability zero (though
possibly a non-zero density value w.r.t. Lebesgue measure), while
keeping the pdf of y | x0 and of y | x∗ the same, we leave the mutual
information between x and y the same and continue to satisfy the
boundary condition (2), but we change the expected value of U. The
derivative of the expected value of U w.r.t. x0 when x0 is changed in
this way is

µx(x0)
∫

∂U(x0, y)
∂x0

f (x0, y) dy , (8)
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which then implies that E[∂U/∂x | x] must be zero at every point x0

that has positive probability.

3. WHEN DOES x HAVE A DISCRETE DISTRIBUTION?

Even when y is continuously distributed, it turns out to be op-
timal to make x discretely distributed, under some fairly general
conditions. We now proceed to give some sufficient conditions for
discreteness of x.

Convolution tends to smooth a function, making it “more differ-
entiable”, so convoluting an analytic function with some weighting
function leaves it analytic. To prove this formally, we first cite a
known result:

Lemma 3.1. f is analytic on an open subset S of the real line, if and only
if on any compact subset of K ⊂ S there is a C > 0 such that for all x ∈ K,
∑ Cj j! f (j)(x) < ∞.

Proof. See lemma 1.2.10 in Krantz and Parks (2002). �

Lemma 3.2. If

(i) p is a finite measure on the real line R and
(ii) f is a bounded real-valued function, analytic on the whole of R,

then p ∗ f is analytic on R.

Proof. With f analytic on the entire real line, if p has bounded sup-
port, we can, for any bounded interval J ∈ R, find a larger interval
M ⊃ J such that for x ∈ J

dn

dxn (p ∗ f )(x) =
∫

z∈M
f (n)(x− z)p(dz) .

Let CM be the constant C from Lemma 3.1 applied to f and the inter-
val M. Then, since each derivative of p ∗ f at points in J is an average
of the corresponding derivatives of f at points in M, CM can play the
role of C in lemma 3.1 to show that p ∗ f satisfies the condition of the
lemma for J. But since we can do this for any bounded interval J, we
conclude that p ∗ f is analytic on the whole of R.

Because f is real-analytic on R, it has an analytic extension to an
open subset S of the complex plane C that contains R. Let B be a
strict upper bound on | f | over R. The set S ∩ {z ∈ C | | f (z)| < B} is
an open subset of C containing R and on which f is bounded. So we
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can without loss of generality assume f is bounded by B on S. If p
does not have bounded support, consider the sequence of functions
pn ∗ f , where pn is the restriction of p to the interval (−an, an) and
an → ∞ as n → ∞. (I.e. for a set A ∈ R, pn(A) = p(A ∩ (−an, an)).)
Because p is a finite measure and f is bounded,

|pn ∗ f − p ∗ f | = |(pn − p) ∗ f | <
(

p((−∞,−an))+ p((an, ∞))
)
· B −−−→

n→∞
0 ,

and it is thus clear that pn ∗ f converges to p ∗ f uniformly over S.
But the uniform limit of analytic functions on an open subset of C

is itself analytic (Ahlfors, 1953, Section 1.4), and therefore p ∗ f is
real-analytic on R. �

Now we can specify a first fairly wide class of cases in which the
solution of our tracking problem will necessarily make µx discrete.

Proposition 1. Suppose in the tracking problem (1)-(3)

(i) eU(·) is analytic and positive on the entire real line;
(ii) U is non-increasing in its argument and not constant; and

(iii) g has bounded support.

Then p is concentrated on a finite set of points within the support of g.

Proof. First, p surely has bounded support, contained within the sup-
port of g. If p puts positive measure on any set outside of the support
of g, we could modify the joint distribution by moving the probabil-
ity on that set onto points y in the support of g that would make
U(|x− y|) larger for all x in the support of g. That there is such
a point inside the support of g for every y outside the support we
know from the monotonicity of U. To be precise, let S ⊂ R be the
support of g, SL be the set of points below S and SH be the set of
points above S. If f (x, y) were a solution to the tracking problem
with ∫

SL

f (x, y)dx +
∫

SH

f (x, y)dx > 0 ,

we could set f (x, y) = 0 for all x ∈ SL and all x ∈ SH and increase
the discrete probability on the greatest lower bound and least upper
bound of S by ∫

SL

f (x, y)dx and
∫

SH

f (x, y)dx ,

respectively. This necessarily reduces or leaves unchanged the mu-
tual information between x and y. To see this, let q(y | x) be the
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conditional pdf of y | x before we rearrange the probabilities, and
note that for each x in the interior of S, the conditional distribution
of x | y is unchanged. The new conditional pdf at the boundaries is
given by

q∗(y | x = inf(S)) =

∫
SL

p(x)q(y | x)dx∫
SL

p(x)dx

and a similar expression for the upper bound. The mutual informa-
tion between X and Y can be characterized as the expected reduction
in entropy between the conditional and unconditional distributions
for Y. Since entropy is concave, the entropy of an average, like q∗

above, is always larger than or equal to the average of the entropies.
Thus rearranging the probabilities as we have proposed never in-
creases mutual information.

We know from the FOC’s that for points y within the support of g,

h(y) =
g(y)

p ∗ eαU(y)
.

This will be a µy-integrable function because g is a density w.r.t. µy

and by the assumption that eU is positive. Then, again from the
FOC’s, we have, at points where p(x) > 0,

eαU ∗ h(x) = 1 .

Since h is integrable and we have assumed eαU analytic on R, by
Lemma 3.2 eαU ∗ h is analytic on R. Thus if there is any sequence of
points {xi} with a limit point x∞ in R on which p(xi) > 0, for all
i, eαU ∗ h is constant on all of R. But with eαU monotone decreasing
and h having bounded support, h ∗ eαU cannot be constant. Near
x = 0 it is a weighted sum of values of eαU that are all larger than
or equal to, and some strictly larger than, the values of eαU whose
weighted sum make up h ∗ eαU(x) for |x| large. So we have reached
a contradiction under the assumption that there is a sequence of x’s
with a limit point such that p(xi) > 0, all i. Therefore there must be
no such sequence. That implies, since the support of p is bounded
by that of g, that p is concentrated on a finite set of points within the
support of g. �

A second broad class of cases for which we can characterize solu-
tions arises when g and eU are both analytic. We use f̃ to denote the
Fourier transform of f .
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Proposition 2. Suppose in the tracking problem

(i) eαU(|x|) is analytic in x on the whole real line R,
(ii) eαU(|x|) is integrable,

(iii) eαU(|x|) is monotone increasing for negative arguments and decreas-
ing for positive arguments and not constant, and

(iv) g(y) is analytic in y on R .

then if g̃/ẽαU is the characteristic function of a probability distribution on
R, that distribution is the marginal distribution of x in the solution to the
tracking problem. Otherwise, the solution makes the marginal distribution
of x discrete, putting probability one on a set with no limit points.

Proof. From Lemma 3.2 we know that, whatever the solution, it will
imply a marginal probability distribution π for x, and π ∗ eαU will
be analytic. Furthermore, because eαU is analytic and positive on
the whole real line, π ∗ eαU must also be positive everywhere. Thus
h = g/(π ∗ eαU) being the ratio of two analytic functions in which
the denominator is always postive, is itself analytic. But we know
that in the solution h ∗ eαU(x) = 1 at all points x with non-zero prob-
ability density. Thus if π puts positive probability on a set of points
containing a limit point, eαU ∗ h is constant. This is possible, because
of the fact that eαU decreases as we move away from zero, only if h is
constant. In that case π ∗ eαU = g and therfore

π̃ = g̃/ẽαU .

If the right-hand side of this expression fails to be the characteristic
function of a probablity distribution on R, we have reached a con-
tradiction. In that case, therefore, it must be that π puts probability
one on a set that has no limit points. �

Note that the marginal distribution π of x could turn out to be dis-
crete in any case, because it is possible that g̃/ẽαU is the characteris-
tic function of a discrete distribution. Note also that this proposition
gives us a simple rule to apply when g and eU are both analytic: form
g̃/ẽαU, take its inverse Fourier transform, and verify that the result
is a probability distribution. If so, one has solved the problem. If
not, the solution will be discrete, but finding its exact form probably
requires a numerical approach.

A necessary condition that a function φ̃ be the characteristic func-
tion of a distribution is that it is continuous, bounded, and takes
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the value 1 at 0. But this leaves open the possibility that its inverse
Fourier transform might not be everywhere positive, and there is no
check for that simpler than taking the inverse Fourier transform.

When g̃/ẽαU is a characteristic function, the solution implies that
we can write

y = x + ν ,

where ν is independent of x and has a pdf proportional to eαU. Note
that this does not imply that we can model information flow as an
observation of y with i.i.d. error. It is y | x that has an i.i.d. error;
x | y will have a distribution dependent on y except in special cases
(e.g. the Gaussian case, with g a normal pdf and g quadratic).

4. EXAMPLES

Suppose U = −(y− x)2, g is Gaussian with variance σ2, and the
“information per util” parameter is α as in the problem statement (1-
3). This will fit the conditions of Proposition 2. Clearly eαU has the
shape of a Gaussian pdf in y, centered at x, for each x, and if p(x) is
also Gaussian we will have that p ∗ eαU is the pdf of a Gaussian dis-
tribution with variance the sum of the variance of the p distribution
with 1/(2α). However, if σ2 < 1/(2α) this is impossible. The result
is that when σ2 > 1/(2α) the solution makes x normally distributed
and also makes y | x normal. However, if σ2 ≤ 1/(2α), the solution
is simply x ≡ E[y]. That is, if the utility cost of information exceeds
2σ2, it is optimal to collect no information and set x to a constant,
which is of course a discrete distribution, as proposition 2 implies.

This is a special case of a similar result for any infinitely divisible
distribution. For example, if g is Cauchy, i.e. with density 1/(σπ(1+
(y/σ)2), if U(|z|) = − log(γ+ z2), and if α = 1, then if

√
γ < σ, there

is a solution of the form y = x + ν with x and ν both Cauchy and ν

independent of x. Note, though, that unlike the case where U is qua-
dratic, this result holds only with α = 1. If α 6= 1, eαU has the shape
of a t distribution with degrees of freedom n = 2α − 1. Obtaining
closed form results on whether g̃/ẽαU is the characteristic function
of a distribution in this general case seems to be a non-trivial task.

A more interesting case is where g is standard Cauchy and U is
quadratic. Then taking the Fourier transform of g we find its charac-
teristic function g̃ = e−|ω|. If there were to be a solution of the form
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y = x + ν, we would need to have the characteristic function of p
satisfy

p̃ = eα−1ω2−|ω| . (9)

The right-hand side of this expression is never bounded and thus
can never be the FT of a pdf. Thus no matter what α is, there is no
solution of the y = x + ν form, and by Proposition 2 we know the
solution is discrete. But here a degenerate distribution with x con-
centrated at a single point can never be a solution, as that implies in-
finite losses (because the Cauchy distribution has infinite variance)
and finite losses are possible. Without deriving a solution, we can
nonetheless see that it is possible to make losses finite at arbitrarily
low information cost. Suppose we divide the real line into intervals
with endpoints na + a

2 for fixed a and n = −∞, . . . , ∞. Suppose fur-
ther that the signal we get tells us simply which of these intervals y
is in. We would then optimally set x equal to the conditional mean
of y given that y is in the interval. If a is very large, the probabil-
ity of the interval (− a

2 , a
2) grows arbitrarily close to one, so that the

entropy of the x distribution goes to zero. Also, the conditional en-
tropy of y | x grows arbitrarily close to the unconditional entropy
of y as a increases, meaning that the mutual information between y
and x goes to zero. Yet we have made the conditional second mo-
ment E[(y − x)2 | x] finite and bounded for all x. This is not an
optimal solution — optimally the points on which the x distribution
concentrates will not be evenly spaced, and certainly the conditional
distributions of y | x will not have bounded support. But it is clear
from proposition 2 that a distribution for x concentrated on a count-
able set of points, with no limit points, will be the outcome.

Of course we can produce examples with analytic solutions by
picking a π and constructing g as π ∗ q for some particular q. For
example, suppose we pick π0 to be a discrete distribution with equal
weights of 1

2 on x = ±1 and g as an equal-weight mixture of two
standard normal pdf’s with means ±1. Then g = π0 ∗ φ, where φ is
the standard normal density. Thus if U = −x2 and α = 1

2 , both g
and eαU are analytic and the optimal solution is to make x discretely
distributed, with equal weights on ±1. In other words, π = π0, so
that it is optimal to get a signal that is simply “high” or “low” and
take the corresponding action. If α > 1

2 , it is easy to check from the
11
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FIGURE 1

characteristic functions that the optimal π is no longer discrete. It is
a mixture of two normals with means ±1 and variances 1− 1/(2α).
If α < 1

2 , g̃/ẽαU is unbounded, thus not a characteristic function, so
again we know that the solution is entirely discrete. In fact, from
numerical solutions it seems clear that the solution concentrates the
distribution of x on two points ±a, with a approaching one as α ap-
proaches 1

2 from below and approaching zero as some lower bound
on α (i.e. upper bound on the cost of information) is approached.

We now proceed to consider some numerical examples.
The Proposition 1 result applies more widely than one might think.

Solutions where x has support on a small number of points emerge
not when g itself is sharply truncated, but when it is truncated rel-
ative to the spread of the eαU function. Figure 1 shows the solution
for a case where g is a normal pdf truncated at ±3 standard errors,
so that only a tiny fraction of the total probability under the normal
density is excluded. The U function is quadratic and has a spread
narrower than that of g, so with unbounded support for g we know
from Proposition 2 that a continuously distributed x would emerge.
But the actual solution is supported on three points. To interpret the
graph, note that the black line is g — a normal density with standard
deviation 1

3 — and the colored lines are the conditional densities for y
12
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at the support points of the x distribution, weighted by the probabil-
ities of the support points. The colored densities at each point on the
x axis sum to g. The support points themselves are indicated by the
black asterisks along the horizontal axis. For this and all the subse-
quent figures, the displayed solution has been verified to be optimal
by searching for a solution with more points of support and finding
convergence to the displayed solution. The g distribution is not ac-
tually continuous in these exercises, but instead is concentrated on
201 equi-spaced points on (-1,1).

Even though the solution has support on only a few points, note
that the shape of the conditional distributions for y | x are quite sim-
ilar to normal densities, and in that sense are like what is suggested
by the Proposition 2 result when the solution is continuous. We will
see this pattern in most of the examples below — solutions are sup-
ported on small numbers of points for x as suggested by Proposition
1, while conditional densities for y | x tend to resemble eαU(|x−y|), as
suggested by Proposition 2.

If we increase α — make information cheaper — the spread of eαU

shrinks relative to the (-1,1) interval that supports g, and the solution
puts weight on more points, as in Figure 2. The slight asymmetry
visible in the plotted solution reflects imprecision in the numerical
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FIGURE 3

optimization. The solution can be symmetrized by averaging nega-
tive and positive parts of the displayed solution, but this increases
the objective function only by 1 digit in the seventh decimal place.
The asymmetry therefore reflects the fact that solutions can differ
visibly from the computed optimum while delivering objective func-
tion values that are extremely close to the optimum. Notice that the
values of κ, the mutual information between x and y, shown at the
top of Figures 1 and 2 differ by only .06. These κ values are mea-
sured in nats, that is, base-e information units. In the more intuitive
bits (base-2) unit, the difference would be .09.

In Figures 3 and 4 we see solutions with a uniform g, where the
truncation involves a sharply discontinuous dropoff in the density g
at the boundaries of its support. Here we see that the κ values are
generally higher for a given number of support points for x, and the
increase in κ in going from 4 to 6 support points is three times as
large as that for going from 3 to 5 support points in the normal-g
example.

Figures 5 and 6 display solutions with a uniform g and U(z) =

−z1.1. This makes the peak of the objective function sharp; the first
derivative changes very rapidly at the peak. We can see in the figures
that this shape of the objective function is reflected in the conditional
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FIGURE 4
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FIGURE 5

densities for y | x in the solutions, with the conditional pdf’s show-
ing kinks.

Figures 7 and 8 show solutions for a truncated Cauchy g with qua-
dratic U. They show that most of the probability distribution for x
concentrates on x = 0, even as the information constraint is relaxed,
and that as the constraint is relaxed, more small-probability x values
in the tails of the distribution appear.
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FIGURE 6

FIGURE 7

5. IMPLICATIONS FOR MODELING ECONOMIC BEHAVIOR

The kind of model explored here, in which a decision-maker re-
acts to external information subject to a tight information constraint,
seems a natural one to apply to the behavior of individuals react-
ing to fairly frequent and/or numerous economic signals for which
the consequences of imprecise responses are modest. This might be

16



FIGURE 8

true, for example, of price-setters in retail establishments that must
set hundreds of prices every day in response to fluctuations in de-
mand and costs for all the items. It might also be true of day-to-day
or month-to-month savings and spending decisions of individuals,
facing a potentially vast array of information about asset markets.

These models suggest that it is a mistake to identify times at which
decision makers’ choices change as times at which they fully opti-
mize in reaction to the current state. Rationally inattentive decision
makers as modeled here may change their choices randomly, even
when the state of the world (the draw from the g distribution) is un-
changed. As modeled here, they acquire information about the true
state every period, but may nonetheless not change their behavior,
even though the true state is changing.

Rationally inattentive decision makers faced with a fat-tailed dis-
tribution for the state (as in our Cauchy-g examples) may go for long
periods without making any change in their behavior, then make a
large and temporary change. The long periods of unchanged behav-
ior are not an indication that changing behavior is “costly”, and the
large, rare changes are not an indication that changing behavior is
not costly. There is no cost of change at all in these models. Appar-
ent inertia in the face of a fat-tailed distribution simply reflects the
fact that with information flows being valuable, it makes sense to

17



concentrate attention on the rare extreme draws of y, not reacting at
all to the usual small fluctuations about the central value.
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