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Abstract. In this paper we introduce and study the concepts of HC-closed set and HC-
limit (HC-cluster) points of L-nets and L-ideals using the notion of almost N-compact
remoted neighbourhoods in L-topological spaces. Then we introduce and study the concept
of HL-continuous mappings. Several characterizations based on HC-closed sets and the
HC-convergence theory of L-nets and L-ideals are presented for HL-continuous mappings.
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1. INTRODUCTION

Wang in [12], [13] established the Moore-Smith convergence theory in both L-
topological spaces (in the sense of [7]) and L-topological molecular lattices [13] by
using remoted neighbourhoods. Yang in [15] established the convergence theory
of L-ideals in L-topological molecular lattices by using remoted neighbourhoods.
In [1], [3], [5], some extended convergence theories are developed. In [2], [3], the
concept of the N-convergence theory in L-topological spaces by means of the near
N-compactness and remoted neighbourhoods is introduced. In this paper, we further
develop the convergence theory in L-topological spaces by (i) introducing the con-
cepts of the HC-convergence of L-nets and L-ideals, (ii) presenting the notions of the
HC-closure and HC-interior operators in L-topological spaces, and (iii) giving a new
definition of H-continuity in L-topological spaces for the so called HL-continuous
mapping. Then we show several applications of HL-continuity by means of HC-
convergence theory. In Section 3 we define an HC-closed (HC-open) set and discuss
its basic properties. In Section 4 we introduce and study HC-convergence theory of
L-nets and L-ideals, and discuss their various properties and mutual relationships. In
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Section 5 we give and study the concept of an HL-continuous mapping. Several char-
acterizations of HL-continuous mappings by HC-convergence theory of L-nets and
L-ideals are given. In Section 6 we study the relationships between HL-continuous
mappings and other L-valued Zadeh mappings such as L-continuous, CL-continuous
and almost CL-continuous mappings.

2. PRELIMINARIES AND DEFINITIONS

Throughout the paper L denotes a completely distributive complete lattice with
different least and greatest elements 0 and 1 and with an order reversing involution
a — a'. By M(L) we denote the set of all nonzero irreducible elements of L. Let X
be a nonempty crisp set. L* denotes the set of all L-fuzzy sets on X and M (LX) =
{xe € LX: x € X,a € M(L)} is the set of all nonzero irreducible elements (the
so-called L-fuzzy points or molecules) of LX; Ox and 1x denote respectively the
least and the greatest elements of LX.

Let (LX,7) be an L-topological space [7], briefly L-ts. For each u € LX, cl(p),
int(p) and ' will denote the closure, the interior and the pseudo-complement of g,
respectively.

An L-fuzzy set u € L¥ is called regular closed (regular open) set iff cl(int(u)) = p
(int(cl(u2)) = p). The class of all regular closed and regular open sets in (LX) will
be denoted by RC(LX,7) and RO(L™¥, 7), respecively. An L-ts (L, 7) is called fully
stratified [8] if for each o € L, the L-fuzzy set which assumes the value « at each
point € X belongs to 7. A mapping F: LX — LY is said to be an L-valued Zadeh
mapping induced by a mapping f: X — Y, iff F(u)(y) = V{u(z): f(z) =y} for
every u € L~ and every y € Y [13]. For ¥ C LX we define ¥/ = {y/: € ¥}. An L-
valued Zadeh mapping F': (LX,7) — (LY, A) is called L-continuous iff F~1(n) € 7/
for each n € A’. In an obvious way L-topological spaces and L-continuous maps
form a category denoted by L-TOP. For other undefined notions and symbols in this
paper we refer to [7].

Definition 2.1 [12], [13]. Let (L%, 7) be an L-ts and let z, € M(L¥). Then
A € 7' is called a remoted neighbourhood (R-nbd, for short) of z, if z, ¢ A. The
set of all R-nbds of z, is denoted by R, .

Definition 2.2 [16]. Let (L*,7) be an L-ts and let u € LX. Now ¥ C 7' is
called

(i) an a-remoted neighbourhood family of p, briefly a-RF of p, if for each molecule
ZTq € W, there is n € ¥ such that n € R, _;

(ii) an @-remoted neighbourhood family of u, briefly a-RF of u, if there exists
v € 0*(a) such that ¥ is an 4-RF of p where 8*(a) = () N M(L), and ()

denotes the union of all minimal sets relative to «.
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Definition 2.3 [6]. Let (LX,7) be an L-ts and let u € LX. Now ¥ C 7/ is called

(i) an almost a-remoted neighbourhood family of p, briefly almost a-RF of pu, if
for each molecule z,, € u, there is n € ¥ such that int(n) € R, ;
(ii) an almost @-remoted neighbourhood family of u, briefly almost @-RF of pu, if
there exists v € 3*(«) such that ¥ is an almost v-RF of p.
We denote the set of all nonempty finite subfamilies of ¥ by 2(¥).

Definition 2.4 [6]. Let (LX,7) be an L-ts. p € L% is almost N-compact in
(LX,7), if for any a € M (L) and every a-RF W of u there exists ¥, € 2(%) such that
VU, is an almost a-RF of . An L-ts (L%, 7) is called an almost N-compact space if
1x is an almost N-compact set in (L%, 7).

We need the following result.

Theorem 2.5 [6]. Let (LX,7) be an L-ts and let n € L*. Then:
(i) If u is an almost N-compact set, then for each o € 7' (or 0 € RC(LX,7)), uAo
is almost N-compact.
(ii) Every closed L-fuzzy set of an almost N-compact set is almost N-compact.
(iii) Every almost N-compact set in a fully stratified LTq-space [8] is a closed L-fuzzy
set.

3. HC-CLOSED L-FUZZY SETS

In this section, we first introduce and study the concepts of the HC-closure (NC-
closure) and the HC-interior (NC-interior) operators in L-topological spaces. Sec-
ondly, we discuss the relationships between the HC-closure (HC-interior), NC-closure
(NC-interior), N-closure (N-interior) [3] and closure (interior) [13] operators. Finally,
we give the definition of the HC - L-topological space and NC - L-topological space.

Definition 3.1. Let (LX,7) be an L-ts and let 4 € L. A molecule z, € M (LX)
is called an HC-adherent (NC-adherent) point of u, written as xz, € HC-cl(u)
(xo € NC-cl(p)) iff o ¢ X for each A € HCR,, (A € NCR,,), where HCR,,,
(NCR,,_) is the family of all almost N-compact (N-compact) remoted neigh-
bourhoods of z,. Further HC-cl(u) (NC-cl(p)) is called the HC-closure (NC-
closure) of p. If HC-cl(p) < p (NC-cl(u) < ), then p is called an HC-closed
(NC-closed) L-fuzzy set. The complement of an HC-closed (NC-closed) L-fuzzy
set is called an HC-open (NC-open) L-fuzzy set. Let HC-int(u) = V{0 €
LX: pis an HC-open L-fuzzy set contained in u}. We say that HC-int(y) is the
HC-interior of y. Similarly, we can define NC - int(u).
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Remark 3.2. It is clear that NCR,_ C HC R,_, because every N-compact set
[15] is almost N-compact [6]. So the properties and characterizations of an NC-
closed set and its related notions are similar to those of an HC-closed set and hence
omitted.

Proposition 3.3. Let (LX,7) be an L-ts and let u € LX. Then the following

hold:

(i) p < cl(p) < HC-cl(p) < N -cl(p) < NC-cl(p) (NC-int(p) < N -int(p) <
HC -int(p) < int(u) < p) for every p € LX.
If it < o then HC - cl(p) < HC-cl(p) (HC -int(p) < HC-int(p)).
w is HC-open iff n = HC - int(u).
(iv) HC-cl(HC-cl(p)) = HC-cl(p) (HC-int(HC - int(n)) = HC - int(u)).

(v) (HC-cl(p)) = HC-int(y') and (HC-int(p)) = HC-cl(p).
(vi) HC-cl(u) = A{n € LX: n is an HC-closed set containing y1}.

u

(iii

—_ — — —

Proof. (i), (ii) and (v) follow directly from the definitions.

(iii) Let 4 € LX be HC-open, then HC-int(u) = \/{o € LX: o is HC-open set
contained in p} = p. Conversely; let 1 = HC-int(u). Since HC - int(p) is the join of
all HC-open sets contained in u, so HC - int(u) is HC-open and hence p is HC-open.

(iv) Let zo, € M(LY) with z, € HC-cl(HC-cl(p)). Then HC-cl(u) £ n for
each n € HCR,,. Hence there exists y, € M(LY) such that y, € HC-cl(u) and
Yy € m. So p £, that is o, € HC-cl(u). Thus HC - cl(HC-cl(p)) < HC-cl(p).
On the other hand, HC-cl(x) < HC-cl(HC-cl(u)) follows from (i) and (ii). Thus
HC-cl(p) = HC-cl(HC - cl(p)). The proof of the other case is similar.

(vi) By (i) and (iv), we have that HC-cl(p) is an HC-closed set containing pu
and so HC - cl(u) > A{n € L¥: nis an HC-closed set containing u}. Conversely, let
To € M(L¥) be such that z, € HC-cl(u). Then p £ o for each p € HC R,,,. Hence,
if n € L¥ is an HC-closed set containing i, then n £ o and then z, € HC-cl(n) =
n. This implies that HC-cl(u) < A{n € LX: n is an HC-closed set containing y}.
Thus, we have HC - cl(u) = A{n € LX: 7 is an HC-closed set containing p}. O

Theorem 3.4. Let (LX,7) be an L-ts. The following statements hold:
(i) 1x and Ox are both HC-closed (HC-open).
(ii) Every almost N-compact closed set is HC-closed.
(iii) The union (intersection) of finite HC-closed (HC-open) sets is HC-closed (HC-
open).
(iv) The intersection (union) of arbitrary HC-closed (HC-open) sets is HC-closed
(HC-open).
(v) p € LX is HC-closed iff there exists n € HC R, such that p < n for each
To € M(LYX) with v, ¢ p.
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Proof. (i) Obvious.

(ii) Let u € L™ be an almost N-compact closed set in (LX, 7). Let x, € M (LX)
with z, ¢ p. Since p is almost N-compact closed, so u € HC R,.,. Also, since p < p,
so by Definition 3.1 we have z, ¢ HC-cl(u). Thus HC-cl(p1) < p and hence p is an
HC-closed set.

(iii) Let u,n € L* be two HC-closed sets in (L, 7). Let z, € M(L¥) and z,, €
HC-cl( V n). Then for each p € HC R, we have uVn £ pand so pu £ o orn £ o.
Hence zo € HC - cl(p) or z, € HC-cl(n) and so z, € HC-cl(u) VHC -cl(n) = p V1.
Thus p V n is HC-closed. The proof of the other case is similar.

(iv) Let {u; € LX: j € J} be a family of HC-closed sets. Let z, € M(LX) be

such that z, € HC~C1( A Hj)- Then for each n € HCR,, we have A pu; £ 7,
jeJ jeJ
equivalently, p; € n for every j € J. Hence z, € HC-cl(u;) < p; for every j € J.

Then 2, € A pj. Thus A p; is an HC-closed set in (L¥,7). The proof of the
=Y JjeJ
other case is similar.

(v) Suppose that u € L is HC-closed, z, € M(L*) and z,, ¢ . By Definition 3.1
there exists € HC R, such that u < 7. Conversely, suppose that p € L¥ is not
HC-closed, then there exists z, € M (LX) such that x, € HC-cl(u) and z, & pu.
Hence, p £ n for each n € HC R,_, a contradiction with the hypothesis and so yu is
HC-closed. ]

Theorem 3.5. Let (LX,7) be an L-ts. Then the families Tnc = {u € L*:
HC-cl(y') = ¢’} and 7ne = {p € L¥: NC-cl(y/) = u'} are L-topologies on L.
We call (L, Tuc) and (LX, 7nc) the HC - L-topological space and NC - L-topological
space induced by (LX,T).

Proof. It is an immediate consequence of Definition 3.1 and Proposition 3.3
and Theorem 3.4. O

Theorem 3.6. Let (LX,7) be an L-ts. Then:
(i) ™~c¢ €7~ [3] € THC C 7.
(ii) If (L%, ) is N-compact (nearly N-compact, almost N-compact), then T = Tnc
(T =17n, T = THe).

(iii) If (LX,7) is an LRy-space [13], then Tnc = TN = THC-

(iv) If (LX,7) is an induced L-ts [9], then Tn = TneC-

v)
)

L-ts (L~ ,7nc) is an N-compact space.
(vi) L-ts (L, Tuc) is an almost N-compact space.

Proof. Follows immediately from Definition 3.5. O
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4. HC-CONVERGENCE THEORY OF L-NETS AND L-IDEALS

In this section we establish the HC-convergence theories of both the L-nets and
the L-ideals. We discuss the relationship between the HC-convergence of L-ideals
and that of L-nets.

Definition 4.1 [13], [14]. Let (LX,7) be an L-ts. An L-net in (L¥,7) is a
mapping S: D — M(LY) denoted by S = {S(n);n € D}, where D is a directed set.
S is said to be in p € LX if for every n € D, S(n) € p.

Definition 4.2. Let S be an L-net in an L-ts (L*,7) and let z, € M(L¥).

(i) x4 is said to be an HC-limit point of S, or net S HC-converges to z,, in symbol
SHCz, if (YA € HCR,.) (3n € D) (¥m € D,m >n) (S(m) & \).
(ii) x4 is said to be an HC-cluster point of S, or net S HC-acumulates to z,, in
symbol S'%zq if (VA € HCR,,) (¥n € D) (3m € D,m > n) (S(m) ¢ \).
The union of all HC-limit points and HC-cluster points of S will be denoted by
HC-1lim(S) and HC - adh(S), respectively.

Theorem 4.3. Suppose that S is an L-net in (L™, 7), u € L and x, € M(LX).
Then the following results are true:
(i) 2o € HC - lim(S) iff S2%u, (o € HC-adh(S) iff S5 wa).
(ii) lim(S) [14] < HC-lim(S) (adh(S) [14] < HC-adh(S)).
(iii) HC-lim(S) < HC-adh(S).
(iv) HC-lim(S) and HC - adh(S) are HC-closed sets in L.

Proof. (i) Let S’H—Cmca, so by definition xz, € HC-lim(S). Conversely, let
2o € HC-lim(S) and A € HCR,_,. Since z, ¢ A, so HC-lim(S) £ A. Therefore
there exists yg € M (LX) such that y3 € HC-lim(S) but ys ¢ X and so A € HCR,,.

Hence (3n € D) (Vm € D,m > n) (S(m) ¢ X\). Thus Sz, The proof of the
other case is similar.

(ii) Let x4 € lim(S) and n € HCR,,_. Since HCR,_ C R,_, we have n € R, .
And since z, € lim(S), we have (In € D) (Vm € D,m > n) (S(m) ¢ n). Hence
2o € HC-lim(S). So lim(S) < HC-lim(.S). The proof of the other case is similar.

(iii) Obvious.

(iv) Let zo € HC-cl(HC-lim(S)) and A € HCR,,_. Then HC-lim(S) £ A. So
there exists yz € M(LY) such that y3 € HC-lim(S) and yg ¢ A. Then (Vo €
HCR,,) (3n € D) (Vm € D,m > n) (S(m) ¢ o) and so S(m) ¢ X\. Hence z, €
HC -1im(S). Thus HC-cl(HC -lim(S)) < HC-lim(S) and so HC-lim(S) is an HC-
closed set. Similarly, one can easily verify that HC - adh(S) is an HC-closed set. O
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Theorem 4.4. Let (LX,7) be an L-ts, p € LX and z, € M(LY). Then z, €
HC - cl(p) iff there is an L-net in p which HC-converges to x,.

Proof. Let z, € HC-cl(). Then (VA € HCR,_) (1 £ A) and so there exists
a(p, A) € L\{0} such that z,, ,,) € pand xq, ,, & A. Since the pair (HC R;,,, >) is a
directed set so we can define an L-net S: HC R,, — M(L™) given by S(\) = zq,,
VYA € HCR,,,. Then S is an L-net in u. Now let p € HC R, be such that o > A,

so there exists S(o) = %o, ,, ¢ 0 Then x4, , & A\. So s2% .. Conversely; let S
be an L-net in p with SH% %, Then (VA € HCR,,) (3n € D) (Vm € D,m > n)
(S(m) ¢ A). Since S is an L-net in u, we have p > S(m) > A. Hence (VA € HCR,_)
(e £ N). So zq € HC-cl(p). O

Theorem 4.5. Let both S = {S(n);n € D} and T = {T(n);n € D} be L-nets in
L-ts (LX, 1) with the same domain and for each n € D, let T(n) > S(n) hold. Then
the following statements hold:

(i) HC-1lim(S) < HC - lim(T).
(i) HC-adh(S) < HC-adh(T).

Proof. (i). Let z, € M(L¥) with z, € HC-lim(S), then (Vn € HCR,)
(3n € D) (Ym € D,m = n) (S(m) ¢ n). Since T'(n) = S(n), Yn € D, so T'(m) & n.
Hence (Vn € HCR,,) (3n € D) (Ym € D,m > n) (T'(m) ¢ n). So zo € HC-lim(T).
Hence HC - lim(S) < HC - lim(T).

(ii) The proof is similar to that of (i) and is omitted. O

Theorem 4.6. Let S be an L-net in an L-ts (L, 1) and let x, € M (LX), then:
(1) S%(cxa iff there exists an L-subnet T' [14] of S such that 72%2,.
(i) If SH—Cmca, then T2z, for each L-subnet T of S.

Proof. (i) Sufficiency follows from the definition of an L-subnet and so we only
prove necessity. Let g: (HCR,_,D) — D, so g(n,n) € D. Let z, € HC-adh(S),

then (V) € HCR,,) (vn € D) (3g(n,n) € D) (9(n,n) = n) (S(g(n,n)) & n).
Let E = {(g9(n,n),n): n € HCR,,,n € D} and define the relation < on E as

following: (g(n1,m1),m) < (9(n2,m2),m2) iff n; < ne and 71 < 72. It is easy to
show that E is a directed set. So we can define an L-net T: E — M(LX) as
follows: T'(g(n,n),n) = S(g(n,n)) and T is an L-subnet of S. Now we prove that
T2%%,. Let n € HCR,,,n € D, so (g(n,n),n) € E. Then (¥(g(\,m),\) € E)
(gA,m),\) = (g(n,n),n)), hence T(g(A,m),\) = S(g(\,m)) ¢ X\. Since A\ = 7, so
T(g(\,m),\) ¢ 5. Hence TSz,

(ii) follows from the definition of an L-subnet. O

Definition 4.7 [15]. A nonempty family £ C L¥X is called an L-ideal if the
following conditions are fulfilled, for each 1, po € LX:
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(1) If u1 < p2 and po € L then py € L.
(11) If gy, o € L, then pg V e € L.
(iii) 1x ¢ L.

Definition 4.8. Let (L, 7) be an L-ts and let z, € M(LY). An L-ideal L is
said

(i) to HC-converge to x4, in symbol 2%z, (or x4 is an HC-limit point of £ ) if
HCR,, C L.
(ii) to HC-accumulates to z,, in symbol [IHogza (or x4 is an HC-cluster point of £)
if foreach p € Land ne€ HCR,,, pVn # 1x.
The union of all HC-limit points and HC-cluster points of £ are denoted by
HC-lim(L) and HC - adh(L), respectively.

Theorem 4.9. Let £ be an L-ideal in L-ts (L~ 1) and let x, € M(L*). Then
the following statements hold:

(i) HC-lim(£L) < HC -adh(L).
(i) £L2%, iff 24 € HC-lim(L) (£'X 24 iff 2o € HC-adh(L)).
(iii) lim(£) [15] < HC-lim(£) (adh(L) [15] < HC-adh(L)).

Proof.
(i) Let o, € HC-lim(L). Then for each n € HC R, we have n € £. Hence for
each p € L, we have nV u € £ and so nV pu # 1x. Hence z, € HC - adh(L).
(ii) Let L‘,H*CML'&, then by Definition 4.8(i), z, € HC-lim(L). Conversely, let
o € HC-lim(L) and let n € HCR,,. Since z, ¢ n = HC-cl(n), so we
have HC-lim(£) € n. Therefore there exists y, € M (LX) satisfying vy, €
HC-lim(£) but y, ¢ n, hence n € HC R, . So we have HCR,, CHCR, C L,
hence HCR,, C L. So EH—Cm:a. Similarly, one can easily verify that z, €
HC - adh(L).
(iii) Obvious. O

Definition 4.10 [15]. A nonempty family B C L¥ is called an L-ideal base if it
satisfies the following conditions, for each py, po € LX:

(i) If 1, po € B, then there exists pu3 € B such that pus > py V us € B.
(ii) 1x ¢ B.

Then £ = {p € LX: o < p for some p € B} is an L-ideal and it is said to be the
L-ideal generated by B.

356



Theorem 4.11. Let £ be an L-ideal in an L-ts (L*,7) and let x, € M(LX). If
7o € HC-adh(L) then there is in LX an L-ideal J O L with z, € HC-lm(7).

Proof. Let z, € HC-adh(L), then for each n € HCR,_ and each p € L,
NV # 1x, hence there exists 2, € M (LX), zo ¢ 7V . Choose B = {nV u: u €
L,m € HCR,,_ }. Then B is an L-ideal base in LX. Then J = {p € LX: p <
A for some A = 1V pu} is an L-ideal in L* and we call J the L-ideal generated by
B. Tt is easy to show that J D L. Now let n € HC R, . Since z, € HC-adh(L),
sonV pu # 1x for each p € L, hence nV o € B. Moreover, since nV . = 1V u, SO
nVp € J and since n <NV pu, son € J. Hence z,, € HC-lim (7). O

Definition 4.12 [15]. An L-ideal £ in L is called maximal if for every L-ideal
L' L C L* implies £ = L*.

Theorem 4.13. If £ is a maximal L-ideal in an L-ts (LX,7), then
HC-adh(£) = HC-lim(£).

Proof. Tt follows from Theorems 4.9 (i) and 4.11. O

Theorem 4.14. Let both £; and Lo be L-ideals in L-ts (L™, 7) with £1 C L.
Then the following statements hold:

(i) HC-lim(£;1) < HC-lim(L2).
(ii) HC-adh(Ly) > HC-adh(L,).

Proof.
(i) Let zo € HC-lim(Ly), then n € £, for each n € HC R,_. Since £; C Ls, so
n € Lo. Hence o € HC-lim(L2). Thus HC - lim(£;) < HC - lim(L2).
(ii) Let o € HC-adh(L2), then nV pu # 1x for each n € HC R, and each p € L.
Since £1 C Lo, so for each u € £1 we have nVu # 1x. Hence z, € HC-adh(L;).
Thus HC - adh(£1) > HC - adh(Ls). O

Theorem 4.15. Let L be an L-ideal in an L-ts (L~ , 7). Then both HC - lim(L)
and HC - adh(L) are HC-closed set in L.

Proof. Let z, € HC-cl(HC-lim(L£)) and n € HC R,_. Then HC-lim(L£) £ 7,
so there exists y, € M(LYX) such that y, € HC-lim(£) and y, ¢ 7. Since y., €
HC-lim(L), so for each o € HC R, we have o € L. Since y, ¢ 1, we haven € HC R,
and so n € L. Hence z, € HC-lim(£). Thus HC - cl(HC - lim(£)) < HC - lim(£). On
the other hand, since HC-lim(£) < HC-cl(HC-1lim(£)), so HC-cl(HC-lim(L)) =
HC-lim(£). This means that HC-lim(£) is an HC-closed set. Similarly, one can
easily verify that HC - adh(£) is an HC-closed set. O
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Theorem 4.16. Let (LX,7) be an L-ts, p € L~ and z, € M(LY). Then
2o € HC - cl(u) iff there exists an L-ideal £ in L™ such that £2% %, and uwé L.

Proof. Let z, € HC-cl(). Then for each n € HCR,_ we have u £ n. Let
L={oec LX: o <nforsomenc HCR,, }. It is easy to show that £ is an L-ideal.
It is clear that u ¢ £. Now we show that EH—cmja. Let A€ HCR,_,. We have A € L,
by the definition of £. So HCR,, C L. Thus EH—cmja. Conversely; let £ be an
L-ideal, 4 ¢ £ and EH—cmja. Then n € L for each n € HCR,,_. Since n € £ and
w ¢ L, we conclude p £ 1. Hence x, € HC - cl(p). O

Theorem 4.17. Let F: (LX,7) — (LY,A) be an L-valued Zadeh mapping and
let L1, Ly be L-ideals in LX | LY, respectively. Then F*(L£1) ={n € LY : (3u € L;)
(Voo € M(LY) (24 ¢ 1) (F(zo) € 1)} is an L-ideal in LY . Also, if F' is onto, then
F=YLy)={F~'(n): n € L3} is an L-ideal in L*X.

Proof. Straightforward. |

Definition 4.18 [14], [15]. Let £ be an L-ideal in an L-ts (L™, 7) and let D(£) =
{(Ta,pt): o € M(LX),p € £ and 7, ¢ p}. In D(L) we define the ordering relation
as follows: (zqa, 1) < (Yy, o) iff g1 < po. Then (D(L), <) is a directed set. Now
we define a mapping S(£): D(L) — M(LX) as follows: S(L)(za, i) = To. So
S(L) ={S(L)(xa, t) = Ta; (Ta, 1) € D(L)} is the L-net generated by L.

On the other hand, let S be an L-net in (L*,7), then £(S) = {u € LX: (3n € D)
(Vm e D,m = mn) (S(m) ¢ u)} is the L-ideal generated by S.

Theorem 4.19. Let £ be an L-ideal in an L-ts (L*,7). Then the following
equalities hold:

(i) HC-lim(£) = HC - lim(S(L)).
(ii) HC-adh(L) = HC-adh(S(L)).

Proof. (i) Let z, € HC-lim(L), thenn € L for eachn € HCR,_ (or HCR,_ C
L). Since n € L and x4 ¢ 7, S0 (zq,n) € D(L) where D(L) = {(zq,n): 2o €
M(LX),n € £ and z,, ¢ n}. Since £Lc>za, hence for each n € HC R, there exists
p € L such that n < p. Since n < p is equivalent to (zq,7) < (Y4, 1), we have
S(L)((yy, 1)) = yy € 1. So for each n € HC R, there exists (za,n) € D(L) such
that S(£)((yy. 1)) & 1 for each (y,, 1) € D(L) and (y, 1) > (2, ). S0 S(L) .
Hence z, € HC-lim(S(£)). Thus HC-lim(£) < HC-lim(S(L)). Conversely, let
zq € HC-lim(S(L)), then for each n € HC R, there exists (z.,A) € D(L) such
that S(L)((gy 1)) & 1 for each (g, 1) € D(L) and (g, 1) > (22, ). Since (g, ) >
(ze,A), we have y ¢ A (because p > A) and from S(L)((yy, 1)) = yy ¢ 1 wWe obtain
n < A. Since A € £, we have € L. Hence z, € HC-lim(£). So HC-1im(S(£)) <
HC-lim(£). Hence the equality hold. Thus HC-lim(£) = HC - lim(S(£)).
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(ii) Let xo € HC-adh(L), then nV u # 1x for each n € HC R, and each pu € L.
Since n € HC R,,,, we have nVpu # 1x for each (y,, ) € D(L). Therefore there exists
a molecule z. € M(LY) such that 2. ¢ 1,2 ¢ p. So (ze,p) € D(L) and (z-,p) >
(Yy, 1), 50 S(L)(2e,p8) = ze ¢ m. So for each n € HC R,,, and each (y,,u) € D(L)
there exists (ze, 1) € D(L) such that (ze,p) > (yy, 1) and S(L)(ze, 1) = 2 ¢ 7.
So z, € HC-adh(S(£)). Hence HC-adh(£) < HC-adh(S(£)). Conversely, let
2o € HC-adh(S(L£)). Let n € HCR,, and p € L. Since p € L, so p # 1x
and there exists y, € M(LYX) such that y, ¢ u. So (y,,u) € D(L). Now since
zo € HC-adh(S(L)), there exists (z:,A) € D(L) such that (z.,\) > (y,,u) and
S(L)((ze,A\)) = 2z ¢ m. Since ze € N\ zc €, 80 ze €V Aand A > p, 80 zc €V p.
Hence nV 1 # 1x. So we have nV u # 1x for each n € HC R, and each p € L.
Hence z, € HC-adh(£). So HC-adh(S(£)) < HC-adh(L). Hence the equality is
satisfied. Thus HC-adh(£) = HC-adh(S(£)). O

Theorem 4.20. Suppose that S is an L-net in an L-ts (L, 7), then:
(i) HC-1lim(S) = HC - im(L(S)).
(if) HC-adh(S) < HC-adh(L(S5)).

Proof.

(i) Let o € HC-lim(S). Then for each n € HC R, there exists m € D such
that S(n) ¢ n for each n € D, n > m. Since S(n) ¢ n, so by the definition
of £(S) we have n € L(S) for each n € HCR,,. So HCR,, C £(S). Hence
2o € HC-Um(L(S)). So HC-1lim(S) < HC-lim(L(S)). Conversely, let z, €
HC-lim(£(S)). Then for each n € HC R, there exists A\ € L£(S) such that
17 < A. Since A € L£(S), so by the definition of £(S) for each A € L(S) there
exists m € D such that S(n) ¢ A for each n € D, n > m. Since nn < A\, so
S(n) ¢ n. Hence z, € HC-1lim(S). So HC-lim(£(S)) < HC-lim(5).

(ii) Let xo € HC-adh(S). Then for each n € HC R, and each m € D there exists
ny € D such that ny > m and S(n3) ¢ 7. By the definition of £(S), for each
A € L£(S) and each m € D there exists na € D such that no > m and S(ns) € A.
Since D is a directed set, there exists ng € D such that ng > ni, ng > ns and
n3z = m. Thus (Vn € HCR,,) (VA € L(S)) (S(n3) ¢ nV A). Hence nV A # 1x
and so z, € HC-adh(£(S)). Hence HC-adh(S) < HC-adh(L(S5)). O

5. HL-CONTINUOUS MAPPING

The concept of H-continuous mappings in general topology was introduced by
Long and Hamlett in [10]. Recently, Dang and Behera extended the concept to I-
topology [4] using the almost compactness introduced by Mukherjee and Sinha [11].
But the almost compactness has some shortcomings, for example, it is not a “good
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extension”. In this section, we introduce a new definition of H-continuous mappings
to be called HL-continuous on the basis of the notions of almost N-compactness due
to [6] and R-nbds due to [12].

Definition 5.1. An L-valued Zadeh mapping F': (LX,7) — (LY, A) is said to
be:

(i) H-continuous if F~%(n) € 7/ for each almost N-compact closed set 1 in LY.
(ii) H-continuous at a molecule z, € M(LX) if F~}(\) € R, for each A\ €

Theorem 5.2. Let F': (L*X,7) — (LY, A) be an L-valued Zadeh mapping. Then

the following assertions are equivalent:
(i) F is HL-continuous.

(i) F is HL-continuous at x, for each molecule x,, € M(LX).
(iii) If n € A and 7' is almost N-compact, then F~1(n) € 7.

These statements are implied by
(iv) If n € LY is almost N-compact, then F~*(n) € 7.

Moreover, if (LY, A) is a fully stratified LTs-space, all the statements are equiva-
lent.

Proof. (i) = (ii): Suppose that F: (L*X,7) — (LY,A) is HL-continuous,
zq € M(L¥) and XA € HC Rp(,,), then F~*(\) € 7/. Since F(z,) ¢ A is equivalent
to xo & F71(N), so F7Y(\) € R,,. Hence F is HL-continuous at z.

(i) = (i): Let F: (L*,7) — (LY,A) be HL-continuous at z, for each z, €
M(LX). If F is not HL-continuous, then there is an almost N-compact closed set
n € LY with cIl(F~1(n)) £ F~Y(n). Then there exists z, € M(L¥) such that
To € cl(F71(n)) and z, ¢ F~1(n). Since z, ¢ F~!(n) implies that F(x,) ¢ n,
so n € HCRp(,,). But F~'() ¢ R, a contradiction. Therefore, F must be
HL-continuous.

(i) = (iii): Let F: (LX,7) — (LY, A) be HL-continuous and € A with 7’ is
almost N-compact. Then by the HL-continuity of F' we have F~!(n’) € 7/, which is
equivalent to (F~1(n)) € 7. So F~1(n) € 7.

(iii) = (i): Let n € LY be an almost N-compact closed set, so 1’ € 7 and by (iii)
we have F~1(1/) € 7. Then F~1(n) € /. Hence F is HL-continuous.

(iv) = (i): Let n € LY be an almost N-compact closed set. By (iv), F~1(n) € 7'.
Hence F' is HL-continuous.

Now suppose that (LY, A) is a fully stratified LT5-space.

(i) = (iv): Let n € LY be an almost N-compact set. Since (LY, A) is a fully
stratified LTq-space, so n € A’. Thus by (i), F~1(n) € 7. O
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Theorem 5.3. Let F:: (LX,7) — (LY,A) be a surjective L-valued Zadeh map-

ping. Then the following conditions are equivalent:

(i) F is HL-continuous.

(ii) For each p € LX, F(cl(u)) < HC-cl(F(p)).
(iii) For eachn € LY, cl( LYm)) < F~Y(HC - cl(n)).
(iv) For eachn € LY, F~Y(HC-int(n)) < int(F~1(n)).

(v) F~1(p) is open in L* for each HC-open set ¢ in LY.
(vi) F~Y(N) is closed in L™ for each HC-closed set \ in LY .

Proof. (i) = (ii): Let u € LX and z,, € cl(p), then F(z,) € F(cl(x)). Further
let A\ € HC Rp(s,), so F~'(X) € Ry, by (i). Since z, € cl(u) and F~Y()\) € R,,,
so u £ F~1()\). Since F is onto, so F(u) > FF~'(\) = A\. Thus F(u) £ A and
A€ HC Rp(g,). So F(xq) € HC-cl(F(1)). Thus F(cl(p)) < HC-cl(F (1))

(i) = (iii): Let n € LY. Then F~!(n) € L*. By (ii) we have F(cl(F~1(n))) <
HC-cl(FF~Y(n)) < HC-cl(n). Then F(cl(F~*(n))) < HC-cl(n) and so F~1F(cl
(F~1(n))) < F~Y(HC-cl(n)), which implies that cl(F~1(n)) < F~1F(cl(F~1(n))) <

“L(HC - cl(n)). Thus cl(F~1(n)) < F~YHC-cl(n)).

(iil) = (V) Let n € LY, then cl(F~(1)) < F~Y(HC-cl(n)) by (iii).
Since cl(F L)) = (int(F~1(n))) and F~Y(HC-cl(y)) = (F~ (HC int(n)))’,
&) (mt L)) < (F~Y(HC-int(n)))" and taking the complement, int(F~1(n)) >

~H(HC - int(n)).

( v) = (v): Let ¢ € LY be an HC-open set. By (iv), F~!(HC-int(p)) <
int(F~1(0)), so F~1(p) < int(F~1(p)). Thus F~1(p) € 7.

(v) = (vi ) Let A € LY be an HC-closed set. By (v), F~'(\') € 7. Then
(F7XN) =F'(N)er. So F7*(\) e,

(vi) = (i): Let 17 be an almost N-compact closed set in LY. So by Theorem 3.4
(ii) we obtain that n is an HC-closed set in LY. By (vi), F~1(n) € /. Hence F is
HL-continuous. g

Theorem 5.4. Suppose the mapping F: (LX,7) — (LY, A) from an L-ts (LX)
into an LTy-space (LY, A) is L-valued Zadeh HL-continuous. Then the L-valued
Zadeh mapping F|FX): (LX,7) — (LF0, Ap(x)) is also HL-continuous.

Proof. It is similar to that of Theorem 3.8 in [4]. O
Theorem 5.5. If F: (LX,7) — (LY,A) is an L-valued Zadeh HL-continuous

mapping and A C X, then the L-valued Zadeh mapping F|s: (LA, 74) — (LY, A)
is HL-continuous.

Proof. Let n € LY be an almost N-compact and closed. Since F is HL-
continuous, so F~1(n) € 7/ and (F|a)~"'(n) = F71(n) A14 € 7. Hence F|a:
(LA, 74) — (LY, A) is HL-continuous. O
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It is easy to show that the composition of two HL-continuous mappings need not
be HL-continuous. However, we have the following result.

Theorem 5.6. If F: (LX,7) — (LY, n) is L-valued Zadeh continuous and
G: (LY, 7)) — (L?,73) is L-valued Zadeh HL-continuous, then the L-valued Zadeh
mapping G o F: (L*, 1) — (L%, 73) is HL-continuous.

Proof. Straighforward. |

Theorem 5.7. If (LX,7) and (LY, A) are L-ts’s and 1x = 14V 1, where 14 and
1p are closed sets in L and F: (LX,7) — (LY, A) is an L-valued Zadeh mapping
such that F|4 and F|p are HL-continuous, then F is HL-continuous.

Proof. Let 14,1 € 7. Let u € LY be an almost N-compact and closed.
Then (F[4)~ (1) V (Fl5) (1) = (F~1 () ALa) V (F~ () ALg) = F () A (1a v
lp) = F~'(u) N1x = F~'(u). Hence F~'(n) = (Fla)~'(n) V (F|p) " (n) € 7. So
F: (LX,7) — (LY, A) is HL-continuous. |

Theorem 5.8. If F: (LX,7) — (LY,A) is an injective L-valued Zadeh HL-
continuous mapping and (LY, A) is an N-compact LT;-space [8], then (L%, 7) is an
LT;-space.

Proof. Let z,,ys € M(LX) be such that  # y. Since F is injective, so
F(z4) and F(yg) are in M(LY) with F(z) # F(y). Since (LY, A) is an LT;-space,
so F(z,) and F(yg) are closed sets in (LY, A). Also, since (LY, A) is N-compact, so
F(zq) and F(yg) are N-compact and closed sets, hence F(z,) and F(yg) are almost
N-compact and closed sets. Now, since F' is HL-continuous, so F'~'F(z,) = 1, and
F~'F(yg) = yg are closed in (L~, 7). Hence (L, ) is an LT -space. O

Theorem 5.9. Let F': (L~X,7) — (LY, A) be an L-valued Zadeh mapping. Then
the following conditions are equivalent:
(i) F is HL-continuous.
(ii) For each zo € M(LX) and each L-net S in LX, F(S)2SF(xa) if S — x4 and
F' is onto.
(iii) F(lim(S)) < HC-lim(F(S)), for each L-net S in LX.

Proof. (i) = (ii): Let 2o € M(L¥X) and let S = {2% ;n € D} be an L-net
in L~ which converges to zo. Let n € HC Rp,,), then by (i), F~*(n) € R,,,. Since
S — 1z, there exists n € D such that for each m € D and m > n, S(m) ¢ F~1(n).
Then F(S(m)) ¢ FF~1(n) =7, thus F(S(m)) ¢ 1. Hence F(S)2SF (z,).

(ii) = (iii): Let xo € HC-1im(S), then F(zo) € F(HC-1lim(S)) and by (ii) also
F(zq) € HC-lim(F(S)). Thus F(HC-1lim(S)) < HC - im(F(S)).
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(iii) = (i): Let n € LY be HC-closed and let x, € M (LX) with z, € cl(F~1(n)).
Then by Theorem 2.8 in [14], there exists an L-net S in F'~!(n) which converges to
Zo. Since z, € lim(S), hence F(z,) € F(lim(S)). By (iii), F(zq) € F(lim(9)) <
HC - lim(F(S)) and so F(S)2SF(xz,). Since S is an L-net in F~1(y), we have
S(n) € F~1(n) for each n € D. Thus F(S(n)) € FF~1(n) <n. So F(S(n)) € n
for each n € D. Hence F(S) is an L-net in 5. Since F(S)EF(xa) and F(9) is
an L-net in n, so by Theorem 4.4, F(z,) € HC-cl(n). But since n is HC-closed, so
n = HC-cl(n). Thus F(z,) € n. Hence x, € F~1(n). So cl(F~1(n)) < F~1(n).
Hence F~1(n) € 7. Consequently, F' is HL-continuous. O

Theorem 5.10. Let F: (LX,7) — (LY,A) be an L-valued Zadeh mapping.
Then the following conditions are equivalent:
(i) F is HL-continuous.
(ii) For each z, € M (L) and each L-ideal L which converges to x, in L*X, F*(L)
HC-converges to F(z).
(iii) F(lim(£)) < HC-lim(F*(L)) for each L-ideal L in L.

Proof. Follows directly from Theorems 4.20 and 5.9. g

6. COMPARISON OF L-VALUED ZADEH MAPPINGS

Definition 6.1. An L-valued Zadeh mapping F': (LX,7) — (LY, A) is said to
be:
(i) almost L-continuous iff F~1(n) € 7/ for each regular closed set n € LY,
(i) CL-continuous iff F~1(n) € 7/ for each N-compact and closed set n € LY.

Theorem 6.2. Every HL-continuous mapping is CL-continuous. The converse is
true if the codomain of the mapping is an L Ry-space.

Proof. Let F: (L¥,7) — (LY, A) be L-valued Zadeh HC-continuous and let
n in LY be an N-compact and closed set. Since every N-compact set is almost
N-compact, hence 7 is almost N-compact and closed. By HL-continuity of F' we
have F~1(n) € 7. So F is CL-continuous. Conversely; let F': (L%, 7) — (LY, A) be
L-valued Zadeh CL-continuous and let (LY, A) be an L Ry-space. Let n € LY be an
almost N-compact closed set, then by Theorem 3.10 in [6] 1 is N-compact closed. By
CL-continuity of F' we have F~1(n) € /. So F is an HL-continuous mapping. a
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Theorem 6.3. Every L-continuous mapping is HL-continuous.

Proof. Let F: (LX,7) — (LY,A) be an L-valued Zadeh L-continuous map-
ping and n € LY an almost N-compact closed set. Then n € A’, so by L-continuity
of F we have F~1(n) € /. Thus F is HL-continuous. O

The following example shows that not every HL-continuous mapping is L-
continuous.

Example 6.4. If L = [0, 1], then the mapping defined in Example 3.6 in [4] is
HL-continuous but not L-continuous.

Theorem 6.5. If F: (L%,7) — (LY,A) is an L-valued Zadeh almost L-
continuous, bijective mapping and (LY,A) is a fully stratified LTs-space, then
F=1: (LY, A) — (L, 7) is HL-continuous.

Proof. Let u € LX be an almost N-compact and closed set. Since F is almost
L-continuous so by Theorem 4.2 in [6], F/(x) is almost N-compact in (LY, A). Also,
since (LY, A) is a fully stratified LTy-space, so F(u) € A’. Thus F(u) is almost
N-compact closed and (F~1)~!(u) = F(u) € A’. Hence F~1: (LY,A) — (L%, 1) is
HL-continuous. ]

The following theorem shows that under some reasonable conditions HL-continuity
and L-continuity are equivalent.

Theorem 6.6. Let F: (LX,7) — (LY, A) be L-valued Zadeh HL-continuous and
let (LY, A) be a fully stratified LTy-space. If F(1x) is an L-fuzzy set of an almost
N-compact set of LY, then F is L-continuous.

Proof. Let A € A’ and let n € LY be an almost N-compact set containing
F(1x). Sincen € LY is almost N-compact and (LY, A) is a fully stratified LTo-space,
son € A’. Thus n A X € A’. Hence by Theorem 2.5 (ii), n A A is almost N-compact.
Thus nAX € LY is an almost N-compact and closed set. Since F is HL-continuous, we
have F~1(nAX) € 7. But F7(nAXN) = F7 I AF~Y(\) =1x AF1(\) = F~1()),
so F~Y(\) € 7/. Hence F is L-continuous. O

Corollary 6.7. Let (LX,7) be an almost N-compact space and (LY, A) a fully
stratified LTy-space. If F: (LX,7) — (LY,A) is a bijective L-valued Zadeh L-
continuous mapping, then F' is an L-homeomorphism [7].

Proof. By Theorem 6.5, F~! is HL-continuous and by Theorem 6.6, F~! is
L-continuous. 0
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Theorem 6.8. For an L-valued Zadeh mapping F: (LX,7) — (LY,A) the fol-
lowing assertions hold:
(i) F: (LX,7) — (LY,A) is HL-continuous iff F*: (LX,7) — (LY, Anc) is L-
continuous.
(i) F: (LX,7) — (LY,A) is CL-continuous iff F*: (L*,7) — (LY, Anc) is L-
continuous.
(iii) The identity mappings Iy: (LY,A) — (LY,Anc) and Iy*: (LY,Anc) —
(LY, Axc) are L-continuous.
(iv) I;lz (LY, Auc) — (LY,A) is HL-continuous and Iy* 7t (LY, Anc) —
(LY, Anc) is CL-continuous.

Proof. Straightforward. |

Theorem 6.9. Let F': (LX,7) — (LY,A) be an L-valued Zadeh HL-continuous
mapping. If F*: (LX,7) — (LY, Anc) is an L-closed (L-open) mapping, then so
is F.

Proof. Let u be a closed set in (LX,7). By hypothesis, F*(u) is a closed set
in (LY, Auc). By Theorem 6.8 (iii), the identity map Iy: (LY,A) — (LY, Auc)
is L-continuous, so Iy ' (F*(u)) is a closed set in (LY, A). But I;;' o F* = F, so
I;H(F*(u)) = F(p) is a closed set in (LY, A). Thus F is an L-closed mapping. The
proof for the case in the parentheses is similar. O

Corollary 6.10. If F: (LX,7) — (LY,A) is a bijective L-valued Zadeh HL-
continuous mapping and F*: (L~ 7) — (LY, Anc) is an L-valued Zadeh L-closed
(or L-open) mapping, then F~1 is L-continuous.

Proof. Let F* be a L-closed (L-open) mapping and p a closed (open) set in
(LX,7). Then by Theorem 6.9, F is a L-closed (open) mapping, so F'(u) is a closed
(open) set in (LY, A). But F(p) = (F~1)~1(u). Thus F~! is L-continuous. O

Theorem 6.11. Let (LX,7) be an L-ts. If (LX,myc) is an LTs-space, then
(LX,7) is an almost N-compact space.

Proof. Let ® = {n;: j € J} C 7 be an a-RF of 1x. Since (LX,c) is an
LTs-space and tgc’ C 7/, there exist almost N-compact closed sets p and A with
wV A=1x. Since p and A are almost N-compact sets, there exist ®; = {n;,: k =
1,2,...,n} € 2 and @), = {n;,: h = 1,2,...,m} € 2® with ®; and ®; are
almost a-RF of u and A, respectively. Thus for each x,, € p there exists n;, € @
with 7;, € R, and also for each z,, € A there exists 7;, € ®, with n;, € Ry,
where 71,72 € 8*(a). Now, since @ V @), € 2(%), so for each z(,,y,) € VA = 1x
there exists 7);, € (®x V ®p) with 1;, € Ry . .-
compact space. (I

Hence (LX,7) is an almost N-
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Theorem 6.12. Let F': (L~X,7) — (LY, A) be an L-valued Zadeh HL-continuous
mapping. If (LY, Auc) is a fully stratified LT-space, then F is L-continuous.

Proof. Follows from Theorems 6.6 and 6.11. O
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