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OSCILLATION OF SECOND ORDER NEUTRAL DELAY
DIFFERENTIAL EQUATIONS
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Abstract. We establish some new oscillation criteria for the second order neutral delay
differential equation

[r()[z(t) + pOa[r ()] [* @) + p@O2lr (O] + a() f(z[o(1)]) = 0.

The obtained results supplement those of Dzurina and Stavroulakis, Sun and Meng, Xu
and Meng, Baculikova and Lackovi. We also make a slight improvement of one assumption
in the paper of Xu and Meng.
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1. INTRODUCTION

In this paper we deal with the oscillation of the second order neutral delay differ-
ential equation

(EY) @Iz +p@)[r O z(t) + p&)z[rON] + ¢(6)f (z[o(®)]) =0,

where o > 0 is a constant, p,q € C[tg, ), f € C(R,R).
We suppose throughout the paper that the following hypotheses hold:
(Hy) q(t) >0, ¢(t) = 0 only at isolated points, 0 < p(t) < 1, p(t) # 1 on any (T, c0);
t
(Hg) r(t) € Ctg,0), r(t) > 0, R(t) := / r1/%(s)ds — oo as t — oo;

to

Research supported by S.G.A. VEGA, Grant No. 1/003/09.

31



f(z)

=T > 3> 0 for z # 0;
(Hy) o(t) € C*fto,00), o(t) < t, 0'(t) >0, lim o(t) = oo;
(Hs) 7(t) € Ctg,00), 7(t) < t, tlirgor(t) = o0.

By a solution of Eq. (ET) we mean a function x(t) € C[T,,00), T, > to, such
that z(t) = x(t) + p(¢t)x[r(¢)] has the property r(t)|z’(t)|a_1z’(t) € CYT,,o0) and
x(t) satisfies (E) on [T, 0). We consider only those solutions x(t) of (E™) which
satisfy sup{|z(t)|: t < T} > 0 for all T > T,.. We assume that (E1) possesses such
a solution. A nontrivial solution of (E™) is said to be oscillatory if it has arbitrarily
large zeros; otherwise it is called nonoscillatory. Equation (ET) is oscillatory if all
of its solutions are oscillatory.
The oscillatory properties of the corresponding linear equation

(r(t)y") +a@)ylr(t)] =0

have been extended to (E™) with p(t) = 0 and f(z) = = by Mirzov [11], [12], [13],
Elbert [5], [6], Kusano et al. [8], [9], Chern et al. [3], Agarwal et al. [1].

Dzurina and Stavroulakis [4] generalized these oscillatory criteria to a particular
case of (ET) when p(t) =0, f(x) = |z|* 1z, namely

(%) (r®)’ (@)’ (1) + a(@)ulr () ulr ()] = 0.

In [4], Eq. (*) was studied in two separate cases under the assumptions 0 < a < 1
and « > 1, respectively. Sun and Meng in [14] presented a technique that offers a
perfect result for all o > 0.

Baculikova and Lackova [2] have studied a particular case of (E*) of the form

[r()1[z(t) + Oz (r()]'[* 2 (t) + pO)a(r O] + a(®)|zlo()]]* " z[o(t)] = 0.

Their oscillatory condition obtained by using the integral averaging method requires
the restriction @ > 1. The technique presented in this paper allows us to drop this
restriction.

The main aim of this paper is to extend the integral averaging technique to (E™)
in order to obtain new oscillatory criteria for the general equation (ET).
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2. MAIN RESULTS
We need the following lemma.
Lemma 2.1 (See [7]). If A and B are nonnegative constants, then
F(A,B)=A* - MB* '+ (A-1)B*>0, A>1

and the equality holds if and only if A = B.

Proof. Note that if A =0 then F(A,B) = (A —1)B* > 0. For A > 0 we have
F(A,B) = AM1 - XCM1 + (A =1)C?,
where C' = B/A. Using standard methods of Calculus one can easily verify that
f(C)y=1-XCM'+(A-1)C*>0.

The proof is complete. O

We will use a “modified” integral averaging method. Let us consider a function
H(t, s) satisfying the following conditions:

(i) H(t,s) > 0fort>s > to,
(ii) H(t,t) =0 and 0H(t,s)/0s < 0.

Denote for t > s > tg

8H(t,s))a+1.

Qlt, ) = H™*(t,5) (0" (5)H (t,5) + Rlo(s)}r/*[o(s)] - =

Theorem 2.1. If

W tmsw e [ [ R ()50~ plo(s)”

3 1 Q(t,s)
(e + 1)1 Rlo(s)[rt/*[o(s)][o" ()]

ds = oo,

then Eq. (E™) is oscillatory.

Proof. Assume to the contrary that x(¢) is a nonoscillatory solution of Eq.
(Et). We may assume that x(¢f) > 0. The case of z(t) < 0 can be proved by the
same arguments. Set

2(t) = 2(t) + p)=[r(t)].
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Then z(t) > z(t) > 0 and

()2 O] O = —g@®) f@lo(®)]) <0.

There are two possibilities for 2/(¢):
(i) #'(t) >0,
(ii) 2'(t) <0 fort > 1 > to.
The condition (ii) implies that for some positive constant M and for all t > ¢1 > o

r(t)|2 () * 12 (1) < =M < 0.

Thus

() > (%)W.

Integrating the above inequality from t; to ¢, we obtain
2(t) < z(tr) = MY (R(t) — R(t1)).

Letting ¢ — oo in the above inequality and using (Hz), we get z(t) — —oo. This
contradiction proves that (i) holds.
For the case (i), we obtain

(2) w(t) = 2(t) — p(t)z[r(t)] = 2(t) — p(t)2[r(t)] = (1 — p(£))=(?).
Combining the above inequality and (H3) with Eq. (E™1), we have

3) [r(@®) (' (1)) + Ba(t)(1 — plo()])*2*[o(t)] < O

and

Therefore

which implies that

2'[o(t)] r(t) Ve
) D) 2(7«[0@)])
Define

 perey )
(5) w(t) = () "L > 0
fort >t



Differentiating w(t), we obtain

(6) w'(t) = aR* Ho(t )]rl/(aﬁggg](;’(ff)()t)] + R%o(t)] V@‘ﬁai% ]
oty O E D) Lo (0l (1)
ol R

Using (3), (4) and (5), we have

, ao’(t) o o
W(0) € g lt) - R 0]a() (1 - plo(0)
B aa’(t) 'Ra-i-l[ ()] (a+1)/(y(t)( (t))oz+1
Rlo (/o (0)] o) ’
y 00'lt) o) e
< memreom Y T Re@ir @) ()

~ R[o(1)]Ba(t) (1 - plo(t))) "

Multiplying this inequality with H(¢,s) > 0 and then integrating from ¢; to t we

have
t H(t, 5)R*[o(5)]Bq(s) (1 — plo(s)]) " ds < t H(t,S)R[U(So;]ill(/?[a(s)]w(s)ds
— t S 00'(s) wetD/a () dg — t s)w'(s)ds
) AR o)) (e)do - J HEojw()ds.

Now integrating (by parts) from ¢; to ¢t we arrive at

| H SR o 0)]B0(6) (1 pla(s)) " ds
ol (s)H(t, s)
, Rlo@)r/[o(s)
) /
(

Rlo(s)r'/*o(s)] OH(ts) at1)/a
SH(ts) s ) —wlete )] ds

< H(t, t1)w(t1) +

X [w(s)(l +

ao’

Set A = w(s) and

1(1 . Rlo(s)]r'/*[o(s)] . 8H(t,s)>} 1/(>\*1)7

b= [)\ ao’(s)H(t, s) 0s

where A = (o +1)/a > 1. Then

(o’ (s)H(t,s) + R[U(s)]rl/a[a(s)]aH(t, 5)/0s)e Tt .

— )\ =
®  (-1B oo+ )P H Tt 5)[o" (s)]0
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Applying Lemma 2.1 to (7) and using (8) and the definition of the function Q(t, s),
we conclude that

H(ih) /t1 [H(t,s)Ra[U(S)]ﬂq(s)(l_p[a(s)])a
Q(t, s)

~ (a+ D)FIR[o(s)[r /[0 (s)][0" ()]

ds < w(ty).

Letting t — oo we get a contradiction with (1), since the left hand side of the previous
inequality tends to co. This completes the proof of Theorem 2.1. ([

3. CONCLUDING REMARKS

Remark 1. Note that if p(t) = 1 then (1) is never fulfilled. This is due to
the fact that (2) gives in this case only z(t) > 0 and our arguments of the proof of
Theorem 2.1 fail. So condition (H;) must hold and this assumption has to be added
also to Theorem 1 in [15].

Setting H(t,s) = (t — )™, n being a positive integer, Theorem 2.1 reduces to

Theorem 3.1. If

ummmﬁj%W;/[a—sWR%dﬁwmﬁu—pwwma

1 3 Q(t,s)
(o + 1)1 Rlo(s)]rt/*[o(s)][o" ()]

}ds:oo,

where

nRo(s)|r'/*[o(s)] )‘”1
t—s ’

Qt,s) = (t = 5)" (a0'(s) -
then Eq. (E™) is oscillatory.

For the particular case of (E™), namely for
(9) 2’ ()]°~ 2 () + +a(t)|[o(®)]|* 2o ()] = 0,

we have
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Corollary 3.1. If

1 t
1imsup7/ t—s)"
t—o0 (t_tl)n tl( )

<Jlrora - (757)" S (- ) s

then the equation (9) is oscillatory.

Recently, W. T. Li [Theorem 2.2 in [10]] presented the following oscillatory criterion

for
(10) [r(B)] (8)|*~ ' (6)) + q(t)|2[o(®)]]* z[o(£)] = 0.
Denote oH
S = —ha(t.s) VH(L5).

Theorem 3.2. If there exists a positive nondecreasing function o(t) € C[tg, >0)
such that

. t rlo(s)]o(s) (ha(s, t1) + Lz)/((;)) H(s,tl))aﬂ
(11) h?isogp /t1 {H(s,h)q(s) T T e (o () [H (s, )2 ] ds>0
and
) t 7“[0'( )] ( )(hg + o ) / )a+1

02 tmso [ )~ R )1<a ] s>
then the equation (10) is oscillatory.

On the other hand, Theorem 2.1 for (10) reduces to

Corollary 3.2. If
()t 7o [ [ (t,5)R® [0 (s)]a(s)

(00" (5)H(t,5) + Rlo(s)}r/lo(s)] - 0H (1,)/05)1] |
[

(D)ot H(t, 5)Rlo(s)]rt/*[o(s)][o” (s)]
then the equation (10) is oscillatory.

Corollary 3.2 supplements Theorem 3.2 and reduces the conditions (11) and (12)
to one condition (13).
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