Seminář oddělení magnetik a supravodičů

Fyzikální ústav Akademie věd České republiky, v. v. i., Cukrovarnická 10, Praha 6

- ✓ Pondělí, **11. 7. 2011** ve **14:00** hod.
- ✓ Přednáškový sál u knihovny (budova A, 1. patro)

Excitation spectrum of well pinned vortex matter

Prof. B. Rosenstein

National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

Abstract. Core excitations spectrum of the Abrikosov vortex pinned by a dielectric inclusion or nanohole of sizes of order of coherence length is considered using the Bogoliubov – de Gennes equations beyond semiclassical approximation. While the lowest excitation, minigap, in free (or pinned by a metallic defect) vortex is of order Δ^2/E_F , it becomes of the order of the superconducting gap Δ (E_F is Fermi energy). The reconstruction of the quasiparticle excitations' spectrum has a significant impact on optical properties and tunneling density of states. We calculate the absorption amplitude and point out that, while in STM the energy gap Δ_{DOS} is between a quasiparticle state with angular momentum $\mu^e = \mu_0 > 1/2$ and quasihole with $\mu^h = -\mu_0$, the microwave absorption gap, Δ_{dir} , is between the states with $\mu^e = \mu_{min} = \mu^h \pm 1$. It is shown $\Delta_{dir} > \Delta_{DOS}$.