
www.elsevier.com/locate/optcom

Optics Communications 260 (2006) 175–183
Independent determination of the complex refractive index and
wave impedance by time-domain terahertz spectroscopy
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Abstract

We present a method for simultaneous determination of the refractive index and wave impedance – or equivalently of the dielectric
permittivity and magnetic permeability – of bulk samples. Two independent complex spectroscopic quantities required for an unambig-
uous evaluation are experimentally obtained by temporal windowing of time domain waveforms measured in the transmission or reflec-
tion geometry. We discuss several approaches that can be used for the evaluation of the complex refractive index and wave impedance;
three are quantitatively analyzed and compared. Successful evaluation of the dielectric and magnetic dispersion then crucially depends on
the accuracy of the wave impedance measurements.
� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Since time-domain terahertz (THz) spectroscopy (TDTS)
was first proposed [1], this technique has become very
widespread in many branches of physics, including charac-
terization of dielectric properties [2], investigation of
ultrafast dynamics in semiconductors and solutions [3]
and imaging and sensing applications [4]. Despite that,
there is a lack of studies focusing on the characterization
of magnetic properties of materials in the THz range. Most
of the works [5–12] postulate that the system exhibits only
a dielectric or only a magnetic behavior, but not both at the
same time, i.e., the refractive index and wave impedance of
materials are not considered as independent quantities.
However, a variation of the dielectric permittivity and
magnetic permeability in the same spectral range is likely
to occur in rare-earth orthoferrites [5,6] (YFeO3, TmFeO3,
etc.), uniaxial antiferromagnetic fluorides [7,8] (e.g., FeF2,
CoF2 and MnF2) and molecular magnets [9]. The magnetic
resonances in these materials are usually very narrow
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while the dielectric resonances are much broader. Using
the above assumption the dielectric and magnetic character
of resonances can be guessed.

At the same time, there is a rapidly growing interest in
metamaterials and especially in so-called left-handed mate-
rials [13–17]. These structures are usually constructed as
periodic arrays of metal wires and split-ring resonators.
More recently a composite material consisting of thin alter-
nating layers with dielectric and magnetic properties [18]
has been proposed. Despite the discrete nature of these
artificial materials on the sub-wavelength scale, they can
be considered as continuous media on the scale of the prob-
ing wavelength. Consequently, they can be described by
effective dielectric and magnetic susceptibilities which exhi-
bit a dispersion within the same spectral range. Indeed, in
this case the refractive index and the wave impedance are
independent spectral functions, the left-handedness being
attributed to the negative sign of the refractive index [13].
Thus, the simultaneous determination of these two com-
plex quantities is essential to demonstrate the left-handed-
ness of a metamaterial. The need for reliable methods
capable of simultaneous determination of effective dielec-
tric and magnetic functions in the THz range is further
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176 H. Němec et al. / Optics Communications 260 (2006) 175–183
urged by the recent demonstrations by Yen et al. [19] and
Moser et al. [20] of metamaterials exhibiting a negative
effective magnetic permeability in this spectral range.

Up to now, only little attention has been paid to a com-
plete dielectric and magnetic characterization of metamate-
rials: usually, only an enhanced power transmission is
observed in the spectral range where the left-handed behav-
ior is expected. However, as emphasized by Aydin et al.
[21], the plasma edge of the array of wires may exhibit an
appreciable red-shift in the presence of split-ring resona-
tors. Consequently, the existence of an enhanced transpar-
ency region does not provide an unambiguous evidence of
the left-handed behavior. A method of the determination
of effective dielectric and magnetic functions from complex
reflectance and transmittance spectra has been recently
proposed in [22]. It can be useful for monochromatic spec-
troscopies, however, it was demonstrated using data
obtained only from a numerical simulation.

In order to extend the application of the TDTS tech-
nique for investigating samples exhibiting both dielectric
and magnetic properties, we develop in this paper methods
useful for simultaneous determination of both refractive
index and wave impedance from TDTS measurements
assuming they are independent. Three representative
approaches are validated by characterization of three non-
magnetic samples and by characterization of a sample
displaying a weak sharp magnon in the spectra, which
allows to discuss the performance and applicability of these
methods. Since all analytical expressions derived are not
based on the assumption of nonmagnetic materials (l = 1),
these methods can then be directly applied to materials dis-
playing magnetic properties, with a proper knowledge of
experimental errors.

The paper is structured as follows. In Section 2, we sum
up basic concepts employed in this work – we describe the
typical experimental setups and recall the principle of the
determination of refractive index and wave impedance
from the transmission and reflection measurements. In Sec-
tion 3, we introduce and test experimentally the schemes
aimed at simultaneous determination of dielectric and mag-
netic functions. These schemes are further discussed and
their capabilities are compared with each other in Section
4. The contribution of this paper is finally summarized in
Section 5.

2. Basic considerations

2.1. THz time-domain transmission and reflection

spectroscopies

The principle of TDTS in the transmission configuration
consists in measuring the temporal profile of the electric
field of a picosecond THz pulse (THz waveform) transmit-
ted by the sample. The complex frequency spectrum of this
pulse is divided by that of the reference pulse (obtained
when the sample is removed from the THz beam path)
yielding the complex transmission function of the sample.
The multiple internal reflections of the THz beam in the
sample appear as a series of mutually delayed echoes in
the time-domain scan. The transmittance spectrum of the
sample calculated from such a waveform (i.e., including
all the internal reflections exceeding the noise level) is
denoted as T. However, for sufficiently thick samples these
echoes are separated in time. Thus TDTS allows one to
take advantage of a temporal windowing procedure [23]:
it is possible to determine experimentally the transmittance
Tm corresponding to the echo leaving the sample after 2m

internal reflections (e.g., T0 is the transmission function
corresponding to a direct pass without internal Fabry–
Pérot reflections). These spectroscopic methods are well
established and allow a precise determination of the dielec-
tric function of the sample material [24–26].

The determination of the complex reflectance spectrum
is analogous: the total complex reflectance R of the sample
can be decomposed into a series of echoes separated in time
and corresponding to the individual Fabry–Pérot contribu-
tions R0, R1, etc. The reference measurement is performed
using a mirror with known characteristics. Appropriate
care should be taken to determine the reflectance phase
with good accuracy (see [27] and references therein).

Our experimental setup for the transmission measure-
ments is a standard one similar to that employed in [28].
Our arrangement for the reflection measurements has been
described in detail in [27]. In both experiments, the THz
pulses are generated by a ZnTe [011] crystal via optical rec-
tification of amplified femtosecond laser pulses (wavelength
800 nm, repetition rate 1 kHz) and focused onto the sample
by ellipsoidal mirrors. The THz signal is detected in
another ZnTe [011] crystal using the electro-optic effect
and a standard polarization-sensitive optical detection sys-
tem with balanced photodiodes [29].

2.2. Determination of refractive index and wave impedance

Determination of the complex permittivity e and perme-
ability l – or equivalently complex refractive index
n ¼ ffiffiffiffiffi

el
p

and relative wave impedance z ¼
ffiffiffiffiffiffiffi
l=e

p
(called

simply impedance in the following) – from spectroscopic
measurements generally requires a knowledge of complex
transmittance and reflectance spectra T and R. This is par-
ticularly true for monochromatic spectroscopic methods
where the Fabry–Pérot reflections cannot be resolved in
time. Such an approach has been described from the point
of view of microwave applications in [22], and demon-
strated on numerically calculated complex transmittance
and reflectance spectra of metamaterials. In practice, this
method is very sensitive to an accurate determination of
the sample thickness as well as to a precise measurement
of the spectra [30,10]. Recently, a similar approach has
been also applied to the investigation of 1D photonic struc-
tures in the THz range yielding their characteristics with a
good accuracy [31].

In contrast with frequency-domain methods, the TDTS
has the advantage of phase sensitivity and the possibility of
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temporal windowing. Therefore, in principle, it is sufficient
to measure two independent complex spectral functions
among the set of Tm�s and Rm�s in order to determine both
n and z. Such an approach brings an important benefit: the
dependence of Tm and Rm on n and z is much simpler com-
pared to that of T and R and the extraction procedure is
more direct and transparent. We show in the next section
that the THz optical constants can be determined by an
analytical calculation in many cases: this avoids problems
with crossing of branches of mathematical solutions
encountered when only R and T are considered [30].

This paper does not treat ellipsometry-like studies
which, in principle, could also be convenient for determina-
tion of n and z. In such an experiment it would be necessary
to measure R0 for at least two angles of incidence and for
two polarizations. Recently, experiments with a fixed inci-
dence angle and a variable polarization were performed
[32], and THz reflectance measurements with variable angle
of incidence and a fixed polarization were also demon-
strated [33]. To our knowledge the combination of both
degrees of freedom has not been experimentally realized
yet.

The lowest-order transmittance and reflectance func-
tions for normal incidence read:

T 0ðn; zÞ ¼
4z

ðzþ 1Þ2
expð2piðn� 1Þfd=cÞ; ð1Þ

T 1ðn; zÞ ¼ T 0ðn; zÞ
z� 1

zþ 1

� �2

expð4pinfd=cÞ; ð2Þ

R0ðn; zÞ ¼
z� 1

zþ 1
; ð3Þ

where d is the thickness of the sample, f is the frequency,
and c is the speed of light in vacuum. We always assume
a planar wave formalism, linear electromagnetic response
of the sample and its plane parallel shape. The polarization
of the THz radiation is assumed to be linear and parallel to
one of the principal axes of the sample (in the case of its
optical anisotropy). We emphasize that expressions (1)–
(3) have sense only if the temporal windowing of the pico-
second THz pulses is possible. This means that the sample
should be sufficiently thick, such that the echoes coming
from internal reflections are separated in time. In practice,
the condition d Æ Ren J 0.7 mm is required for the tempo-
ral separation of the echoes. On the other hand, if a specific
spectral resolution Df is desired (e.g., in order to resolve
some sharper features in the spectra) the inequality
d Æ Ren J c/Df must be fulfilled.

For non-magnetic samples (i.e., l = 1), z reduces to 1/n.
However, in the general case, z and n are independent and
play very different roles in the transmission and reflection
functions. The refractive index describes the electromag-
netic propagation through the bulk of the sample. Its
impact on the measured transmitted or reflected signal
can be controlled by the choice of the sample thickness.
In contrast, the impedance is introduced into the transmis-
sion and reflection formulas by a polynomial fraction term
describing the impedance mismatch conditions at the
interfaces.

At first, we focus on the dependence of the spectra cor-
responding to the direct pass (T0 or R0) on n and z. The
generalization to higher order spectra is then straight-
forward.

Eqs. (1) and (3) are complex, i.e., they yield separate
equations for the phase and equations for the amplitude
of R0 and T0. The real part of the refractive index is mainly
determined by the equation for the phase of T0:

Ren ¼ 1þ c
2pfd

arg T 0 þ arg
ðzþ 1Þ2

4z
þ 2sp

 !
; ð4Þ

where s is an integer. The values of the function arg are
comprised between 0 and 2p. Note the existence of multiple
branches of mathematical solutions of Eq. (4) which are
spaced by 2p. The physically correct branch corresponding
to a specific value of s has to be selected. This task has been
addressed e.g., in [22,28,34] and is not of central impor-
tance in this paper. We only emphasize a simple fact that
an increase of the sample thickness d is connected to an
equivalent increase of the term (argT0 + 2sp) so that s is
incremented each time when the value of argT0 passes over
the discontinuity at 2p. As the experimental error of argT0

is independent of the sample thickness, the measurement of
a very thick sample can provide a very accurate value of the
real part of the refractive index [26]. This statement can be
easily understood when samples with low losses (Re z�
Imz) are considered: the term arg[(z + 1)2/4z] becomes neg-
ligible and the error in Ren obviously scales with 1/d.

Analogously, the imaginary part of the refractive index
is closely related to the equation for amplitude of T0: its
precision improves to some extent with increasing sample
thickness, too. The best precision is obtained if the thick-
ness of the sample approximately fulfills the condition
d Æ Imn � 0.05 mm, which avoids excessive absorption
losses in the spectral range 0.2–2.0 THz while keeping the
maximum thickness possible.

The determination of the impedance can be most easily
demonstrated for the case when the sample reflectance R0 is
available from the experiment. Eq. (3) is a simple algebraic
equation for z independent of the sample thickness. Conse-
quently, the precision of the extracted values of z is directly
linked to the experimental error in R0 (which depends
merely on the performance of a particular experimental
setup) and it cannot be improved by sample thickness
optimization.

2.3. Selected experimental methods

Based on the choice of measured quantities Tm and/or
Rm, several approaches for simultaneous determination of
n and z can be devised. Our reflection setup [27] is very suit-
able for the determination of the reflectance R0 corre-
sponding to the main echo. On the other hand, due to a
slightly oblique angle of incidence, higher order reflections
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Fig. 1. Refractive index n, impedance z, permittivity e and permeability l
of the investigated ZnTe sample, extracted from the transmittance and
reflectance measurements corresponding to the main echo. Dashed lines
correspond to the evaluation based on the measured complex refractive
index (uppermost panel) and on the assumption of a non-magnetic sample
(i.e., l = 1, e = n2, z = 1/n).
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exhibit a lateral displacement of the beam leading to a
decrease of accuracy. In this paper, we deal with the follow-
ing representative methods:

Method A: Measurement of the transmittance and reflec-
tance corresponding to the main echo (T0 and
R0) is presented in Section 3.1.

Method B: Measurement of the transmittance correspond-
ing to the main and to the first echo (T0 and
T1) is treated in Section 3.2.

Method C: Measurement of the transmittances corre-
sponding to the main echo for two samples
with different thicknesses dA and dB (TA,0 and
TB,0) is demonstrated in Section 3.3.

This list is not exhaustive. Approaches based on spectra
corresponding to higher-order internal reflections can be
naturally derived from this list, nevertheless we expect that
potential advantages (lower noise, possibility of thickness
refinement) [35] cannot bring at this stage significant
improvement of the state of the art.

3. Experimental results

3.1. Transmittance and reflectance of the main echo

In the framework of this strategy, the set of equations is
constructed from the reflectance and transmittance corre-
sponding to the directly passing pulses. The equation for
transmittance is particularly simple, as the measurement
can be performed under normal incidence (see Eq. (1)).
However, in the case of reflectance measurements, a
slightly oblique incidence has to be usually used. The
appropriate equation when using an s-polarized beam
reads

R0ðn; zÞ ¼
z cos hi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2hi

n2

q
z cos hi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2hi

n2

q ; ð5Þ

where hi is the angle of incidence (hi � 12.5� in our setup).
In order to determine the optical constants n and z, we
solved the set of Eqs. (1) and (5) numerically. As it has been
pointed out in Section 2.2, the numerical procedure pro-
vides several branches of mathematical solutions and the
physically correct branch has to be selected.

However, note that Eq. (5) can be well approximated by
Eq. (3) for small angles of incidence, allowing replacement
of the numerical extraction procedure by an analytical one.
In this case the impedance is determined from the measured
reflectance spectrum using Eq. (3) and, subsequently, the
refractive index is obtained using Eq. (1).

This approach was tested using a low-resistivity 0.885 mm
thick (11 0)-oriented ZnTe crystal. The THz properties of
the sample determined from the measured transmittance
and reflectance spectra T0 and R0 are summarized in
Fig. 1. Due to its small size the sample was fixed to an aper-
ture with a diameter of 3.5 mm. The long-wavelength part
of the spectra then can be affected by diffraction effects and
therefore it was removed from the data shown in Fig. 1. We
can clearly observe the contribution of free carrier absorp-
tion in the plot of the complex refractive index. Moreover,
around 1.7 THz, a weak superimposed resonance can also
be identified. A similar feature near this frequency has been
attributed to the TA(X) phonon [36]. Note, however, that
both these features are relatively weak and that they are
hidden by the noise in the plots of complex impedance.
In agreement with the assumption of a non-magnetic
response of ZnTe at THz frequencies, we find that the
permeability fits well with the value 1 + 0i.

Another material characterized by this method was the
rare-earth orthoferrite TmFeO3 [6]. The sample used was
a 0.916 mm thick plane parallel plate. Its normal was paral-
lel to the b crystallographic axis and it was oriented in the
experiments so that the THz electric field was parallel to
the a-axis. In this geometry, the THz spectra are expected
to present a sharp antiferromagnetic mode at 0.7 THz [5].
As observed in Fig. 2 this very weak resonance is detected



H. Němec et al. / Optics Communications 260 (2006) 175–183 179
in the spectrum of the complex refractive index. The varia-
tion of the refractive index induced by the antiferromagnetic
mode corresponds approximately to 1% of the background
value of Ren, thus exceeding the noise level by about an
order of magnitude. In contrast, the resonance is too weak
to be observed in the spectrum of the complex impedance.

As will be discussed later, the accuracy of the determina-
tion of the permittivity and permeability depends critically
on the experimental error of the impedance spectrum. It is
then clear that it is not possible to determine unambigu-
ously whether the character of the observed mode is dielec-
tric or magnetic from the measured data. It is worth
evaluating how much the precision of the impedance deter-
mination has to be improved in order to enable the unam-
biguous determination of the observed mode. For this
purpose we have performed a simultaneous fit of the mea-
sured n and z using a model of a magnetic spectrum pre-
senting a single underdamped harmonic oscillator and a
dielectric spectrum exhibiting a slow variation related to
a tail of a higher-frequency phonon mode. The results of
this fit along with the calculated permeability are shown
in Fig. 2. Apparently the magnetic mode induces a varia-
tion in the impedance spectrum of about 1% of the value
of Rez which is slightly below the noise level (�2%)
observed in this part of the spectrum.

3.2. Transmittance of the main and the first echo

This approach consists of measuring the transmittances
corresponding to the main pulse and to the first internal
reflection, which are described by Eqs. (1) and (2), respec-
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Fig. 2. Refractive index n and impedance z of TmFeO3 extracted from the
transmittance and reflectance measurements corresponding to the main
echo; electric field ka, magnetic field kc. Lines: fit of the spectra assuming a
sharp magnetic resonance and a slow dielectric variation corresponding to
a tail of a phonon mode. Inset: resonance in the magnetic permeability
resulting from the fit.
tively. The major advantages of this method are (i) the pos-
sibility of measurement under normal incidence, and (ii)
the use of a single experimental setup instead of two con-
siderably different ones as in Section 3.1. The determina-
tion of the sample THz properties is fully analytical: first,
the impedance spectrum is determined from:

T 3
0 expð4pifd=cÞ

T 1

¼ 4z
z2 � 1

� �2

ð6Þ

and, subsequently, the refractive index is obtained using
Eq. (1).

Note that the measured waveform may contain parasitic
echoes from the emitter, detector and other optics. These
artifacts should be avoided unless the first sample echo is
separated from them in time.

We validate this method using a (000 1)-oriented
0.452 mm thick sapphire crystal. The results of our mea-
surements are shown in Fig. 3. The refractive index exhibits
a flat response in agreement with [24].

3.3. Transmittance of samples with different thicknesses

The last approach is based on a measurement of trans-
mittances corresponding to the main echoes TA,0 and TB,0

of two samples with different thicknesses (dA and dB).
The applicability of this method can sometimes be limited,
since two samples of the same compound with different
thicknesses should be available. The determination of the
THz properties is based on a simultaneous inversion of
two equations of the form (1) where d is replaced by dA

and dB, respectively.
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Fig. 3. Refractive index n and impedance z of the sapphire sample,
extracted from the transmittance corresponding to the main echo and to
the first internal reflection. Dotted lines correspond to the evaluation
based on the measured complex refractive index (upper panel) and on the
assumption of a non-magnetic sample (l = 1, i.e., z = 1/n).
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The calculations are straightforward as the ratio of
transmittances TA,0/TB,0 directly yields a formula indepen-
dent of the impedance:

T A;0

T B;0
¼ expð2piðn� 1Þf ðdA � dBÞ=cÞ; ð7Þ

while the impedance can be analytically obtained from:

ðT B;0Þ
dA

dA�dBðT A;0Þ
dB

dB�dA ¼ 4z

ðzþ 1Þ2
. ð8Þ

This method was checked using two teflon slabs with thick-
nesses 2.02 and 3.95 mm. The THz properties of the teflon
determined by this method are displayed in Fig. 4. The flat-
ness of the refractive index agrees very well with data pub-
lished in [2].

4. Discussion

All the presented methods have several important char-
acteristics in common. A brief inspection of plots of the
refractive indices in Figs. 1–4 allows us to conclude that
the refractive index can be determined very accurately, pro-
vided the determination of the sample thickness is accurate.
The noise level of the data plotted in these Figures is smal-
ler than 0.01, i.e., several tenths of a percent of the real part
value. This can be understood keeping in mind the discus-
sion exposed in Section 2.2. More quantitative insight into
the problem can be obtained by differentiating Eqs. (1)–(3)
with respect to the measured transmittances or reflectances,
e.g., for the method A, one can write:
Dn ¼ oT 0

on

� ��1

DT 0 þ
oR0

on

� ��1

DR0.

In this way one easily finds the following expressions for
the relative errors of the complex refractive index:

Dn
n
¼ c

2pifnd
DT 0

T 0

þ ð1� zÞ2

2z
DR0

R0

 !
ð9Þ

for method A,

Dn
n
¼ c

2pifnd
6z� z2 � 1

2ð1þ z2Þ
DT 0

T 0

þ ð1� zÞ2

2ð1þ z2Þ
DT 1

T 1

 !
ð10Þ

for method B, and

Dn
n
¼ c

2pifnðdA � dBÞ
DT A;0

T A;0
� DT B;0

T B;0

� �
ð11Þ

for method C. DR0 and DTm are the errors of the measured
reflectance and transmittance spectra, respectively. They
involve both amplitude and phase error terms:

DR0

R0

¼ DjR0j
jR0j

þ iD/; ð12Þ

DT m

T m
¼ DjT mj
jT mj

þ iD/m. ð13Þ

These terms are in general frequency dependent, increasing
towards upper and lower ends of the spectra where R0 and
Tm vanish. A systematic phase error D/, D/j / f may also
appear due to the time-domain jitter of the THz pulse
position.

The important role of the sample thickness appears
clearly in the expressions (9)–(11). The accuracy of the
experimental value of the refractive index is significantly
improved by a proper selection of the sample thickness.
Note, however, that the precision of the refractive index
as determined by method C is controlled by the thickness
difference dA � dB of the two samples used rather than by
the sample thickness itself. Fig. 5(a) shows the variation
of Dn/n versus z (assuming that both n and z are real) at
f = 1 THz and for the optical thicknesses nd and n(dA � dB)
equal to 0.7 mm. As observed, the experimental error is of
the order of 0.1% for all the tested methods in agreement
with the experimental results.

In contrast, the accuracy of the impedance spectra can-
not be improved by a suitable selection of the sample
thickness. The error in z is determined by the performance
of the given setup, i.e., by the experimental error in the
reflectance and transmittance spectra. These depend
mainly on the scan-to-scan reproducibility of the signal
and on the shot-to-shot noise of the femtosecond laser
system; in the case of the reflectance measurements, it is
also critically dependent on the correct reflectance phase
determination. The sample thickness appears in Eqs. (6)
and (8) as an additional parameter to be accurately deter-
mined; a possible error Dd in this parameter may further
considerably decrease the accuracy of the impedance
value.
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(b) Plots based on Eqs. (14), (15) and (17), valid for any frequency and
sample thickness. The errors in the determination of the transmittance
(jDTm/Tmj) and reflectance (jDR0/R0j) spectra are assumed to be indepen-
dent and equal to 0.01. The sample thickness is assumed to be exactly
determined. Points on the curves represent expected errors for the samples
studied in this work assuming jDTm/Tmj = jDR0/R0j = 0.01.
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The permittivity and permeability can be expressed
respectively as the ratio and product of refractive index
and impedance. Their accuracy is thus controlled by the
quantity obtained with the least precision, i.e., by the
impedance in our case. Improvement of the impedance
accuracy is thus of prime importance. For this reason, we
compare the presented experimental approaches from the
point of view of the sensitivity of z to the errors in the mea-
sured Tm and R0 spectra. In the THz range, for a large
majority of materials, e > l, i.e., the impedance is com-
prised between 0 and 1. For clarity we restrict our discus-
sion to this interval, even if, based on the formulae given
below, it can be easily extended to any value of z. When
we speak about low-impedance compounds we refer to
materials with z � 0.2; by high-impedance compounds,
materials with z � 0.75 are meant.

Concerning method A for small incidence angles, Eq. (3)
can be applied. Differentiation of (3) leads to the following
estimation of the errors:
Dz
z
� DR0

R0

z2 � 1

2z
. ð14Þ

The variation of the relative error Dz/z versus 1/z is shown
by the solid line in Fig. 5 assuming a real z and a 1% error
in the reflectance determination (jDR0/R0j = 0.01). For the
investigated ZnTe sample, the last multiplicative term
appearing in the right-hand side of Eq. (14) amounts
approximately to 1.5 while jR0j � 0.5. Consequently, Eq.
(14) accounts for the noise level of Dz � 0.01–0.02 observed
in Fig. 1. Note also in Fig. 5 that Dz/z is smaller for higher
values of impedance, so it is about two times higher for
TmFeO3 than for ZnTe.

The situation is slightly more complex for method B.
First, let us assume that the thickness of the sample is
exactly known. One then finds using Eq. (6):

Dz
z
� 3

DT 0

T 0

� DT 1

T 1

� �
1� z2

2ð1þ z2Þ . ð15Þ

The variation of the relative error Dz/z versus 1/z is shown
by the dashed line in Fig. 5 assuming that errors in the
determination of T0 and T1 are independent and equal to
0.01. Numerically, this leads to similar values of Dz as in
the previous case, at least for low frequencies. In reality,
namely for absorbing samples, the relative error in T1 is
expected to be larger than that in T0.

Now, let us study the effect of the uncertainty in the
sample thickness Dd. One finds:

Dz
z
� 2pif Dd=c

1� z2

1þ z2
. ð16Þ

This may introduce a systematic error which increases with
frequency and reaches about 0.01 at 2 THz for an error as
small as 1 lm in the absolute sample thickness
determination.

Finally, we investigate the last method (C) which is also
critically dependent on the determination of the sample
thicknesses. First, we assume that the thicknesses of both
samples are exactly known. Differentiation of Eq. (8) then
leads to:

Dz
z
� a

DT B;0

T B;0
þ b

DT A;0

T A;0

� �
1þ z
1� z

; ð17Þ

where a = dA/(dA � dB) and b = dB/(dB � dA). It clearly
appears that the thicknesses of the two samples have to
be chosen quite different from each other to minimize the
error. In this study we have chosen dA � 2dB, i.e., a � 2
and b � �1.

The term (1 + z)/(1 � z) in Eq. (17) can take values from
about 1.5 for materials with a low z to nearly 10 for high-
impedance samples (cf. dotted line in Fig. 5). We clearly see
in Fig. 5 that high-impedance samples (like teflon chosen
for our study) exhibit a considerably higher experimental
error Dz than low-impedance ones. Indeed, for low-imped-
ance samples the magnitude of the experimental error in Dz

is found to be nearly comparable to that obtained in the
analysis of method B, while for high-impedance samples



Scheme Experiment Precision Sample thickness

Two different
setups required Good To be optimized for T0

Very simple;
parasitic echoes

should be avoided

Good at low frequencies;
(can be worse at high

frequencies)

– To be optimized for T0 and to
avoid excessive attenuation of T1

– Precise knowledge is essential
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required
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Fig. 6. Summary of specific properties of the three approaches presented in this article. (In the schemes, the THz beam is represented with oblique
incidence only for graphical clarity; all transmittance measurements are performed under normal incidence.)
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it may increase by a factor of 10. This is observed in Fig. 4
where the magnitude of Dz reaches 0.1 even for low
frequencies.

The uncertainty in the thickness of sample A (DdA) can
be accounted for using the development

Dz ¼ oz
odA

DdA

of Eq. (8). This yields:

Dz
z
� DdA

dB

dA � dB

2pinf
c

1þ z
1� z

. ð18Þ

Again, the systematic error introduced by this term will be
significant especially for high-impedance compounds and it
increases for high frequencies. We come to the same con-
clusion as above that the two samples should have quite
different thicknesses to minimize the experimental error.

The main features of the three experimental methods
discussed above are summarized in Fig. 6.

In our experiments the smallest variation of the mag-
netic permeability detectable in the impedance spectrum
is about 0.1. We have seen that this is not sufficient to
determine unambiguously the dielectric versus magnetic
character of the resonance observed in TmFeO3 which is
too weak (Dl � 0.02). On the other hand, we would like
to point out that all the methods developed in this paper
are directly applicable to investigation of metamaterials,
including left-handed media, as long as the typical size of
the unit cell is much smaller than the wavelength [17,19].
In this case it is not necessary to consider the multiple
reflections from each motif, since the metamaterial can be
described using an effective permittivity and permeability.
The characterization of the electromagnetic properties of
such a structure then requires an independent determina-
tion of both these quantities. The sensitivity of the methods
developed in this paper seems to be sufficient for metama-
terials which exhibit the negative refraction and which nec-
essarily present a spectral range with negative effective
permeability.

5. Conclusion

We have proposed and demonstrated three methods
which can be used for simultaneous determination of
the dielectric and magnetic functions from the transmit-
tance and reflectance spectra. All these methods take
advantage of the phase sensitivity and of the possibility
of temporal windowing of TDTS. Their common prop-
erty – the possibility of an accurate determination of
the complex refractive index and a less accurate determi-
nation of the complex wave impedance – was discussed.
The differences among these methods are summarized in
Fig. 6. It should be also pointed out that all these meth-
ods can be applied to the characterization of both classi-
cal materials and metamaterials exhibiting complex
behavior of dielectric and magnetic functions, as long
as the features in the spectra of the complex wave imped-
ance exceed the noise level.

Acknowledgements

This work was supported by the Academy of Sciences of
the Czech Republic (Project Nos. 1ET300100401 and
AVOZ10100520), and by the French Ministry of Educa-
tion through an ‘‘Action Concertée Incitative’’.

References

[1] D.H. Auston, K.P. Cheung, P.R. Smith, Appl. Phys. Lett. 45 (1984)
284.
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[28] P. Kužel, J. Petzelt, Ferroelectrics 239 (2000) 949.
[29] A. Nahata, A.S. Weling, T.F. Heinz, Appl. Phys. Lett. 69 (1996) 2321.
[30] R.E. Denton, R.D. Campbell, S.G. Tomlin, J. Phys. D: Appl. Phys. 5

(1972) 852.
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Lin, Ferroelectrics 254 (2001) 113.
[35] L. Duvillaret, F. Garet, J.-L. Coutaz, J. Opt. Soc. Am. B 17 (2000)

452.
[36] G. Gallot, J. Zhang, R.W. Mcgowan, T.-I. Jeon, D. Grischkowsky,

Appl. Phys. Lett. 74 (1999) 3450.


	Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy
	Introduction
	Basic considerations
	THz time-domain transmission and reflection spectroscopies
	Determination of refractive index and wave impedance
	Selected experimental methods

	Experimental results
	Transmittance and reflectance of the main echo
	Transmittance of the main and the first echo
	Transmittance of samples with different thicknesses

	Discussion
	Conclusion
	Acknowledgements
	References


