Lecture 8: Light propagation in anisotropic media

Petr Kužel

- Tensors classification of anisotropic media
- Wave equation
- Eigenmodes polarization eigenstates
- Normal surface (surface of refractive indices)
- Indicatrix (ellipsoid of refractive indices)

Anisotropic response

Isotropic medium, linear response:

$$P = \varepsilon_0 \chi E$$

$$D = \varepsilon E = \varepsilon_0 (1 + \chi) E$$

Anisotropic medium: the polarization direction does not coincide with the field direction:

$$P_{x} = \varepsilon_{0} (\chi_{11} E_{x} + \chi_{12} E_{y} + \chi_{13} E_{z}),$$

$$P_{y} = \varepsilon_{0} (\chi_{21} E_{x} + \chi_{22} E_{y} + \chi_{23} E_{z}),$$

$$P_{z} = \varepsilon_{0} (\chi_{31} E_{x} + \chi_{32} E_{y} + \chi_{33} E_{z}).$$

$$P_{i} = \varepsilon_{0} \chi_{ij} E_{j}$$

$$D_{i} = \varepsilon_{ij} E_{j} = \varepsilon_{0} (1 + \chi_{ij}) E_{j}$$

$$\left. \begin{array}{c} k \perp D \\ S \perp E \end{array} \right\} k \text{ is not parallel to } S$$

Tensors

Transformation of a basis:

$$f_j = A_{ij} e_i$$

Corresponding transformation of a tensor:

$$x_k = A_{ki} x_i'$$

$$x_i' = A_{ik}^{-1} x_k$$

1st rank (vector)

$$t'_{kl} = A_{ik}^{-1} A_{jl}^{-1} t_{ij}$$
 $t_{ij} = A_{ki} A_{lj} t'_{kl}$

$$t_{ij} = A_{ki} A_{lj} t'_{kl}$$

2nd rank

$$p_{i_1,i_2...i_n} = A_{k_1i_1}A_{k_2i_2}...A_{k_ni_n}p'_{k_1,k_2...k_n}$$

nth rank

Tensors: symmetry considerations

<u>Intrinsic symmetry</u>: reflects the character of the physical phenomenon represented by the tensor (usually related to the energetic considerations)

$$\varepsilon_{ik} = \varepsilon_{ki}^*$$

Extrinsic symmetry: reflects the symmetry of the medium

$$p_{i_1, i_2 \dots i_n} = A_{k_1 i_1} A_{k_2 i_2} \dots A_{k_n i_n} p_{k_1, k_2 \dots k_n}$$
 $\varepsilon_{ij} = A_{ki} A_{lj} \varepsilon_{kl}$

Example: two-fold axis along *z*:

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{array}{c} \varepsilon_{13} = A_{11}A_{33}\varepsilon_{13} = -\varepsilon_{13} & \Rightarrow & \varepsilon_{13} = \varepsilon_{31} = 0 \\ \varepsilon_{23} = A_{22}A_{33}\varepsilon_{23} = -\varepsilon_{23} & \Rightarrow & \varepsilon_{23} = \varepsilon_{32} = 0 \end{array}$$

Tensors: symmetry considerations

Second example: higher order axis along z:

$$\mathbf{A} = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{aligned} \mathbf{\epsilon}_{11} &= c^2 \mathbf{\epsilon}_{11} + s^2 \mathbf{\epsilon}_{22} - 2sc\mathbf{\epsilon}_{12} \\ \mathbf{\epsilon}_{22} &= s^2 \mathbf{\epsilon}_{11} + c^2 \mathbf{\epsilon}_{22} + 2sc\mathbf{\epsilon}_{12} \\ \mathbf{\epsilon}_{12} &= sc\mathbf{\epsilon}_{11} - sc\mathbf{\epsilon}_{22} + \left(c^2 - s^2\right)\mathbf{\epsilon}_{12} \end{aligned}$$

The above system of equations leads to:

$$(\varepsilon_{11} - \varepsilon_{22})s^2 = -2sc\varepsilon_{12}$$
$$(\varepsilon_{11} - \varepsilon_{22})sc = 2s^2\varepsilon_{12}$$

Solution for a higher (than 2) order axis: $\sin \alpha \neq 0$

$$\varepsilon_{11} = \varepsilon_{22}, \quad \varepsilon_{12} = 0$$

ϵ_{ij}

Axes systems:

- crystallographic
- optical (dielectric)
- laboratory

	Crystallographic system	Dielectric tensor	
Optical symmetry		optical system of axes	crystallographic system of axes
isotropic	cubic	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\varepsilon = \varepsilon_0 \begin{pmatrix} n^2 & 0 & 0 \\ 0 & n^2 & 0 \\ 0 & 0 & n^2 \end{pmatrix}$
uniaxial	hexagonal tetragonal trigonal	$\epsilon = \epsilon_0 \begin{pmatrix} n_o^2 & 0 & 0 \\ 0 & n_o^2 & 0 \\ 0 & 0 & n_e^2 \end{pmatrix}$	$\varepsilon = \varepsilon_0 \begin{pmatrix} n_o^2 & 0 & 0 \\ 0 & n_o^2 & 0 \\ 0 & 0 & n_e^2 \end{pmatrix}$
biaxial	orthorhombic	$\varepsilon = \varepsilon_0 \begin{pmatrix} n_x^2 & 0 & 0 \\ 0 & n_y^2 & 0 \\ 0 & 0 & n_z^2 \end{pmatrix}$	$\varepsilon = \varepsilon_0 \begin{pmatrix} n_x^2 & 0 & 0 \\ 0 & n_y^2 & 0 \\ 0 & 0 & n_z^2 \end{pmatrix}$
	monoclinic	$\varepsilon = \varepsilon_0 \begin{pmatrix} n_x^2 & 0 & 0 \\ 0 & n_y^2 & 0 \\ 0 & 0 & n_z^2 \end{pmatrix}$	
	triclinic	$\varepsilon = \varepsilon_0 \begin{pmatrix} n_x^2 & 0 & 0 \\ 0 & n_y^2 & 0 \\ 0 & 0 & n_z^2 \end{pmatrix}$	$\varepsilon = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{12} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{13} & \varepsilon_{23} & \varepsilon_{33} \end{pmatrix}$

Wave equation

Maxwell equations for harmonic plane waves:

$$k \wedge E = \omega \mu_0 H$$
$$k \wedge H = -\omega \varepsilon \cdot E$$

in the system of principal optical axes

$$\varepsilon = \varepsilon_0 \begin{pmatrix} n_x^2 & 0 & 0 \\ 0 & n_y^2 & 0 \\ 0 & 0 & n_z^2 \end{pmatrix}$$

Wave equation:

$$\mathbf{k} \wedge (\mathbf{k} \wedge \mathbf{E}) + \omega^2 \mu_0 \mathbf{\epsilon} \cdot \mathbf{E} = \mathbf{k} (\mathbf{k} \cdot \mathbf{E}) - k^2 \mathbf{E} + \omega^2 \mu_0 \mathbf{\epsilon} \cdot \mathbf{E} = 0$$

or

$$s(s \cdot E) - E + \frac{\omega^2}{k^2 c^2} \varepsilon_r \cdot E = 0$$

Wave equation: continued

We define effective refractive index:

$$n = \frac{kc}{\omega}$$

Wave equation in the matrix form:

$$\begin{pmatrix} n_x^2 - n^2(s_y^2 + s_z^2) & n^2 s_x s_y & n^2 s_x s_z \\ n^2 s_x s_y & n_y^2 - n^2(s_x^2 + s_z^2) & n^2 s_y s_z \\ n^2 s_x s_z & n^2 s_y s_z & n_z^2 - n^2(s_x^2 + s_y^2) \end{pmatrix} \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = 0$$

Solutions of this homogeneous system: det = 0.

- Effective refractive index *n* for a given propagation direction
- Frequency ω for a given wave vector k
- Surface of accepted wave vector moduli for a given ω (normal surface or surface of refractive indices)

Wave equation: continued

After having developed the determinant one obtains:

$$\left(\frac{\omega^{2}n_{x}^{2}}{c^{2}}-k^{2}\right)\left(\frac{\omega^{2}n_{y}^{2}}{c^{2}}-k^{2}\right)\left(\frac{\omega^{2}n_{z}^{2}}{c^{2}}-k^{2}\right)+k_{x}^{2}\left(\frac{\omega^{2}n_{y}^{2}}{c^{2}}-k^{2}\right)\left(\frac{\omega^{2}n_{z}^{2}}{c^{2}}-k^{2}\right)+k_{x}^{2}\left(\frac{\omega^{2}n_{x}^{2}}{c^{2}}-k^{2}\right)\left(\frac{\omega^{2}n_{z}^{2}}{c^{2}}-k^{2}\right)+k_{z}^{2}\left(\frac{\omega^{2}n_{x}^{2}}{c^{2}}-k^{2}\right)\left(\frac{\omega^{2}n_{y}^{2}}{c^{2}}-k^{2}\right)=0.$$

or in terms of the effective refractive index:

$$(n_x^2 - n^2)(n_y^2 - n^2)(n_z^2 - n^2) +$$

$$n^2 [s_x^2(n_y^2 - n^2)(n_z^2 - n^2) + s_y^2(n_x^2 - n^2)(n_z^2 - n^2) + s_z^2(n_x^2 - n^2)(n_y^2 - n^2)] = 0.$$

This is a quadratic equation in n^2 , thus it provides two eigenmodes for a given direction of propagation s.

Wave equation: continued

In the case when $n \neq n_i$, the wave equation can be further simplified:

$$\frac{s_x^2}{n^2 - n_x^2} + \frac{s_y^2}{n^2 - n_y^2} + \frac{s_z^2}{n^2 - n_z^2} = \frac{1}{n^2}$$

Polarization of the electric field for the eigenmodes:
$$\begin{pmatrix}
n_x^2 - n^2 \left(s_y^2 + s_z^2\right) & n^2 s_x s_y & n^2 s_x s_z \\
n^2 s_x s_y & n_y^2 - n^2 \left(s_x^2 + s_z^2\right) & n^2 s_y s_z \\
n^2 s_x s_z & n^2 s_y s_z & n_z^2 - n^2 \left(s_x^2 + s_y^2\right)
\end{pmatrix} \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = 0$$
For $n \neq n_i$:
$$E = \begin{pmatrix}
\frac{s_x}{N^2 - n_x^2} \\
\frac{s_y}{N^2 - n_y^2} \\
\frac{s_z}{N^2 - n_z^2}
\end{pmatrix}$$

Isotropic case

$$n_x = n_y = n_z \equiv n_0$$

wave equation:

$$(n_0^2 - n^2)^2 n^2 = 0$$

Normal surface: degenerated sphere

Eigen-polarization: arbitrary

(Isotropic materials, cubic crystals)

Uniaxial case

$$n_x = n_y \equiv n_o$$
 and $n_z \equiv n_e \neq n_o$

wave equation:

$$\left(n_o^2 - n^2\right) \left(\frac{1}{n^2} - \frac{s_x^2 + s_y^2}{n_e^2} - \frac{s_z^2}{n_o^2}\right) = 0$$

Normal surface: sphere + ellipsoid with one common point in the z-direction

Uniaxial case: continued

Uniaxial case: continued

Propagation $(z \equiv \text{optical axis})$	ordinary ray	extraordinary ray	
k // z.	degenerated case (equivalent to isotropic medium); index n_o , $E \perp k$		
$m{k} \perp z$	index n_{O} ,	index n_e , $E // z^e$	
k : angle θ with z	E in the (xy) plane, $E \perp k$	index $n(\theta)$, E in the (kz) plane, $E \cdot k \neq 0$	

with
$$\frac{\sin^2 \theta}{n_e^2} + \frac{\cos^2 \theta}{n_o^2} = \frac{1}{n^2(\theta)}$$

Biaxial case

$$n_x < n_y < n_z$$

Normal surface has a complicated form

Biaxial case: continued

 S_z

 $n_{\rm v}$

Sections of the normal surface by the planes xy, xz, and yz:

$$s_x = 0$$
:

$$\left(\frac{1}{n^2} - \frac{s_z^2 + s_y^2}{n_x^2}\right) \left(\frac{1}{n^2} - \frac{s_z^2}{n_y^2} - \frac{s_y^2}{n_z^2}\right) = 0$$

$$s_{y} = 0$$
:

$$\left(\frac{1}{n^2} - \frac{s_x^2 + s_z^2}{n_y^2}\right) \left(\frac{1}{n^2} - \frac{s_x^2}{n_z^2} - \frac{s_z^2}{n_x^2}\right) = 0$$

$$s_z = 0$$
:

$$\left(\frac{1}{n^2} - \frac{s_x^2 + s_y^2}{n_z^2}\right) \left(\frac{1}{n^2} - \frac{s_x^2}{n_y^2} - \frac{s_y^2}{n_x^2}\right) = 0$$

Group velocity in anisotropic media

Maxwell equations in the Fourier space:

$$k \wedge E = \omega \mu_0 H \qquad /\cdot H$$

$$k \wedge H = -\omega \varepsilon \cdot E \qquad /\cdot E$$

One can finally obtain:

$$\omega = \frac{2k \cdot (E \wedge H)}{E \cdot D + H \cdot B} = k \cdot \frac{S}{U}$$

This means:

$$\boldsymbol{v}_g = \nabla_k \boldsymbol{\omega} = \frac{\boldsymbol{S}}{U} = \boldsymbol{v}_e$$

Birefringence

Isotropic medium: incident plane wave, reflected plane wave

Anisotropic medium: refracted wave is decomposed into the eigenmodes

• Tangential components should be conserved on the interface:

$$k_i \sin \alpha_i = k_1 \sin \alpha_1 = k_2 \sin \alpha_2$$

- k_1 and k_2 are not constant but depend on the propagation direction
- Thus we get generalized Snell's law for an ordinary and an extraordinary beam:

$$n_i \sin \alpha_i = n_o \sin \alpha_1 = n(\alpha_2) \sin \alpha_2$$

- Analytic solution only for special cases
- Numerical solution
- Graphic solution

Birefringence: graphic solution

Indicatrix: ellipsoid of indices

$$\frac{x^2}{n_x^2} + \frac{y^2}{n_y^2} + \frac{z^2}{n_z^2} = 1$$