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Estimating the Volatility of Electricity Prices:

The Case of the England and

Wales Wholesale Electricity Market∗

Sherzod N. Tashpulatov†

Abstract

Price fluctuations that partially comove with demand are a specific feature inherent
to liberalized electricity markets. The regulatory authority in Great Britain, however, be-
lieved that sometimes electricity prices were significantly higher than what was expected
and, therefore, introduced price-cap regulation and divestment series. In this study, I
analyze how the introduced institutional changes and regulatory reforms affected the dy-
namics of daily electricity prices in the England and Wales wholesale electricity market
during 1990–2001.

The research finds that the introduction of price-cap regulation did achieve the goal
of lowering the price level at the cost of higher price volatility. Later, the first series of
divestments is found to be successful in lowering price volatility, which however happens
at the cost of a higher price level. Finally, the study also documents that the second
series of divestment was more successful in lowering both the price level and volatility.

Abstrakt

Cenové fluktuace, jež se částečně spolupohybuj́ı s poptávkou, jsou specifickým rysem
liberalizovaných trh̊u s elektřinou. Regulačńı orgán ve Velké Británii se však domńıval,
že ceny elektřiny byly někdy výrazně vyšš́ı, než se očekávalo, a z toho d̊uvodu tedy zavedl
regulaci cenovými omezeńımi a sérii divestitur. V tomto výzkumu analyzuji, jaký dopad
zavedeńı institucionálńıch změn a regulačńıch reforem mělo na dynamiku denńıch cen
elektřiny na anglickém a veľsském velkoobchodńım trhu v letech 1990–2001.

Tento výzkum dosṕıvá k závěru, že zavedeńı regulace pomoćı cenových omezeńı
dosáhlo zamýšleného sńıžeńı cenové úrovně za cenu vyšš́ı cenové volatility. Dále je
zjǐstěno, že prvńı vlna divestitur byla úspěšná při snižováńı cenové volatility, což se ale
stalo za cenu vyšš́ı cenové hladiny. Výzkum také nakonec přináš́ı d̊ukazy, že druhá vlna
divestitur byla úspěšněǰśı při snižováńı jak cenové úrovně, tak volatility.
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regulation
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1 Introduction

Fluctuations in electricity prices are usually explained by electricity being nonstorable

and the critical need to continuously meet market demand. Prior to liberalization, price

fluctuations were generally minimal and controlled. However, after liberalization, during

the history of the England and Wales wholesale electricity market, price fluctuations,

caused by frequent spikes, were sometimes excessively large. The large fluctuations in

electricity prices generally introduce uncertainties about revenues for producers and costs

for retail suppliers, which could result in higher prices paid by consumers.

The regulatory authority, the Office of Electricity Regulation (OFFER), believed that

excessively high prices and fluctuations were possibly the result of the exercise of market

power by incumbent electricity producers (National Power and PowerGen). Hence, in

order to decrease the influence of the incumbent producers, the regulatory authority

introduced price-cap regulation and divestments.

This empirical study quantitatively evaluates the impact of institutional changes and

regulatory reforms on price and volatility dynamics for the case of the wholesale elec-

tricity market in England and Wales during 1990–2001. For this purpose I consider an

AR–ARCH model, which is extended to include periodic sine and cosine functions to

accommodate weekly seasonality. The application of periodic sine and cosine functions

rather than daily dummy variables is found to lead to a more parsimonious model. Fi-

nally, in order to analyze the impact of institutional changes and regulatory reforms on

price and volatility dynamics, I also include regime dummy variables, which are created

based on the timeline described in Figure 3.1.

Paul L. Joskow characterized the privatization, restructuring, market design, and

regulatory reforms pursued in the liberalization process of the electricity industry in

England and Wales as the international gold standard for energy market liberalization

(cited in Glachant and Lévêque, eds, 2009). In this respect, the findings and conclusions
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of this research could be of particular interest to countries that formed or are about to

form the operation of their modern electricity markets based on the original model of the

England and Wales wholesale electricity market.

2 Literature Review

After the liberalization of energy industries started in different countries, it became im-

portant to model and forecast price development. This is of special interest to producers

and retail suppliers because price fluctuations now introduce uncertainties about revenues

for producers and costs for retail suppliers. The government is also usually interested

in understanding price developments, because they eventually define the costs that con-

sumers will have to face. High costs for energy, besides decreasing the economic welfare

of consumers, may also at times undermine the political stability of a country.

Green and Newbery (1992) and Von der Fehr and Harbord (1993) are the seminal

studies in modeling electricity auctions. Green and Newbery (1992) use the framework of

supply function equilibrium (SFE), where it is assumed that electricity producers submit

a continuous supply function. This is usually applicable when producers’ production units

are small enough or when each producer has a sufficiently large number of production

units as was the case, for example, with National Power and PowerGen in the England

and Wales wholesale electricity market. The authors show that a producer with larger

production capacity has more incentive to exercise market power by submitting price

bids in excess of marginal costs.

Von der Fehr and Harbord (1993) consider N electricity producers serving the British

electricity market operated as a uniform price auction. The authors demonstrate that no

pure-strategy bidding equilibrium exists when electricity demand falls within a certain

range. Their result is explained by an electricity producer’s conflicting incentives to bid
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high to set a high price and bid low to ensure that its production unit is scheduled to

produce electricity.

Wolfram (1998) and Crawford et al. (2007) empirically examine the bidding behavior

of electricity producers in the wholesale electricity market in England and Wales. Wol-

fram (1998) finds that electricity producers submit price bids reflecting higher markups

for production units that are likely to be scheduled to produce electricity if that producer

has large infra-marginal production capacity. The author indicates that the incentive to

submit a price bid reflecting a higher markup for a certain production unit is moderated

by the presence of the threat that the production unit might be left out of the production

schedule. Wolfram (1998) also finds that larger producers tend to submit higher price

bids than smaller producers for comparable production units (i.e., production units using

the same input to produce electricity and having almost the same marginal costs).

Crawford et al. (2007) empirically establish the presence of asymmetries in the bidding

behavior of marginal and infra-marginal electricity producers in the British electricity

market: during the highest-demand trading periods marginal electricity producers behave

strategically by submitting price bids higher than their marginal costs, whereas infra-

marginal electricity producers behave competitively by submitting price bids reflecting

their marginal costs.

Sweeting (2007) analyzes the development of market power in the same electricity

market. The author measures market power as the margin between observed whole-

sale market prices and estimates of competitive benchmark prices, where the latter is

defined as the expected marginal cost of the highest-cost production unit required to

meet electricity demand. Sweeting (2007) finds that electricity producers were exercising

increased market power. This finding, as the author indicates, is however in contradic-

tion with oligopoly models, which, when market concentration was falling, would have

predicted a reduction in market power.
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In the following paragraphs I describe the development of modeling techniques applied

for price time series from deregulated electricity supply industries in different countries.

This research has been important for my development of the modeling approach to an-

alyze the impact of institutional changes and regulatory reforms on price and volatility

dynamics for the case of the England and Wales wholesale electricity market during

1990–2001.

Cuaresma et al. (2004) consider the AR and ARMA models to analyze hourly elec-

tricity prices from the Leipzig Power Exchange during June 16, 2000 - October 15, 2001.

The authors’ main finding is that models where each hour of the day is studied sepa-

rately yielded uniformly better forecasts than models for the whole time series. Similar

to Cuaresma et al. (2004), Guthrie and Videbeck (2007) analyze half-hourly prices from

the New Zealand Electricity Market (NEM) operated as a uniform price auction. For

the period November 1, 1996 – April 30, 2005, the authors similarly find that half-hourly

trading periods naturally fall into five groups of trading periods, which can be studied

separately. For modeling purposes, the price time series is decomposed into deterministic

and stochastic parts. The deterministic part is modeled using a dummy variable approach

to take into account the day-of-the-week and month effects. The residuals, which are also

called “filtered prices,” represent the stochastic part and are modeled using a periodic

autoregressive (PAR) process.1 For each group Guthrie and Videbeck (2007) consider a

periodic model, where a half-hourly price is regressed on the price during the previous

trading period and the previous day’s price during the same trading period.

The findings in Cuaresma et al. (2004) and Guthrie and Videbeck (2007) that each

trading period or a group of trading periods should be studied separately across trading

days, rather than as a whole hourly time series, can be the consequence of the application

of hourly, daily, and monthly dummy variables for a time-varying intercept term (or the

1A detailed overview of periodic time series models is provided, for example, in Franses and Paap
(2004).
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deterministic component) in modeling the dynamics of the whole hourly (or half-hourly)

time series, which could not accommodate multiple types of seasonality as well as, for

example, smooth periodic sine and cosine functions. In general, a major concern in their

approach is the necessity to estimate a large number of parameters.

Conejo et al. (2005) find evidence that dynamic modeling is preferable to seasonal

differencing when dealing with time series containing multiple types of seasonality. In

particular, using the PJM interconnection data for the year 2002, the authors find that the

ARMA dynamic regression models for different seasons, which include hourly, daily, and

weekly lags, are more effective in forecasting electricity prices than the ARIMA regression

models for different seasons, which include hourly, daily, and weekly differencing.

However, none of the above studies examine in detail the nature of the residuals,

which in general is crucial for statistical inference and model specification. In contrast,

Garcia et al. (2005) consider a GARCH methodology to model and forecast hourly prices

in the Spanish and Californian electricity markets during September 1, 1999 - Novem-

ber 30, 2000 and January 1, 2000 - December 31, 2000, respectively. The authors find

that in terms of forecasting, their GARCH model outperforms a general ARIMA model

when volatility and price spikes are present. Bosco et al. (2007) also consider a GARCH

methodology to model the dynamics of daily average prices of the Italian wholesale elec-

tricity market created in 2004. The deterministic part of the price time series is modeled

using low-frequency components and the stochastic part using a periodic AR–GARCH

process. The authors find that the periodic modeling approach seemed most appropriate

to account for the different amount of memory of past prices that each weekday carried,

as well as the presence of spikes and volatility clustering in electricity prices.

The challenge of applying the periodic modeling approach considered, for example,

in Guthrie and Videbeck (2007) and Bosco et al. (2007) is the requirement to estimate

a large number of parameters. Koopman et al. (2007), for example, mention that the
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application of smoothly time-varying parameters could be preferred, because it might

suggest a more parsimonious model.

Koopman et al. (2007) study daily average prices from electricity markets in France,

Germany, the Netherlands, and Norway. The dynamics of daily log-transformed elec-

tricity spot prices is modeled using a seasonal periodic autoregressive fractionally in-

tegrated moving average process with autoregressive conditional heteroscedastic distur-

bances. However, this modeling approach is in general dependent on the order of seasonal

fractional integration, which should not violate the stationarity and invertibility condi-

tions. Another challenging feature is that it is difficult to provide an intuitive interpreta-

tion to non-integer differencing. As possible extensions, the authors suggest considering

smoothly time-varying parameters for modeling the dynamics of electricity prices. This

suggestion is examined in Section 5 of this paper by applying periodic sine and cosine

functions to model weekly seasonality in electricity prices.

3 The England and Wales Electricity Market

At the start of liberalization, a wholesale market for electricity trading was organized

in England and Wales. This market operated through a half-hourly uniform price auc-

tion managed by the National Grid Company (NGC). The resulting half-hourly uniform

auction price, which is also known as the System Marginal Price (SMP), determined a

payment to producers for electricity production.

The regulatory authority, the Office of Electricity Regulation (OFFER), noticed cases

of absurdly high electricity prices, which were attributed to the possible noncompetitive

bidding behavior of the incumbent electricity producers (National Power and Power-

Gen). In order to decrease the influence of the incumbent electricity producers and

thereby reduce the incidence of price spikes leading to prices and price fluctuations being
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significantly higher than expected, the regulatory authority introduced several reforms

in the Electricity Supply Industry (ESI) in Great Britain. The time of the introduced

institutional changes and regulatory reforms define different regime periods, which are

summarized in Figure 3.1.
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Sources: Department of Trade and Industry (1997–2002), National Grid Company (1994–2001), Newbery

(1999), Robinson and Baniak (2002), Wolfram (1999); author’s illustration.

Figure 3.1: Institutional Changes and Regulatory Reforms in the ESI in Great Britain
during 1990–2001

At the time of the creation of the wholesale electricity market, coal and other con-

tracts were introduced by the government, which then expired in 1993. Later, because it

was believed that the excessively high prices were resulting from the noncompetitive bid-

ding behavior of the incumbent electricity producers, the regulatory authority introduced

price-cap regulation and divestments. The price-cap regulation during 1994–1996 was a

temporary measure designed to control annual average prices. In order to decrease mar-

ket concentration and improve competition, the incumbent electricity producers were

asked to divest part of their production facilities, which took place in 1996 and 1999.

In March 2001, the wholesale electricity market was restructured to introduce bilateral

trading arrangements.
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4 Data

The uniform auction price, also known as the System Marginal Price (SMP), is the half-

hourly wholesale price paid to producers for electricity production. Daily electricity prices

are defined as daily averages of the half-hourly SMP. Figure 4.1 describes the development

and distribution of daily electricity prices for the whole history of the England and Wales

wholesale electricity market.
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Figure 4.1: Daily Electricity Prices (April 1, 1990 – March 26, 2001)

Detailed information and my acknowledgments to people and organizations I was in

contact with in the process of collecting data and materials will be listed at a later stage

of the dissertation research.

The observed excessively high price spikes in the mid 1990s are probably associated

with some plants not being available due to maintenance and interruption of gas supplies

in England and Wales and disputes in France (see, for example, Robinson and Baniak,

2002).
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In Table 4.1 I summarize the descriptive statistics of daily electricity prices during

the different regime periods described in Section 3.

Table 4.1: Summary Statistics for Daily Electricity Prices (£/MWh) across Regimes

Regime 1 Regime 2 Regime 3 Pre-Regime 4 Regime 4 Regime 5

Mean 19.84 24.16 20.08 19.90 22.61 19.31
Min 11.49 10.98 7.23 12.38 10.71 11.55
Max 30.08 31.53 65.61 33.84 50.92 32.90
Std. Dev. 2.87 3.56 7.01 4.48 7.62 3.57
Obs. 1096 365 731 91 1114 616

Source: Author’s calculations.

The results indicate that the mean and standard deviation of prices are significantly

higher after the expiration of the coal contracts. It is also interesting to note a significant

decrease in the mean of prices accompanied by a significant increase in the standard

deviation of prices during the price-cap regulation period. This could indicate a trade-off

of attempting to control annual average prices at the expense of larger price fluctua-

tions. The price fluctuations were finally stabilized after the two series of divestments

introduced by the regulatory authority as an attempt to decrease the overall influence of

the incumbent electricity producers and thereby improve competition in the electricity

market.

However, in general, a quick view at the summary statistics without formal economet-

ric modeling and hypothesis testing can be deceptive and, therefore, cannot be regarded

as a reliable approach in regulation analysis. This is especially related to cases when

seemingly economically significant differences are later found to be statistically insignifi-

cant. In order to draw statistical inferences in the analysis of the impact of institutional

changes and regulatory reforms on price and volatility dynamics, the application of for-

mal testing and modeling techniques of time series econometrics are usually required.

This is pursued in detail in Section 5.
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5 Methodology

Before modeling the dynamics of daily electricity prices, I first conduct a stationarity test.

Then I examine electricity prices using time and frequency domain analyses. The time

domain analysis helps specify the AR process and the frequency domain analysis helps

specify correct frequencies in periodic sine and cosine functions included as additional

explanatory variables to model weekly seasonality. The application of sine and cosine

functions to capture weekly seasonality in electricity prices is found to yield a more

parsimonious model than the application of the daily dummy variables. The volatility

dynamics of electricity prices is modeled using an ARCH process. Finally, in order to

account for the presence of institutional changes and regulatory reforms, I enrich the

set of explanatory variables to include regime dummy variables. The regime periods are

determined based on the known time of the institutional changes and regulatory reforms

that took place in the ESI in Great Britain during 1990–2001.

5.1 Stationarity Test

A time series is called covariance stationary if its mean and variance are constant over

time and if its covariance depends only on the lag order. This is the weak form of

stationarity usually employed in time series econometrics.

A stationarity test is usually conducted before any modeling step is undertaken. If the

test provides evidence that a time series is nonstationary, then one can decide to apply,

for example, detrending or differencing transformations. The main reason for attempting

to apply transformations to achieve stationarity is that many modeling procedures and

techniques are only applicable to stationary time series. In particular, correlogram and

periodogram techniques, discussed in Section 5.2 and Section 5.3, respectively, also require

the stationarity of a time series (see, for example, Gençay et al., 2002).
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I test the stationarity of daily electricity prices using the Augmented Dickey-Fuller

(ADF) test with a constant term, which allows controlling for the possible presence of

a serial correlation in the residuals. As the maximum number of lags I initially choose

10, which is then changed to 8 based on the statistical significance of the coefficient on

the highest lag and Akaike information criterion (AIC). The unit-root null hypothesis is

rejected and therefore we conclude that daily electricity prices are stationary. The results

of the ADF test are summarized in Table 5.1.

Table 5.1: Augmented Dickey-Fuller Test for Daily Electricity Prices

Null Hypothesis: Daily price time series has a unit root
Exogenous: Constant
Lag Length: 8 (based on AIC, Maximal Lag = 10)

ADF Test Statistic -8.304 1% Critical Value -3.432
5% Critical Value -2.862
10% Critical Value -2.567

*MacKinnon critical values for the rejection of the hypothesis of a unit root.

Source: Author’s calculations.

5.2 Time Domain Analysis

A time series can be analyzed on a time domain using the autocorrelation function (ACF)

and partial autocorrelation function (PACF). I summarize the sample ACF and PACF

for daily electricity prices in a correlogram presented in Figure 5.1 (a lag of order 1000

corresponds to approximately 25% of the sample size).

Detailed analysis of the sample autocorrelation function (ACF) reveals the presence

of two types of seasonality in electricity prices: weekly seasonality observed through the

spikes in the sample ACF at lag orders of 7, 14, . . . (integer multiples of 7), and annual

seasonality observed through the spikes in the sample ACF at lag orders of 364, 728, . . .

(integer multiples of 364).
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Figure 5.1: Correlogram for Daily Electricity Prices

The sample partial autocorrelation function (PACF) suggests to additionally consider

such lag orders as 9, 16, 61, 100 to accommodate the effects of weekends, 2-month and 3-

month periods. This knowledge is also used in specifying the AR process.

5.3 Frequency Domain Analysis

A frequency domain analysis allows to identify frequencies explaining a large portion

of seasonal variations in electricity prices. The identified frequencies can then be used

in specifying the arguments of periodic sine and cosine functions that are included as

additional explanatory variables. I find that the application of sine and cosine functions

is superior to the application of daily dummy variables, because the former approach has

resulted in a more parsimonious model.

A frequency domain is examined using the techniques of spectral (Fourier) analysis.

The techniques of Fourier analysis allow modeling a time series with seasonal components

as a sum of periodic A ·sin(ωt+ϕ) sinusoidal functions, where A denotes the amplitude of

a sinusoidal wave, ω denotes a frequency, and ϕ denotes a phase shift (see, for example,
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Molinero, 1991; Wang, 2003; Prado and West, 2010). For practical considerations, the

periodic sinusoidal function can be rewritten in the following way: A · sin(ωt + ϕ) =

A · sinϕ · cos(ωt) +A · cosϕ · sin(ωt). The rewritten expression suggests using cos(ωt) and

sin(ωt) trigonometric functions as explanatory variables for modeling the seasonal pattern

of electricity prices. Assuming that ω is known (as described later, it will be determined

based on the Fourier transform), parameter estimates can then allow calculating the

respective amplitude and phase shift.

The Fourier transform of a real-valued function p(t) on [0, T ] is defined as F (i ω) =

F{p(t)} =
T∫
0

p(t) e−iωt dt, where i is the imaginary unit such that i2 = −1. Based on this

definition, the FFT numerical procedure computes F (i ωk) ≈
T−1∑
t=0

pt e
−iωkt .

It is important to note that the values of the Fourier transform are complex numbers

and are therefore not directly comparable. For this reason I use the absolute values of

the Fourier transform.

A graph where the frequency domain is plotted against the absolute values of the

Fourier transform is known as a periodogram. In Figure 5.2 I present a periodogram plot

for daily electricity prices.
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Figure 5.2: Periodogram for Daily Electricity Prices
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Detailed analysis of the frequency domain, where the absolute values of the Fourier

transform achieve local maxima, as described in the periodogram in Figure 5.2, allows

revealing frequencies that explain the seasonal pattern in the price time series. Hence, the

frequencies at which the absolute values of the Fourier transform achieve local maxima

can be used in specifying the argument of sine and cosine functions included as additional

explanatory variables.

The application of sine and cosine functions is preferred to the application of daily

dummy variables because the former approach has resulted in a more parsimonious model.

An application of smooth periodic functions rather than, for example, daily dummy

variables is also in line with the suggestion for future extensions mentioned in Koopman

et al. (2007).

5.4 AR–ARCH Model Specification

For the analysis of price and volatility dynamics I employ the AR(P)–ARCH(p) model,

which was developed and applied in Engle (1982) to estimate the means and variances

of inflation in the UK.

The AR(P)–ARCH(p) model applied for the estimation of volatility of electricity

prices can be represented in the following way:

pricet = a0 +
P∑
i=1

ai pricet−i + εt

εt = νt

√√√√α0 +

p∑
i=1

αi ε2t−i ,

where similar to Engle (1982) and Koopman et al. (2007) I consider autoregressive con-

ditional heteroscedastic residuals εt. νt is a sequence of an independent and identically

distributed (i.i.d.) random variable with zero mean and unit variance, which are also
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known as the standardized residuals. The distributional assumption for νt is crucial for

the joint estimation of the two equations using the maximum likelihood approach. As

described, for example, in Hamilton (1994), usually a normal distribution, generalized

normal distribution or t-distribution is considered. A normal distribution is a special

case of a generalized normal distribution when a shape parameter is equal to 2.

As the standardized residuals, νt, is the i.i.d. sequence with zero mean and unit

variance, we can also specify the AR(P)–ARCH(p) model in the following way:

pricet = a0 +
P∑
i=1

ai pricet−i + εt

ht = α0 +

p∑
i=1

αi ε
2
t−i ,

where ht = Et−1 [ε2t ] is the conditional variance or volatility.

The two equations describing the AR(P) and ARCH(p) processes are called the mean

and conditional volatility equations, respectively. This specification captures in particular

such inherent properties of electricity prices as mean reversion, spikes, and volatility

clustering.

The error term εt in the AR(P) process is assumed not to contain any serial correla-

tion. The appropriateness of a chosen specification for the AR(P) process is examined

using the ACF, PACF, and p-values of the Ljung-Box Q-test statistics.

To ensure that the conditional volatility ht is positive, it is usually assumed that

α0 > 0 and αi ≥ 0. The implication of the ARCH term in the conditional volatility

equation is reviewed, for example, in Kočenda and Černý (2007). In particular, the

ARCH term ε2t−1 is designed to reflect the impact of “shocks” or “news” from the previous

period that would affect the current conditional volatility. More precisely, a significant

and positive α less than 1 would measure the extent of the shocks’ effect on the volatility,
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which is not destabilizing. Additionally, it is also possible to distinguish the impact of

positive and negative shocks from the previous period, which can asymmetrically affect

the volatility. This is investigated by a treshhold ARCH process developed by Glosten

et al. (1993).

Similar to Koopman et al. (2007), I extend the mean and volatility equations to

include explanatory variables represented in this research by periodic sine and cosine

functions with frequencies suggested by the Fourier transform. In order to evaluate the

impact of institutional changes and regulatory reforms on the dynamics of electricity

prices, I also additionally include regime dummy variables, because I assume that the

institutional changes and regulatory reforms could have affected the price development.

The validity of the proposed assumption is verifiable by formal hypothesis testing. The

regime periods are determined based on the known time of the institutional changes and

regulatory reforms that took place in the ESI in Great Britain during April 1, 1990 –

March 26, 2001.

The joint estimation of the mean and conditional volatility equations is dependent

on the distributional assumption of νt. Usually a t-distribution or generalized normal

distribution is considered. The adequacy of the overall AR(P)–ARCH(p) model is verified

by testing if the standardized residuals, ν̂t =
ε̂t√
ĥt

, is an i.i.d. sequence. For this purpose,

I apply the BDS test developed by Brock et al. (1996). Because the conclusion of the

BDS test can in general depend on the values of the embedding dimension and proximity

parameters, I also additionally analyze the p-values of the Ljung-Box Q-test statistics to

examine whether ν̂t and ν̂2t contain any serial correlation. This is done as a robustness

check for the judgement on model adequacy.
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6 Estimation Results

Based on the presented methodology, the following dynamic model is estimated:

pricet = a0 +
P∑
i=1

ai pricet−i + z′t · γ + εt

ht = α0 +

p∑
i=1

αi ε
2
t−i + z′t · δ ,

where zt is a vector of additional explanatory variables including periodic sine and co-

sine functions and regime dummy variables. The estimation results obtained using the

Marquardt algorithm are summarized in Table 6.1.
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Table 6.1: Estimation Results of the Extended AR-ARCH Model

pricet = a0 +
P∑
i=1

ai pricet−i + z′t · γ + εt

ht = α0 +
p∑
i=1

αi ε
2
t−i + z′t · δ

Dependent Variable: pricet
Mean Equation Conditional Volatility Equation

Variable Coef. Std. Err. Variable Coef. Std. Err.
a0 0.836 *** 0.262 α0 0.604 *** 0.069
pricet−1 0.600 *** 0.015 ε2t−1 0.174 *** 0.027

pricet−2 0.068 *** 0.016 ε2t−3 0.019 * 0.012

pricet−3 0.033 ** 0.014 ε2t−4 0.092 *** 0.021

pricet−4 0.048 *** 0.014 ε2t−5 0.110 *** 0.020

pricet−6 0.084 *** 0.013 ε2t−7 0.293 *** 0.039

pricet−7 0.241 *** 0.019 ε2t−7 · It−7 -0.124 ** 0.054

pricet−8 -0.101 *** 0.017 ε2t−9 0.051 *** 0.019
pricet−9 -0.107 *** 0.015 cos(4πt/7) -0.383 *** 0.091
pricet−14 0.096 *** 0.012 cos(6πt/7) 0.554 *** 0.089
pricet−16 -0.065 *** 0.011 sin(2πt/7) 0.646 *** 0.102
pricet−21 0.071 *** 0.011 sin(4πt/7) -0.308 *** 0.057
pricet−25 -0.038 *** 0.009 sin(6πt/7) -0.548 *** 0.087
pricet−28 0.070 *** 0.013 Regime 2 0.118 0.083
pricet−29 -0.069 *** 0.012 Regime 3 1.223 *** 0.240
pricet−42 0.044 *** 0.012 Pre-Regime 4 3.455 *** 1.343
pricet−43 -0.032 *** 0.011 Regime 4 2.130 *** 0.356
pricet−48 0.015 * 0.009 Regime 5 1.152 *** 0.220
pricet−61 -0.009 0.007
pricet−100 -0.024 *** 0.006 Shape Parameter 1.273 0.036
pricet−207 -0.021 *** 0.007
pricet−209 0.025 *** 0.007
pricet−260 -0.018 *** 0.006
pricet−270 0.013 ** 0.006
pricet−341 0.026 *** 0.008
pricet−344 -0.026 *** 0.007
pricet−355 -0.041 *** 0.009
pricet−357 0.037 *** 0.010
pricet−364 0.043 *** 0.009
cos(2πt/7) -0.131 *** 0.042
cos(4πt/7) -0.252 *** 0.042
cos(6πt/7) 0.118 *** 0.033
sin(4πt/7) -0.124 *** 0.036
sin(6πt/7) -0.290 *** 0.036
Regime 2 0.062 0.076
Regime 3 -0.403 *** 0.081
Pre-Regime 4 -0.261 0.280
Regime 4 -0.123 0.075
Regime 5 -0.328 *** 0.079
Obs. 3631
Adj. R2 0.804
AIC 4.031

Source: Author’s calculations.

Notes: It−7 is an indicator function equal to 1 if εt−7 < 0 and 0 otherwise. *, **, and *** stand for the

10%, 5%, and 1% significance levels, respectively.
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Attempts to model weekly seasonality through the application of daily dummy vari-

ables were not as successful as the application of smooth periodic sine and cosine func-

tions, where the frequencies are chosen based on the Fourier transform. In particular,

the application of sine and cosine functions has resulted in a more parsimonious model.

Weekly seasonality is additionally modeled through a lag structure in both the mean and

conditional volatility equations. The mean equation also includes a yearly lag, which is

statistically significant.

It is interesting to note that weekly seasonality modeled in the conditional volatility

equation is found to be complex to also contain asymmetries with respect to positive and

negative “shocks” (or “news”). As the estimation results indicate, there is evidence at

the 5% significance level that positive shocks from the previous week have a larger effect

on the volatility.

The sum of the coefficients of the lagged variables is less than unity (0.965 in the mean

equation and 0.738 in the conditional volatility equation), which suggests that the effects

of past prices and shocks are not destabilizing. Moreover, the nonnegativity requirement

of the coefficients of the ARCH terms is also satisfied. The latter is necessary to ensure

that the conditional volatility is positive.

The assumption that the standardized residuals νt have a t-distribution is rejected at

the 1% significance level. Therefore, a generalized normal distribution (also known as a

generalized error distribution) is considered. The estimation results presented in Table 6.1

also provide an estimate of the shape parameter. The estimated shape parameter suggests

that tails are leptokurtic, i.e., heavier than those of a normal distribution. This is an

often-cited result in the literature dealing with modeling and forecasting electricity price

dynamics (see, for example, Koopman et al., 2007).

In order to check the adequacy of the estimated AR–ARCH model, I apply the BDS

test developed by Brock et al. (1996) to test if the standardized residuals ν̂t are i.i.d.
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For the embedding dimension m equal to 2 and 3 and a default option of the proximity

parameter ε, the null hypothesis that the standardized residuals are i.i.d. is not rejected.

This test, therefore, confirms the adequacy of the estimated AR–ARCH model. The test

results are summarized in Table 6.2.

Table 6.2: BDS Test for Standardized Residuals ν̂t

Dimension BDS Stat. Std. Err. p-value

2 -0.001 0.001 0.500
3 0.002 0.002 0.260

Source: Author’s calculations.

Because the conclusion of the BDS test can in general be sensitive to the choice of

m and ε parameters, as a robustness check for model adequacy, I additionally examine

if the standardized residuals ν̂t and standardized residuals squared ν̂2t contain any serial

correlation. For this purpose I examine the p-values of the Ljung-Box Q-test statistics.

The test results are summarized in Figure 6.1.
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Figure 6.1: Ljung-Box Q-Test for Standardized Residuals ν̂t and ν̂2t
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The test results presented in Figure 6.1 provide evidence at the 5% significance level

that the standardized residuals (ν̂t) and standardized residuals squared (ν̂2t ) do not have

any serial correlation. These findings suggest that the residuals do not contain any further

information and therefore justify the appropriateness of the joint estimation of the mean

and conditional volatility equations. Overall, the estimated AR–ARCH model explains

about 80% of the variations in electricity prices.

Using the estimation results provided in Table 6.1, I summarize in relative terms

the effects of the institutional changes and regulatory reforms on price and volatility

dynamics for the case of the England and Wales electricity market during 1990–2001.

This is presented in Figure 6.2.
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(a) Mean Equation
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(b) Conditional Volatility Equation

Source: Author’s calculations.

Figure 6.2: Impact of the Institutional Changes and Regulatory Reforms on Price and
Volatility Dynamics

When the initial contracts expired, the electricity prices on average became slightly

higher and more volatile. These changes, however, are neither statistically nor economi-

cally significant compared to the reference period, i.e., regime 1.

During the price-cap regulation period (i.e., regime 3) we observe a decrease in the

price level, which however happens at the cost of higher volatility. These changes are
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both statistically and economically significant. This result is also partly consistent with

the finding in Wolfram (1999) that price-cap regulation led the industry supply curve

to rotate counterclockwise, because in order to satisfy the price cap producers reduced

prices when demand was low and increased them when demand was high.

Using nonparametric techniques, Robinson and Baniak (2002) also find that after

the expiry of the coal contracts in 1993 and during price-cap regulation, price volatility

increased, for which the authors provide an alternative explanation. In particular, they

state that the incumbent electricity producers could have been deliberately increasing

price volatility in order to enjoy higher risk premia in the contract market.

During the period after price-cap regulation and before the first series of divestments

took place, the price volatility increased dramatically, whereas a change in the price level

is only economically significant. This can possibly be characterized as a transitional

feature of the pre-regime 4 period. During regime 4, when the first series of divestments

took place, the volatility decreased, whereas the price level increased further as compared

to the pre-regime 4 period. This finding indicates that during the regime 4 period the

trade-off has reversed: lower volatility is achieved at the cost of a higher price level.

The increased price level and decreased price volatility could be related to tacit collusion

discussed, for example, in Sweeting (2007).

The estimation results indicate that the second series of divestments was more success-

ful. In particular, the price level and volatility are both reduced. This finding supports

the implementation of the second series of divestments.

From the perspective of the presented time series modeling approach, it follows that

price-cap regulation and divestment series led in the end to similar price levels and volatil-

ity. However, usually divestment series could be superior to price regulations because they

allow for the creation of a less concentrated market structure, where it will be easier to

promote competitive bidding among electricity producers.
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7 Conclusion

This study aims to analyze the impact of introduced institutional changes and regula-

tory reforms on price and volatility dynamics. For this purpose, time and frequency

domain analyses are used to appropriately model seasonality in electricity prices. The

methodology based on the application of sine and cosine functions whose frequencies are

determined from the Fourier transform rather than based on the application of the daily

dummy variables is found to be more appropriate for modeling weekly seasonality in

electricity prices. As a result, a more parsimonious AR–ARCH model has been consid-

ered. Moreover, the estimation results of the extended AR–ARCH model indicate that

innovations from the previous week have asymmetric effects on volatility. In particular,

I find that positive innovations from the previous week have a larger effect on volatility.

This research also documents new results in quantifying the impact of institutional

changes and regulatory reforms on price and volatility dynamics for the case of the

England and Wales wholesale electricity market during 1990–2001. Firstly, I find the

presence of a trade-off in introducing price-cap regulation, which is both statistically and

economically significant. In particular, estimation results indicate that a lower price level

was achieved at the expense of higher volatility. Secondly, the implementation of the first

series of divestments was successful in lowering price volatility, which however happened

at the cost of a higher price level. Thirdly, only during the last regime period, when the

second series of divestments was implemented, was it possible to simultaneously reduce

prices and volatility.

The findings and conclusions of this study of the impact of the institutional changes

and regulatory reforms on the dynamics of electricity prices could be of interest to,

for example, Argentina, Australia, Chile, Italy, Spain, and some US states, which have

organized the operation of their modern electricity markets similar to the original model

of the England and Wales wholesale electricity market.
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