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Abstract

The elastic properties of single parts of a human skeleton are necessary to know for
modelling bone tissue-implants interactions as well as for diagnostic purposes. This paper
contributes to methodology of evaluation of elastic properties of bones by ultrasonic wave
inversion. The method was developed on composite structures like as plates and cylindrical
shells. The final results are then demonstrated on the bovine cortical bone specimen.
The properties are supposed to exhibit orthotropic or transversally isotropic symme-

try. The quasi-longitudinal and transverse waves are generated from wave diffraction on
liquid/specimen interface. The wave velocity fields obtained by the ultrasonic scanning
technique are used as an input to inversion procedure for all elastic constants determina-
tion.
The experimental results are confronted with the numerical modelling of wave propa-

gation and the stability of resulting data is evaluated by the statistical method based on
Monte-Carlo simulation. The suggested approach has a potential for qualify of such mea-
surements performed on fresh bones and also for improvement in-situ ultrasonic techniques.

Keywords: Matrix of elastic coefficients; Ultrasonic immersion technique; Inverse problem;
Monte-Carlo simmulation.

1 Introduction

The determination of elastic coefficients bones is important mainly for micro-mechanical mod-
elling that conduces to new findings concerning the micro-structure of a bone tissue. This knowl-
edge may, for example, help to answer a bone tissue remodelling problem. Bone tissue is, from
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the mechanical point of view, an inhomogeneous, anisotropic, and visco-elastic material, in its
principle composite material. Compared to other tissues of the human body, the strain of a bone
tissue is comparatively small, hence it is possible to assume a linear dependence between the
stress and the strain. The visco-elasticity of a cortical bone is, in the terms of time dependency
on material constants, relatively small. Therefore, it is possible to contemplate a cortical bone as a
linear elastic material, which is approximately homogeneous and anisotropic with an orthotropic
material symmetry [18, 19, 21, 22, 30].
Determination of the elastic coefficients of a bone tissue is very important for the description of

mechanical properties of bones. Static mechanical tests (e.g. compressive, bending, and torsional
tests) are currently used for assessment of the elastic coefficients of bones. Elastic coefficients are
possible to detect experimentally by means of dynamics tests (ultrasonic tests).
The purpose of this study is a measurement of elastic coefficients of a cortical bone as a

orthotropic material [18, 19, 21, 22, 30] in its material symmetry via an immersion technique.
This experimental method consists in specimen positioning between transmitting and receiving
ultrasonic transducers, whereas entire measuring configuration is immersed into a liquid. The
specimen is rotated in various directions and velocities of longitudinal and transversal waves in
a broad range of directions are measured. Elastic coefficients of specimen can be obtained either
analytically from velocity measurements in different directions [12, 14] or the problem is possible
to solve as multi dimensional optimization approach [25, 28, 26, 29] (inverse problem).
The acoustic scanner for immersion measurement of longitudinally and transversally prop-

agating waves through anisotropic specimen was used in this study. Test measurements were
performed on an etalon composite specimen CFRP (Carbon Fiber Reinforced Plastic). CFRP is
homogenous and anisotropic (transversely isotropic material symmetry) material with principal
directions identical to the fiber direction. The specimens were plate-shaped with the thickness
of approximately 2, 3.8 and 8 mm. Ultrasonic wave velocities along various directions in this
specimens were known from previous PS/PR (PS point source, PR point receiver) measurement
[28, 26, 27]. Similarly, the experiment can be arranged for measurements of a cylindrical spec-
imen, where the scanning plane is set to be a axial plane of a tube. This approach has been
verified on an isotropic plexiglass tube.
Latest measurements were realized on cortical bovine bone as an elastic orthotropic medium

[18, 19, 21]. However, not all of nine independent elastic coefficients can be determined from
propagation in the axial plane. Therefore, prospective measurements are planned to obtain the
reminder coefficients.

2 Theory

2.1 Elastic waves in anisotropic solid

For a linear, elastic, homogenous, anisotropic material the generalised Hookes law

σij = Cijklεkl , (1)

is valid, where σij and εkl are the are the stress and infinitesimal strain tensors and Cijkl is often
rewritten in shorten Voight’s notation as a matrix of elastic coefficients cij [6, 10]. The equation
of motion

ρ =
∂2ui

∂t2
= Cijkl

∂2uk

∂xj∂xl

, (2)

where ρ is the mass density, and u(x,t) is a planar elastic wave propagating in direction n throught
observed material, can be obtained substituting Hooke’s law into an equation of equlibrium [6, 24],
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Figure 1: An interaction of a single planar wave with an anisotropic plate-like specimen.

considering the infinitesimal strain tensor

εkl =
1
2

(
uk

xl

+
ul

xk

)
. (3)

A planar elastic wave u(x,t) propagating in a material can be represented by

u = Ue i(kx−ωt) (4)

where U is the wave amplitude, ω is the angular frequency, x is the position vector, and k is the
wave vector. On substituting (4) into (2), it is obvious, that ω and Uk must satisfy the following
system of a so-called Christoffel equation

(
Cijklkjkl − ρω2δik

)
Uk = 0 , (5)

where δik is the Kronecker’s symbol.
The phase velocity of planar wave (4) and wave vector k are defined as

vφ =
ω

k
(6)

k = k · n , (7)
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where k is the wave number, and n is wave normal. Thus, the Christoffel equation can be rewritten
in the terms of the phase velocity (

Cijklnjnl − ρv2ϕδik

)
= 0 . (8)

Introducing the Christoffel’s tensor

Γik = Cijklnjnl , (9)

the Christoffel’s equation can be treated as an eigenvalue problem of following relation∣∣Γik − ρv2ϕδik

∣∣ = 0 . (10)

The Christoffel’s coefficients for general anisotropic material are well described in literature [14,
24, 3].
Transversely isotropic material is described by five independent elastic constants

cij =


c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 1

2 (c11 − c12)

 and c66 =
1
2
(c11 − c12) . (11)

The x3 axis is directed along axis of symmetry (fiber direction in composite materials, direction
of Haversian system in bones) and plane x1x2 plane is isotropic plane. Christoffel equation (5)
for wave propagating in x1x3 plane is[

c11k
2
1 + c44k

2
1 − ρω2 (c23 + c44) k1k3

(c23 + c44) k1k3 c44k
2
1 + c33k

2
1 − ρω2

] [
U1
U3

]
(12)

and for wave propagating in x1x3 is[
c11k

2
1 + c66k

2
2 − ρω2 (c12 + c66) k1k2

(c12 + c66) k1k2 c66k
2
1 + c11k

2
2 − ρω2

] [
U1
U3

]
. (13)

It is obvious from equations (12) and (13) that two modes of wave propagation in x1x2 exists
, i.e. the quasi-longitudinal (qL) and quasi-transverse (qT) modes. The unknown elastic con-
stants for transversely isotropic elastic material can be obtained by qL and qT wave propagation
measurements in only two planes.
The acoustic energy travels in anisotropic materials with group velocity vG which differs in

direction and magnitude from phase velocity. However, in our case of immersion measurements,
we directly obtain the phase velocities [14, 11] instead of group velocities resulting from the
PS/PR measurements [28, 26, 27].

2.2 Waves on a solid/fluid interface

Reflection and refraction of elastic waves at a boundary between two anisotropic media is de-
scribed by the Snell-Descartes law [24]. Even in our simpler case, where one of the media is
considered to be a non-viscous fluid, evaluation of paths of reflected energy fluxes is a signifi-
cantly difficult issue.
An interaction of a single planar wave with an anisotropic plate-like specimen is outlined in

Fig.1. The incident wave of a slowness vector sinc is refracted into more separate waves in the
specimen, each travelling at its own group velocity in the direction of its energy flux. In Fig.1,
only two of these waves (qL and one qT) are shown for clarity. Besides them, one more qT mode
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Figure 2: Bone specimen and its shape measurement.

can be generated, or the surface wave can arise instead of one of the bulk modes, depending on
the angle of incidence [14, 24].
According to the Snell-Descartes law, the projection of the incident wave slowness into the

boundary s
(fluid)
2 is conserved, following conditions for refraction angles βqLand βqT

vfluidϕ

vqLϕ
=
sinα

sin βqL
and

vfluidϕ

vqTϕ
=
sinα

sin βqT
. (14)

Consequently, the angles βqLand βqTdetermine the directions of refracted wave’s slowness vec-
tors, containing angles ΨqLand ΨqT with corresponding energy fluxes. At the second interface,
the Snell-Descartes law is implemented again, resulting in a set of separate parallel planar (trans-
mitted) waves of the same direction as the incident wave.
When the opposite surfaces of the specimen are not perfectly parallel, i.e. the specimen is

slightly wedge-shaped, the transmitted waves are planar again, but, their directions may vary
from the direction of the incident wave. Furthermore, other deviations from a perfect rectan-
gularity of a specimen may distort both the parallelism and the planarity of the transmitted
waves.

3 Materials and methods

3.1 Etalon Samples

The composite anisotropic and isotropic materials of plate and tube shapes were used in this
study. These materials were utilized as etalon specimens for the experimental device and method-
ology testing.
The plate specimens were made of unidirectional CFRP (Carbon Fibre Reinforced Plastic,

manufacturer La-Composite Letov ATG, Ltd.) with orientation of fibres parallel to specimens
surfaces. The material symmetry of specimens was presumed as transversally isotropic, where
the rotational axis x3 was given by direction of the fibres. The dimensions of specimens were 120
mm x 120 mm, the approximate thicknesses were 2, 3.8 and 8 mm. All five elastic constants (c11,
c12, c13, c33 and c44) were known from previous ultrasonic measurements (PS/PR technique)
[28, 26, 27].
The tube specimen was made from plexiglass (inner diameter = 24 mm , the outer diameter

= 30 mm). The tube was provided with the slot in the axial direction, so the only one wall of
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Figure 3: Experimental configuration

specimen was exposed to the wave propagation. The similar slot was cut into bone sample.

3.2 Bone sample

For the ultrasonic measurements, a dry bovine cortical femur diaphysis without marrow was used.
Bovine bones were assumed to be orthotropic and x3 axis was parallel to the bone fibers. The
epiphyses and axial slot were cut to obtain cortical bone sample (fig. 2) and then marrow was
removed. Afterwards, the bone was boiled, immersed into the lye and sterilized in the autoclave.
The shape, thickness and curvature of specimens were measured by contact probe, which was
located in CNC milling machine (fig 2).
We have decided to use a dry bone instead of a wet bone [18, 19, 21, 22, 30, 17], because

we were interesting in precise determination of elastic properties separated from the natural
visco-elastic behaviour of bones.
Because of the pulse character of our measurements, we require the examined material to

be non-dispersive. In the other words, we need the measured phase velocities to be frequency-
independent, containing, thus, only information about the elastic properties. However, the pres-
ence of any attenuation implies directly a dispersion [16]. That is why we have decided to minimize
the bones attenuation by drying it. In future, the results for dried bones can be compared with
these obtained on wet samples. Then the attenuation characteristics can be determined separately
from the elastic ones, known from the dried bones.
Anyway, the elastic coefficients determined for the dried bones should be close to those ob-

tained from conventional tensile tests, whereas the dynamic properties of bones result complexly
from their visco-elasticity, material dispersion and attenuation.

3.3 Experimental setup

The ultrasonic immersion scanner (fig. 3) was designed to measure the time of flight (TOF) and
the amplitude of received pulse after transmission through a sample. The specimen is rotated
and immersed in water between two ultrasonic transducers. The transmitting transducer is fixed
and receiving transducer is adjustable by translation stage. The scanner allows to measure longi-
tudinal and quasi-transverse waves in a wide range of direction. The device can be modified for
a pulse-echo measurement, using a tile as an acoustic mirror instead the receiving transducer.
The entire experimental process is controlled from a PC using two stepping motors for moving

the sample and the receiver transducer. High frequency Pulse/Receiver system (JSR Ultrasonics
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DPR 50+) is used for generating and receiving pulse, which is connected with two 1.25 MHz,
0.5 in diameter ultrasonic transducers made by Panametrics, Inc. The receiving signals from the
sensors were recorded by a digital oscilloscope (DSO LeCroy 9304AM).

3.4 Inverse problem

Inverse problem consists in determination of elastic coefficients of the examined material from
a set of phase velocities in various directions [4, 23]. Then the formulation of the corresponding
inverse problem is quite simple. Let us recapitulate that the phase velocities for a given wave nor-
mal n are evaluated from eigenvalues of the Christoffel matrix (9), which is uniquely determined
by this wave normal n and the elastic coefficients cij.
The superscript exp will be used to distinguish the experimentally obtained velocities (vexp

ϕ )
from those evaluated for known elastic coefficients via the above described theory (vϕ). Let
a given wave normal n and a corresponding phase velocity vexp

ϕ (n) of at least one mode of
propagation is available. Then the problem consists in determination of matrix Γ (n) so that
some of its eigenvalues are equal to the experimentally obtained velocity vexp

ϕ (n). For known
class of symmetry, the structure of Γ (n)) is known as well and the problem can be formulated
by following nonlinear equation in cij :

det[Γ(cij,n)− ρ(vexp
ϕ (n))

2
I] = 0 , (15)

where I is the unit matrix.
However, the number of unknown elastic coefficients is usually too large to be uniquely de-

termined from such single equation (15). Then the phase velocities is additional directions are
taken and a system of nonlinear equations arises

det
[
Γ
(
cij,n(1 )

)
− ρ

(
vexp

ϕ

(
n(1 )

))2
I

]
= 0

...

det
[
Γ
(
cij,n(N )

)
− ρ

(
vexp

ϕ

(
n(N )

))2
I

]
= 0

, (16)

for exactly correct values of vexp
ϕ

(
n(1···N)

)
= vϕ

(
n(1...N)

)
the equations (16) are not mutually

independent and they can be satisfied all at once by correct values of cij. When the values
vexp

ϕ

(
n(1···N)

)
are experimentally distorted, the problem must be solved by an optimization pro-

cedure, which determines the coefficients cij so that the system (16) is optimally satisfied. As a
suitable criterion for optimal satisfaction of (16) a least squares measure

N∑
n=1

{
det
[
Γ
(
cij,n(n)

)
− ρ

(
vexp

ϕ

(
n(1 )

))2
I

]}2
→ min

cij

, (17)

will be used.
When the solution of the direct problem can be obtained for every n and every cij in form

vϕ (cij,n) , the whole problem can be reformulated into minimization of a quadratic sum Q

Q =
N∑

n=1

(
vϕ

(
cij, n(n)

)
− vexp

ϕ

(
n(n)

))2 → min
cij

. (18)

Let it be highlighted, that the wave normal n in (16), (17), (18) is known. This fact crucially
simplifies both the formulation and the solution of the inverse problem for phase velocities in
comparison with similar problem for group velocities [12, 25, 29, 2, 7, 8, 15].
For every wave normal n and for known elastic coefficients cij , all three eigenvalues of the

Christoffel matrix (9) can be at least numerically evaluated. Then the resultant phase velocities
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v
(1,2,3)
ϕ , corresponding to particular modes of propagation, can be compared with the experimental
data vexp

ϕ 1...N in directions n1...N . If c̃ij is a quess of elastic coefficients, the quadratic sum (18) takes
form

Q =
N∑

n=1

(
vϕ (c̃ij ,nn)− vexp

ϕ (nn)
)2

. (19)

The coefficients (cij) that minimize the function (19) are sought.
For numerical multidimensional minimization, a preprogrammedMatlab routine fminsearch.m

[1] is used, which employs the simplex search method. It is a direct search method that does not
use numerical or analytic gradients. A simplex in n-dimensional space is characterized by the
n+1 distinct vectors that are its vertices. In two-dimensional space, a simplex is a triangle; in
three-dimensional space, it is a pyramid. At each step of the search, a new point in or near the
current simplex is generated. The function value at the new point is compared with the function’s
values at the vertices of the simplex and, usually, one of the vertices is replaced by the new point,
giving a new simplex. This step is repeated until the diameter of the simplex is less than the
specified tolerance. Such method is especially proper when every evaluation of the minimized
function is complicated and covers a considerably long time period, as it is in case of solution
of the eigenvalue problem (10). The simplex method was proved suitable on many of similar
optimizing procedures [12, 9, 5]

3.5 Error estimation

To estimate the accuracy of the optimization procedure’s results, no appropriate analytical ap-
proach is available. The only possible solution is, thus, a Monte Carlo simulation, based on
running the whole optimization process several times with randomly distorted input data. A
Gaussian statistic made over the set of results is then expected to reveal the reliability of op-
timized coefficients [28, 20, 13]. In this work, we have treated the wave arrival times to be
determined accurately. In the other words, the inaccuracy of the wave front arrival’s detection
was expected to be incomparably smaller than other possible sources of procedure’s failure taken
into account. These are the variability of the specimen’s thickness and, even more important, the
variability of the zero angle determination. Both of these inaccuracies were involved in our Monte
Carlo simulations, considering the thickness and the specimen’s orientation to be normally dis-
tributed about the correct values. Moreover, for the bone specimen, some variability of the mass
density was admitted. Then the procedure was repeated 30 times to generate a representative
set of output data.
Although this set cannot be expected to be governed by a normal distribution, its variability

can be approximatively expressed by usual Gaussian statistic quantities, namely by the standard
deviations

SDij =

(
1

n− 1

n∑
k=1

(
c
(k)
ij − cij

2
))1/2

, (20)

where by the overlining we denote the mean value of cij , averaged for all n passes of the inverse
procedure. In our case, n = 30.
Then we present our results in a form

cij = c
(undistorted)
ij ± SDij , (21)

where the original procedure’s result c
(undistorted)
ij is usually not exactly equal to the mean value

cij.
Obviously, the presented standard deviations cannot be treated absolutely, but they bring a

valuable insight in how sensitive and stable the optimization procedure is for an each particular
coefficient.
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Figure 4: Plots of the phase velocities [mm/µs] propagating in the wave normal directions through
CFRP plate specimens of 2, 4 and 8 mm thickness.
Circles - experimentally obtained data, Solid lines - phase velocities for calculated cij. Horizontal axis - phase

velocity in x1 direction (perpendicular to plate), Vertical axis - phase velocity in x3 direction (fiber direction)

4 Results

4.1 Etalon sample

specimenn 2 mm specimen 4 mm specimen 8 mm
thickness d [mm] 1.95 3.65 7.51

c11[GPa] 12.43±0.43 13.87±0.34 15.981±0.22

c12[GPa] 5.07±0.74 7.05±0.51 9.620±0.22

c13[GPa] 8.23±0.99 7.07±0.51 7.09±0.39

c33[GPa] 125.63±8.77 123.67±7.13 123.20±3.35

c44[GPa] 5.63±0.05 5.67±0.06 5.62±0.06
density ρ[g/cm3] 1.6 1.6 1.52

Table 1: Resultant elastic coefficients cij of plate etalon specimens in form (21)

The normal surfaces (plot of phase velocity vϕ(n) versus the wave normal direction) of mea-
sured phase velocities of acoustic waves propagating through CFRP plate specimens of different
thicknesses in the x1x3 plane are demonstrated in figure 4. This figure represents experimentally
obtained phase velocities and their fitting to the normal surfaces evaluated for cij resulting from
the optimization (18). The values of cij expressed in form (21) calculated from optimization (18)
are presented in the table 1. The PS/PR and immersion technique measured and calculated phase
velocities of wave propagating through 8 mm thick CFRP specimen are compared in figure 5.
Then, a similar experiment was performed in an axial plane of an isotropic plexiglass tube (fig 6).
The results (fig 7) are in a good agreement with the considered isotropic model of propagation,
being not influenced by the cylindrical shape of the specimen at all.
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Bovine specimenn Pithioux et al. [18, 21]
thickness d [mm] 8.75±0.5

c11[GPa] 27.39±1.8330 23.50

c33[GPa] 34.11±2.1969 34.60

c44[GPa] 13.09±3.3756 9.20

c13[GPa] 9.07±5.7503 8.35

density ρ[g/cm3] 1.8±0.1 1.8

Table 2: Resultant elastic coefficients cij of bovine bone specimens in form (21) and comparison
with [18, 21].

Figure 5: Comparison of immersion measurement and PS/PR measurement [26, 27] of CFRP
plate specimen(thickness 8 mm)
Circles - immersion measurement, Solid lines - PS/PR measurement Horizontal axis - phase velocity in x3

direction, Vertical axis- phase velocity in x1

4.2 Bone Sample

The dry bovine cortical bone sample, described in details in paragraph 3.2., was used for our
experimental study. The acoustic measurements of qL and qT waves propagating through the
specimen immersed in water were performed on ultrasonic immersion scanner (paragraph 3.3.)
with following configuration. The bone was horizontally oriented in fiber direction and fastened
in the rotational stage between fixed transducer and acoustic mirror. The transducer served as a
transmitter and receiver (pulse/echo arrangement). Measurements were performed in one particu-
lar place of the bone, approximately in the median part of bone with known shape and thickness
(CNC milling machine measurement). The phase velocities of qL and qT waves propagating
through the rotating specimen were detected for a broad range of directions. The elastic coeffi-
cients were calculated by inverse optimization (18) from the set of measured phase velocities and
the stability of resulting data was evaluated by the statistical method (21). As mentioned above,
only some of the nine independent elastic coefficients can be determined by this method, namely
c11, c33, c55, and c13. The figure 8 shows experimentally obtained phase velocities. Calculated
elastic coefficients and its comparison with literature [18] are mentioned in table 2.

The experimental configuration with bone fibers oriented vertically and estimation of remain-
ing coefficients will be shortly performed in the future.
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Figure 6: Measurements in an axial plane of a cylindrical specimen.

Figure 7: Plots of the phase velocities [mm/µs] propagating through cylindrical specimen.
Circles - experimentally obtained data, Solid lines - phase velocities for calculated cij .

5 Conclusion

In this paper, the ultrasonic immersion scanning technique was used for the determination of
elastic coefficients of the orthographically considered bone samples. This technique makes possible
to monitor quasi-longitudinal (qL) and quasi-transverse (qT) waves generated from the wave
diffraction on liquid/sample interface for a wide range of sample rotations. The measured set
of qL and qT phase velocities is used as an input to inversion procedure for the determination
of all elastic constants. The stability of inversion optimization is estimated by the Monte-Carlo
based statistical method. One of the advantages of the present method is an accuracy of results,
while the rough preparation of specimens is sufficient; samples are not required to have precise
dimensions and perfectly parallel faces (in comparison with the pulse-transition or pulse-echo
contact techniques). The experimental methodology was verified on etalon samples (transversely
isotropic composite plates, isotropic cylinder) with known elastic coefficients.
The dry bovine bone sample (femoral diaphysis, assumption of orthotropic material symme-

try) was used in this study to eliminate the attenuation characteristics of the sample, which are
strongly dependent on temperature, age, blood flow etc. The dried bone specimen is suitable for
an evaluation of elastic coefficients of elastic but geometrically complex body. In the experiments,
only one measurement point and one sample orientation was measured, so only four of nine elas-
tic coefficients was determined. However, the obtained results are in a good agreement with the
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Figure 8: Figure 8: Plots of the phase velocities [mm/µs] propagating through bone specimen
Circles - experimentally obtained data, Solid lines - phase velocities for calculated cij . Horizontal axis - phase

velocity in x3 direction (fiber direction), Vertical axis- phase velocity in x1.

literature [18, 21, 17]. The remaining constants and different bone locations will be measured in
the closest future.
Moreover, the viscoelastic behavior as well as the influence of fluid components on attenuation

of compact bone should be investigated via measuring the velocities and attenuation at various
frequencies. The heterogeneous characteristic such an age, weight, sample preparation and storage
should be taken into the account. And finally, the influence of surrounding soft tissues together
with the recognition of some optimal etalon case should be researched.
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