
Partitioning networks into clusters and residuals with average association
Martin Vejmelkaa� and Milan Paluš
Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodárenskou věží 2, 182 07 Praha, Czech Republic

�Received 25 March 2010; accepted 10 June 2010; published online 23 July 2010�

We investigate the problem of detecting clusters exhibiting higher-than-average internal connectiv-
ity in networks of interacting systems. We show how the average association objective formulated
in the context of spectral graph clustering leads naturally to a clustering strategy where each system
is assigned to at most one cluster. A residual set is formed of the systems that are not members of
any cluster. Maximization of the average association objective leads to a discrete optimization
problem, which is difficult to solve, but a relaxed version can be solved using an eigendecompo-
sition of the connectivity matrix. A simple approach to extracting clusters from a relaxed solution is
described and developed by applying a variance maximizing solution to the relaxed solution, which
leads to a method with increased accuracy and sensitivity. Numerical studies of theoretical connec-
tivity models and of synchronization clusters in a lattice of coupled Lorenz oscillators are con-
ducted to show the efficiency of the proposed approach. The method is applied to an experimentally
obtained human resting state functional magnetic resonance imaging dataset and the results are
discussed. © 2010 American Institute of Physics. �doi:10.1063/1.3460360�

The proliferation of high-dimensional datasets in many
areas of science has created a need for methods that help
in the investigation of large sets of data. Relationships in
such datasets are often modeled as networks of interact-
ing or related elements. This paper proposes a method of
finding cohesive functional units of elements in weighted
undirected networks using a clustering approach. An in-
vestigated network is partitioned into a set of clusters
representing these units and a residual set. The residual
set contains elements which do not relate well to any of
the identified clusters. This approach enables a concise
characterization of functional units even in the presence
of unrelated or confounding elements.

I. INTRODUCTION

The use of eigenvalues of the graph Laplacian in char-
acterizing the connectedness of graphs can be traced back to
Fiedler1,2 and the use of eigenvectors in partitioning of
graphs to Donath and Hoffman.3 Since then, the field of
spectral graph clustering has been steadily receiving increas-
ing attention as graph partitioning methods have been shown
to be effective in many settings.

A spectral graph clustering approach is typically based
on the formulation of a discrete constraint optimization prob-
lem. Often a relaxed version of the problem can be solved
using a spectral approach—by using the eigendecomposition
of the connectivity matrix. The remaining problem is then to
move from the solution of the relaxed problem �relaxed so-
lution� back to the original discrete formulation. At this
point, heuristics are usually applied and there is generally no
guarantee of the optimality of the discrete solution thus ob-

tained. Nevertheless, spectral graph clustering has shown ex-
cellent results in many areas.4–8

Pothen et al.4 used the eigenvectors of the graph Laplac-
ian to find small vertex separators of large sparse graphs in
the context of parallel sparse matrix factorization algorithms.
Hagen and Kahng5 applied the ratio cut criterion to partition
netlists in various phases of very large systems integration
circuit design. Shi and Malik6 introduced a successful formu-
lation of spectral graph partitioning using the normalized cut
criterion for high-level image segmentation. The last work
has sparked strong interest in spectral graph partitioning.

While the first papers were focused on investigating dif-
ferent criteria that were tractable by a relaxation approach,
later papers have also explored the problem of obtaining
cluster memberships from the relaxed solution. Notably, Yu
and Shi9 noticed that the solution of the relaxed multiway
normalized cut optimization problem is not unique and pro-
posed an iterative algorithm to find a new relaxed solution as
close as possible to a solution of the original discrete nor-
malized cut problem.

In the physics community, Newman8 maximized his
modularity criterion using an eigendecomposition of the
modularity matrix. Methods related to spectral decomposi-
tion of the connectivity matrix have also been applied to
cluster detection in multidimensional time series analysis.
Bialonski and Lehnertz10 used the empirically defined par-
ticipation index11 to find phase synchronization clusters in a
lattice of Lorenz oscillators. Allefeld and Bialonski12 pro-
posed a method for detecting synchronization clusters using
an approach based on Markov random walks. Azran and
Ghaharmani13 also based their method on Markov random
walks and suggested a procedure to construct a hierarchical
decomposition of a dataset using different path lengths of the
random walk. Angelini et al.14 constructed a method for thea�Electronic mail: vejmelka@cs.cas.cz.
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identification of modular structures based on the average as-
sociation objective �also called the ratio association
objective�6,15 in the context of probabilistic autoencoders
partitioning the network graph into modules.

In this work, we propose a method for identifying clus-
ters �sets of elements with high mutual connectivity� in un-
directed networks based on maximization of the average as-
sociation objective. Unlike existing methods, the proposed
method is not constrained to cover the entire set of elements
with clusters. Instead, each element is assigned to at most
one cluster. The vertices not assigned to any cluster will be
referred to as the residual set. The framework allows for an
accurate identification of clusters even in the presence of
elements that may be unrelated to the underlying structure of
the investigated network.

Clustering using the average association objective entails
the solution of a constrained discrete optimization problem.
The standard strategy for finding a satisfactory solution is a
relaxation of the discrete cluster memberships to continuous
ones. This relaxation strategy has proved itself effective in
several of the graph partitioning approaches recounted in
Sec. I. The theory introduced in this paper shows how the
participation index is naturally derived from a simple strat-
egy mapping a relaxed solution to an admissible solution of
the original discrete optimization problem. The support of an
explicit mathematical framework also allows for the formu-
lation of more effective methods of mapping a relaxed
solution to a discrete solution. We suggest a method involv-
ing the variance maximizing rotation VARIMAX16 and show
its superior efficiency compared to the simple mapping strat-
egy.

In Sec. II the theoretical framework of the clustering
method based on the average association objective is pre-
sented. In Sec. III numerical studies illustrating the proper-
ties of the proposed method are presented as well as an ex-
ample result from an experimentally obtained resting state
functional magnetic resonance imaging dataset from a hu-
man subject. In Sec. IV some open questions are considered
and the paper is summarized in Sec. V.

II. METHODS

In this section the theoretical framework of the network
partitioning method �or clustering method� based on the av-
erage association objective is formulated. Let V, �V�=N be
the set of objects pi to be clustered. The connectivity �asso-
ciation, similarity� between each pair of objects pi , pj �V is
given by a non-negative number wi,j. We require that the
self-connectivity of an element is 0 ∀pi�V :wi,i=0. Single
objects will thus not be able to form clusters that contribute
to the objective. This scheme corresponds to a network
with vertices corresponding to the objects and undirected
weighted edges with weights given by the connectivity
function.

Numerical studies in this work will deal with dynamical
systems represented by their time series. To simplify later
discussion, we will refer to the objects as processes and their
connectivity will be denoted by wi,j. The clustering method
divides the set of processes V into K clusters or sets
Vk�V , k� �1,2 , . . . ,K� which are disjoint and their union

is a subset of V. The remaining set of objects Vo=V \�kVk is
the residual set. The sets V1 ,V2 , . . . ,VK ,Vo together form a
partition V of the set V. The number of processes in each
cluster will be denoted by Nk= �Vk�. Given the number of
clusters K, the clusters are found by maximizing the average
association objective

JK = 	
k=1

K

	
pi,pj�Vk

wi,j

Nk
�1�

over all partitions V. The objective can be interpreted as a
sum of cluster strengths Sk for each cluster Vk,

Sk = 	
pi,pj�Vk

wi,j

Nk
. �2�

The average association objective rates highly partition
where each of the sets V1 ,V2 , . . . ,VK contains processes
which manifest high mutual connectivity. If a cluster Vk con-
tains Nk coupled processes with mutual connectivity �, then
the cluster strength of the cluster would be

Sk =
��Nk − 1�Nk

Nk
= ��Nk − 1� . �3�

The cluster strength is linear with respect to the mutual con-
nectivity if the number of processes in the cluster is held
constant and increases linearly with the number of processes
in the cluster if the connectivity is held constant. The cluster
strength of a singleton cluster is zero.

We investigate the behavior of the average association
objective on a very simple model of N processes with con-
stant connectivity � among themselves. There is no structure
in the model and thus no inherent clusters.

If a single cluster is sought by maximizing the objective
J1, then none of the processes should be split off into the
residual set. Here the value of the average association objec-
tive only depends on the number of processes in the single
cluster. The value of the objective J1 can be analytically
calculated as

J1 = S1 = 	
pi,pj�V1

wi,j

N1
=

��N1 − 1�N1

N1
= ��N1 − 1� . �4�

The objective increases linearly with the number of pro-
cesses in the cluster V1 and thus reaches its maximum value
for �V1�= �V�=N. The optimal solution is indeed a clustering
with all the processes in one cluster and an empty residual
set.

To verify if there is any preferred relative cluster size,
the objective J2 is evaluated for the same model. Since there
are no clusters in the model itself, any preferred relative size
of the clusters would have to be a result of the structure of
the objective function �1�. The objective J2 again only de-
pends on the sizes of the two clusters

J2 = 	
k=1

2

	
pi,pj�Vk

wi,j

Nk
= ��N1 + N2 − 2� . �5�

The objective J2 does not depend on the relative size of the
clusters but only on the sum of their sizes. The optimal result
in this case is that the union of the two clusters is the input
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set V, while the division of processes into the clusters is
arbitrary. There is no preferred relative size of clusters ob-
tained by maximizing the average association objective on
this model. This is not the case, for example, for the min-
max-cut criterion,17 which favors balanced clusters and
would rate highly a division into �arbitrary� clusters of simi-
lar sizes.

The constant connectivity model can also be used to
show why a self-connectivity of 0 is a reasonable require-
ment. Assuming that instead of zero, the self-connectivity
would be equal to �s�0, we analyze again the constant con-
nectivity model. By construction, a single cluster covering
all the processes is a correct result, while a division of the set
into multiple clusters covering the entire set is necessarily
arbitrary. The objective value for a single cluster should thus
be higher than that for two or more clusters to ensure that the
former solution is preferred over the latter. If the self-
connectivity is �s, we can write the average association ob-
jective J1 for one cluster and JK for K�1 clusters

J1 =
��N − 1�N + N�s

N
= ��N − 1� + �s,

�6�

JK = 	
k=1

K

���Nk − 1� + �s� = J1 + �K − 1���s − ��

since 	k=1
K Nk=N. Our requirement that J1�JK is equivalent

to �s��. This should be true regardless of the value of
��0, which uniquely determines the value of the self-
connectivity as 0.

Further discussion is facilitated by reformulating
the average association objective in matrix form. Let
W= �wi,j�N�N be the symmetric connectivity matrix and let
the indicator vectors uk ,k� �1,2 , . . . ,K� be defined by

�uk�i = 
1 if pi � Vk

0 otherwise.
� �7�

The disjointness of the sets Vk requires that the vectors ui and
u j are orthogonal for i� j. The objective JK can be written in
terms of the indicator vectors uk as

JK = 	
k=1

K
uk

TWuk

uk
Tuk

. �8�

The objective is to be maximized under the conditions uk

� �0,1�N and ui
Tu j =0 if i� j. Equation �8� can be rewritten

as a matrix trace by accumulating the vectors uk into a matrix
U= �u1 ,u2 , . . . ,uK�. We can then write for the objective

JK = tr��UTU�−1UTWU� = tr��UTU�−1/2UTWU�UTU�−1/2� ,

�9�

where matrix UTU is diagonal. The substitution
Y =U�UTU�−1/2 simplifies the optimization problem to
JK=tr�YTWY�. The condition YTY = IK is automatically satis-
fied since

YTY = �UTU�−1/2�UTU��UTU�−1/2 = IK. �10�

The vectors yk thus have unit length and are orthogonal to
each other. Their elements are

�yk�i = � 1
Nk

if i � Vk

0 otherwise,
� �11�

where Nk= �Vk� is the size of the cluster Vk. This discrete
optimization problem can be relaxed by dropping the re-
quirement �11� and allowing the elements of Y to have con-
tinuous values while respecting the orthogonality and unit
size constraints.

A. Relaxed optimization problem

The relaxed optimization problem can be written in
terms of the matrix Y as

max
YTY=I

tr�YTWY� . �12�

The maximum for this problem is attained if yk are the eigen-
vectors of W which correspond to the K largest eigenvalues
of the connectivity matrix W. The eigenvalues of the matrix
W will be denoted as �1��2� . . . ��N and the eigenvector
corresponding to �k will be denoted as zk. Then the optimal
solution of Eq. �12� is the matrix Z= �z1 , . . . ,zK�.

Each eigenvector zk represents a relaxed cluster in which
element memberships are relaxed to continuous values. The
cluster strength of such a relaxed cluster is equal to its cor-
responding eigenvalue

Sk =
zk

TWzk

zk
Tzk

= �
zk

Tzk

zk
Tzk

= �k. �13�

The optimal value of the objective for the relaxed version of
the problem is the sum of the cluster strengths

JK = 	
k=1

K

�k. �14�

Clearly, relaxed clusters with a negative cluster strength
Sk=�k�0 would decrease the value of the criterion and can-
not form a part of the relaxed solution. The contribution of
each element to the average association inside cluster Vk can
be written as

JK = 	
k=1

K
zk

TWzk

zk
Tzk

= 	
k=1

K

zk
TWzk = 	

k=1

K

�kzk
Tzk = 	

k=1

K

	
i=1

N

�kzi,k
2 ,

�15�

where zi,k is the element at position �i ,k� of the matrix Z.
Note that the expression �kzi,k

2 is the participation index.11 If
the method was required to assign every process to exactly
one cluster, the simplest way to maximize the objective �1�
based on the obtained relaxed solution would be to assign
each element pi to the cluster Vk for which �kzi,k

2 is maximal
over all k� �1,2 , . . . ,K�. The participation index �kzi,k

2 is the
contribution of the element pi to the final value of the objec-
tive JK assuming that it is assigned to cluster Vk. In Ref. 10,
processes were assigned to clusters in which their participa-
tion indices were maximal. Clearly, this is a reasonable
straightforward way of maximizing the average association
criterion based on the obtained relaxed solution assuming
that each process must be assigned to exactly one cluster. In
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the proposed method, not all processes are required to be
parts of clusters, and thus the cluster assignment procedure is
slightly more involved.

The above procedure of assigning elements to clusters is
unable to cope with clusters of similar cluster strength. This
problem has been noticed in numerical experiments10 and the
authors postulated that a “cluster strength” considering both
connectivity and cluster size exists and clusters that have a
similar strength will not be separated correctly in some con-
figurations. We demonstrate in the experiments using theo-
retical connectivity models �cf. Sec. III A� that the cluster
strength �2� has this property. If there are two or more clus-
ters with similar cluster strengths, then cluster assignment
based on the participation index will not be able to discrimi-
nate between them. However, the cluster assignment incor-
porating the VARIMAX rotation discriminates between clus-
ters with equal or similar cluster strengths effectively.

B. Cluster assignment

Cluster assignment is a procedure that maps an admis-
sible solution of the relaxed problem �12� to an admissible
solution of the original discrete clustering problem �1�.
For a problem with N processes and K clusters, cluster
assignment may formally be specified as a function
MX :RN�K→ �V1 , . . . ,VK ,Vo�, where the domain of the
method is a set of matrices with orthonormal columns and
the range is the set of partitioning of the set of processes V.
Two methods of assigning clusters are presented here: the
first will be referred to as simple mapping MS and the second
as VARIMAX mapping MV.

1. Simple mapping
Simple mapping MS has two phases. In the first phase,

candidate elements are assigned to clusters. This is per-
formed by assigning each element i to the cluster k such that

k = arg max
l

�lzi,l
2 , �16�

in other words by maximizing the participation index. This is
motivated by the decomposition of the objective value of the
relaxed problem �15�, which is maximized by this strategy.
The process i is assigned to the cluster Vk, where it will
contribute most to the final value of the average association
objective �1�.

Using this assignment, a new matrix Z̃= �z̃i,j�N�K is
created as

z̃i,k = 
�zi,k� if pi � Vk

0 otherwise.
� �17�

Each column z̃l of Z̃ is then rescaled to unit length. Fi-
nally, the best approximation in the least-squares sense of z̃l

by a discrete indicator vector of the form �11� is found. This
can be done efficiently by sorting z̃l in descending order and
systematically computing the sum of squares distance to a
vector d�m��RN of the form

�d�m��i = � 1
m

if i � m

0 if i � m .
� �18�

After sorting, the best matching indicator vector can be
found in linear time. All but the m processes with the highest
values of z̃i,k are then removed from the cluster Vk. This
procedure is repeated for each cluster Vk. The removed pro-
cesses from each cluster constitute the residual set Vo of the
clustering.

2. VARIMAX mapping
Yu and Shi9 noticed that any orthogonally transformed

solution of the relaxed multiway normalized cut problem is
also a solution of the same problem. The insight is also ap-
plicable to the relaxed solution of the average association
problem �12�: given the relaxed solution Z, any matrix ZR,
where R is an orthogonal matrix �RTR= I�, is also a solution.
This is easily seen as the objective value in Eq. �12� is in the
form of a matrix trace, which is invariant under orthogonal
transformation, and since �ZR�T�ZR�=RTZTZR=RTIR= I, the
orthogonality constraint is automatically satisfied for ZR.

We suggest using the VARIMAX �Ref. 16� rotation
which has been applied in factor analysis and principal com-
ponent analysis. Application of the VARIMAX procedure re-
sults in an orthogonal matrix RV�RK�K such that

RV = arg max
R

K	
k=1

K � 1

K
	
i=1

N

��ZR�i,k
2 − �ZR��,k

2 �2� , �19�

where �ZR�i,k is the element at position �i ,k� of the matrix
ZR and �ZR��,k is the kth column vector of the same matrix.
According to the criterion �19�, the orthogonal matrix RV is
selected to maximize the sum of the variances of the squared
elements in each column of ZRV. The optimization algorithm
for obtaining RV is iterative, deterministic, and makes use of
the optimal solution for the VARIMAX objective in two
dimensions.16,18

The VARIMAX rotation attempts to find a suitable or-
thogonal transform RV so that ZV=ZRV has a simple
structure.19 The principle of simple structure requires that
each column vector of the matrix ZV should have some ele-
ments with high absolute values �loadings� and all the other
elements should have values close to zero. A relaxed solution
with simple structure is more likely to correspond to the
form of the indicator vector �11�. In other words, such a
relaxed solution may be closer to a solution of the discrete
constrained optimization problem. Intuitively, the require-
ment of simple structure corresponds to a compact localiza-
tion of a relaxed cluster on the input set V.

When the rotated matrix ZV= �zV�i,j is obtained, candi-
date processes pi are assigned to clusters Vk so that

k = arg max
l��1,. . .,K�

�zV�i,l. �20�

Each column of matrix ZV is normalized to unit length and
the discrete indicator vector template �18� is fit exactly as in
simple mapping to obtain the final composition of each
cluster.
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III. RESULTS

This section reviews numerical studies of theoretical
connectivity models which illustrate selected aspects of the
clustering method. The effectivity of the method is also
tested using a partially coupled lattice of Lorenz oscillators.
The models are identical to those of Bialonski and
Lehnertz10 and some results are also replicated for compari-
son purposes. Finally, the method is applied to a high-
dimensional functional magnetic resonance imaging �fMRI�
dataset and the results are discussed.

A. Theoretical connectivity models

We replicate the numerical experiments using a simu-
lated connectivity matrix described in Ref. 10 and, in addi-
tion, we demonstrate how empirical observations therein can
be understood within the context of the presented mathemati-
cal framework.

The connectivity matrices were constructed to simulate a
population of 32 coupled systems in two clusters with con-
stant connectivity levels inside each cluster and between
clusters. Connectivity matrices with this type of simplified
structure would be difficult to obtain from simulations in-
volving coupled dynamical systems and were therefore con-
structed directly.

Each connectivity matrix contained samples from
three random variables characterizing the connectivity in
and between two clusters V1= �p1 , p2 , . . . , pr� and V2

= �pr+1 , pr+2 , . . . , p32�. The connectivity inside cluster V1 was
sampled from the normal distribution N��1 ,	1� in cluster V2

from N��2 ,	2� and between the two clusters from
N��int ,	int�. The standard deviation for each random variable
was computed from the mean phase coherence population
value � using the formula 	= �1−�2� /2n with the sample
size n=200.

In Ref. 10, no cluster assignment was explicitly per-
formed and the error of the clustering was objectively esti-
mated using a function of the eigenvectors corresponding to
the two largest eigenvalues. Let the functions 
1 and 
2 be
given by


1 = �	
i=1

r

���i2��−1

	
i=1

r

�i2���i2� ,

�21�


2 = � 	
i=r+1

32

���i1��−1

	
i=r+1

32

�i1���i1� ,

where �� · � is the Heaviside function and the quantities �i1

=−�i2=�1zi1
2 −�2zi2

2 are the differences in participation indi-
ces corresponding to element pi and cluster V1 and V2, re-
spectively. The function 
1 is the average difference of par-
ticipation indices for elements that belonged to cluster V1 but
were incorrectly assigned to V2 and the function 
2 is the
average difference of participation indices for the converse
situation. If the participation indices signify the correct clus-
ter memberships, then 
1=
2=0. The total clustering error
was quantified by


 = 

1 + 
2 if N� = 2

0 otherwise,
� �22�

where N� was the number of eigenvalues of the connectivity
matrix greater than 1. In the presented framework, the self-
connectivity is required to be 0 instead of 1.10 The eigenvec-
tors do not depend on the self-connectivity but the eigenval-
ues are all decreased by 1 when the self-connectivity is 0.
Therefore, in this experiment N� indicates the number of
eigenvalues greater than 0.

1. Influence of intercluster connectivity on clustering
solution

The first experiment examined a transition from a two
cluster scenario to a single cluster. The mean intracluster
connectivities were set to �C=�1=�2=0.8 and the mean in-
tercluster connectivity �int was increased in steps of 0.01
from 0.0 to 0.8. For �int=0, there are two clusters V1 and V2

with internal connectivity �C=0.8, and for �int=0.8, there is
only one cluster V1�V2 covering the entire set of processes.
Clearly, there must be a boundary in the space parametrized
by r= �V1� and �int separating the region where one cluster
exists from the region where two clusters exist.

The purpose of this experiment was twofold: to show the
effectivity of the VARIMAX rotation in determining the cor-
rect cluster assignments and to show that the boundary be-
tween one- and two-cluster regions can be analytically cal-
culated from the proposed theory. The boundary location
agrees with the spectral properties of the model connectivity
matrix.

The error surface 
 �22� for the given parameter space is
shown in Fig. 1. Although the self-connectivity was equal to
1 in the numerical studies of Bialonski and Lehnertz,10 the
error surface is practically unchanged when the self-
connectivity is defined according to the proposed theory as 0.
For similar cluster sizes r�15, cluster assignment based on
the participation index was unable to consistently separate
the two clusters even if their internal connectivity was much

FIG. 1. The error 
 as a function of the size r of cluster V1 and the mean
connectivity between clusters �int. The thick line is the theoretical prediction
of the boundary between the region with two positive eigenvalues and the
region with only one positive eigenvalue.
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higher than the connectivity between them. The error surface
sharply drops to zero for higher inter-cluster connectivities
�region on the left of Fig. 1� because the number of positive
eigenvalues of the connectivity matrix changes from two to
one and the error function 
 is zero by definition. Addition-
ally, there were errors for higher intercluster connectivities
when the cluster sizes were unbalanced.

These results have been compared to those computed
from eigenvectors rotated using an orthogonal matrix ob-
tained from the VARIMAX method. The full VARIMAX
mapping MV was not applied as here only the effect of the
VARIMAX rotation is appraised. The error of the solution
was quantified differently because the cluster assignment is
computed without the involvement of the eigenvalues �cf.
Sec. II B 2�. To evaluate the cluster assignment error that
would be made based on the rotated eigenvectors, the error
contributions were defined as

�̃i1 = − �̃i2 = �ZRV�i1
2 − �ZRV�i2

2 , �23�

where RV is the rotation computed by the VARIMAX method
and Z is the matrix with columns containing the first two
eigenvectors of the connectivity matrix. We denote the modi-
fied error function as 
V. The modification preserves the
spirit of the error function 
 for the rotated eigenvectors. The
error function 
V is zero everywhere in the parameter space
of the experiment �figure not shown�. Hence, assigning clus-
ter memberships based on the rotated eigenvectors would
result in correct assignments in the entire parameter space.

Using this idealized example, it is possible to analyti-
cally compute the expected value E�J1� for the situation
where all the elements are in one cluster and E�J2� for the
two model clusters, both with empty residual sets,

E�J1� = �N − 1��C −
2r�N − r���C − �int�

N
,

�24�
E�J2� = �C�r − 1� + �C�N − r − 1� = �N − 2��C.

For each cluster size parametrized by r, a critical intercluster
connectivity �int

crit�r� may be computed from the condition that
the expected values of the criteria J1 and J2 are equal, which
results in the equation

�int
crit�r� = �C�1 −

N

2r�N − r�� . �25�

The critical intercluster connectivity �int
crit�r� separates two re-

gions where the optimal clustering differs. In the region
where �int��int

crit�r�, the theoretically optimal clustering is a
single cluster covering the entire set of elements, with an
empty residual set. In the region where �int��int

crit�r�, the op-
timal split is into two clusters V1 and V2 again with an empty
residual set.

The curve �int
crit�r� is indicated by a thick black line in Fig.

1 and coincides exactly with the boundary separating the
region where the model connectivity matrix has one positive
eigenvalue from that with two positive eigenvalues. This
boundary is formed by the locations where the 
 error func-

tion �22� sharply drops to zero, as by definition the error
function 
 is only nonzero if the connectivity matrix has
exactly two positive eigenvalues.

We have shown that the optimal number of clusters ac-
cording to the proposed theoretical framework is equal to the
number of positive eigenvalues of the model connectivity
matrix. Thus, the curve �int

crit�r� is not an arbitrary division of
the parameter space into a one- and two-cluster regions but is
in agreement with the spectral properties of the connectivity
matrix.

Finally, we note that the clustering solutions actually ob-
tained by running the clustering method with the full VARI-
MAX mapping �cf. Sec. II B 2� result in an accurate cluster-
ing on the entire parameter space, with an empty residual set
everywhere and a correct assignment into one or two clusters
depending on the theoretically optimal clustering according
to the expected values of the objectives J1 and J2.

2. Influence of relative cluster strength on clustering
solution

In the second theoretical experiment, the cluster mem-
berships were again determined by a single parameter r as in
the previous experiment and the connectivities were set
�1=0.8, �int=0.2, and �2 was decreased in steps of 0.01 from
0.8 to 0.2. This experiment simulated the transition from a
two-cluster configuration to a single cluster configuration by
decreasing the connectivity inside the second cluster.

The purpose of the second numerical study is to show
that the theoretical cluster strengths �2� of the model clusters
predict where cluster assignment based on the participation
index will fail and that the VARIMAX rotation prevents this
cluster assignment failure effectively.

Let the expected cluster strength be quantified according
to the formula �2� derived in the average association frame-
work as

E�S1� = �1�r − 1� ,

�26�
E�S2� = �2�N − r − 1� .

We can now predict where the participation index will con-
fuse the two model clusters. The region where the participa-
tion index method produces assignment errors should be near
the curve where the expected cluster strengths E�S1� and
E�S2� are equal. This curve, parametrized by the size of the
cluster V1, is given by the equation

�2
crit�r� = �1

r − 1

N − r − 1
. �27�

The 
 error surface parametrized by the size r of cluster V1

and the connectivity �2 of the cluster V2 is shown in Fig. 2
and is in agreement with the previously reported results.10

The curve �2
crit�r� is indicated by a thick black line in the

figure. The largest error 
 is directly above the theoretical
curve. Thus, for parameters r, �2 which produce clusters of
similar cluster strengths Sk developed in the proposed math-
ematical framework, the clustering method based on the par-
ticipation index fails to correctly discriminate between the
clusters.
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We wish to make a clear distinction between the cluster
strengths of the underlying clusters, which may be estimated
analytically from the model, and the cluster strengths of the
relaxed clusters, which are equal to the corresponding eigen-
values of the connectivity matrix. In general, it is not pos-
sible to infer if the underlying clusters of similar strength are
present in the investigated problem from the eigenvalue
spectrum computed from a given connectivity matrix. For
example, in the current problem, the largest eigenvalue was
approximately in the range �6.7,21.1� and the second largest
belonged to the interval �1.6,8.7�. The differences between
the two largest eigenvalues over the parameter space never
dropped below 4.9 �cf. Fig. 3� even when the model cluster
strengths were almost equal. Hence, it is important to resolve
the problem of discriminating clusters with similar strength
at the method level as it may be difficult to find out whether
or not the obtained solution is perturbed by the existence of
such clusters.

The VARIMAX method separates clusters with similar
cluster strength effectively. It rotates the eigenvectors using
an orthogonal matrix RV so that the sum of the variance of
the squared entries of the rotated vectors is maximal. An
example of the solution for r=10 and �2

crit=0.34, which pro-
duces model clusters with expected strengths S1=7.2 and
S2=7.14, is shown in Fig. 4. The eigenvectors obtained from
the decomposition of the matrix do not have any elements
close to zero, although the structure indicating the two clus-
ters is clearly visible. On the other hand, the rotated eigen-
vectors clearly indicate that the two clusters and additionally
their elements belonging to processes outside the indicated
cluster are close to zero.

The error surface 
V, which quantifies the assignment
error based on the VARIMAX-rotated eigenvectors, is zero
everywhere in the parameter space. Hence, it was demon-
strated that use of the VARIMAX rotation resolves the prob-
lem of identifying clusters of similar strengths and results in
a correct cluster assignment. The formal cluster strength �2�,
which was introduced within the average association frame-
work, was shown to predict the regions where cluster assign-
ment using the participation index is unable to separate the
two model clusters.

B. Lorenz lattice model

This section details results from experiments on a lattice
of coupled Lorenz oscillators.

1. Error quantification
To objectively measure the quality of the clustering from

the average association objective, we employed the
F-measure, recall and precision,20 well-known functions in
the domain of information retrieval. The functions allow for
the quantitative comparison of a clustering result to the cor-
rect solution which is known for the Lorenz lattice model
analyzed here. Given a set indicating a model or true cluster
A and an identified cluster B, we can define the precision P
and recall R as

FIG. 2. The 
 error surface for the participation index as a function of r, the
size of the model cluster V1, and of �2, the internal connectivity of model
cluster V2. The thick black curve indicates the theoretical prediction of the
region where the participation index method assigns cluster memberships
incorrectly.

FIG. 3. The difference between the first and the second largest eigenvalues
of the connectivity matrix as a function of r, the size of the model cluster V1,
and of �2, the internal connectivity of model cluster V2.
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FIG. 4. Top: the first two eigenvectors �full line� and the same eigenvectors
rotated by the VARIMAX method �dashed line�. Bottom: squared elements
of the same vectors. The parameters for the experiment were r=10 and
�2=0.34. The VARIMAX-rotated eigenvectors are close to zero for pro-
cesses outside their cluster.
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P�A,B� =
�A � B�

�B�
, R�A,B� =

�A � B�
�A�

. �28�

Recall and precision are values with range �0,1� with 0 in-
dicating that the model cluster and the identified cluster are
disjoint. A precision of 1 indicates that the identified cluster
is a subset of the model cluster. A recall of 1 indicates that
the model cluster is a subset of the identified cluster. If both
recall and precision are equal to 1, then the clusters A and B
are identical.

The F-measure is a harmonic mean of the precision and
the recall between a model and identified cluster. Using re-
call and precision, the F-measure can be written as

F�A,B� =
2P�A,B� � R�A,B�
P�A,B� + R�A,B�

. �29�

If sets A and B are equal, then their F-measure is equal to 1
and if their intersection is empty then their F-measure is 0.
The F-measure is used to match each model cluster to one of
the identified clusters. A model cluster is matched to the
identified cluster for which the F-measure to the model clus-
ter is maximal. The matching is not exclusive: one identified
cluster may be matched to zero or more model clusters. The
residual set is excluded from the matching. The F-measure is
used for single cluster matching because it effectively com-
bines precision and recall into a single variable. The curves
reported in the experiment are the average precision and av-
erage recall over all matched pairs.

If three of the identified clusters V1 , . . . ,VK were exactly
equal to the model clusters C1 ,C2 ,C3, then the average pre-
cision and recall would both be equal to 1. If two model
clusters C1 ,C2 were part of one identified cluster V1, then
both pairs C1 ,V1 and C2 ,V1 would have a recall of 1 but low
precision �which would reduce the average precision�. On
the other hand, if model cluster C1 was split into two iden-
tified clusters V1 and V2, then the precision of the pairs
C1 ,V1 and C1 ,V2 would be 1 but the recall would be affected
�reduced to 0.5 if the C1 was split evenly into V1 and V2�.
The average precision and recall thus indicate what type of
errors the various clustering strategies are producing.

2. Lorenz lattice model
A lattice of 32 identical Lorenz oscillators with three

clusters of six coupled oscillators identical to that used by
Bialonski and Lehnertz10 in simulated experiments will be
studied as a numerical example. Each system i is defined by
the equations

ẋi = − 8/3xi + yizi + i�xD1,2,3
− xi� ,

ẏi = 28zi − yi − xizi, �30�

żi = 10�yi − zi� ,

where i is the coupling strength between the system i and
one of three selected driving systems D1,2,3 �cf. Fig. 5�. For
all systems belonging to one of the clusters, i= so that a
single parameter controls the simulation. The remaining os-
cillators are uncoupled with i=0. The Lorenz oscillators
were integrated by the Runge–Kutta �4,5� scheme as imple-

mented in MATLAB �function ode45� with a time-step
dt=0.01. Starting the integration from random initial condi-
tions, the first 104 samples were discarded to remove tran-
sient effects and time series of N=5�105 samples of the x
variable were used for further analysis. The coupling param-
eter  was varied from 0 to 1.4 in steps of 0.05.

The connectivity between the systems was quantified by
the mean phase coherence21 �MPC� estimated by

�ij = � 1

L
	
l=1

L

ei��i�l�−�j�l��� , �31�

where �i� · � is the phase of Lorenz system i. Mean phase
coherence has the range �0,1� with 1 indicating perfectly
phase synchronized systems. Phase was extracted using the
analytical signal method by computing the imaginary part of
the signal xi�t� using the Hilbert transform defined as

�Hxi��t� =
1

�
P�

−�

� xi�t�
t − �

d� , �32�

where P indicates the Cauchy principal value of the integral.
We have applied a more efficient method of computing the
imaginary part given by

�Hxi��t� = F−1��Fxi����sgn�����t� , �33�

where F and F−1 indicate the Fourier transform and its in-
verse, respectively. The average of each time series xi�t� was
removed, then the first and last 10% of the time series were
tapered by a cosine half-wave. After computing the imagi-
nary part of the analytical signal using Eq. �33�, phase was
extracted from the entire time series and the parts tapered by
the cosine half-wave were discarded.

A key indicator of connectivity in the model systems is
the mean phase coherence inside and outside the model clus-
ters. The average MPC in the clusters and between the re-
siduals as a function of  is shown in the left frame of Fig. 6.
The average MPC inside the clusters grows rapidly for 
�0.4, while for weaker couplings, there is a smaller differ-
ence between the average MPC inside clusters and a set of
six oscillators randomly selected from the residual set. The
right frame of Fig. 6 shows the evolution of the five largest
eigenvalues against the coupling parameter . The top three
eigenvalues show a very similar progression with respect to
the coupling parameter.

We reiterate that the cluster eigenvalues are equal to the
strength of the relaxed clusters �13� and that the cluster

1 2 3 4 5 6 7 8

9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4

2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2

FIG. 5. Lattice of 32 Lorenz systems with three clusters indicated by neigh-
boring gray-shaded circles. Light gray circles with dashed boundary indicate
driving systems D1=10, D2=15, and D3=28, which drive the rest of the
cluster to which they belong.
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strength grows with the connectivity inside the cluster. Mean
phase coherence has a nonlinear relationship with the cou-
pling, as indicated by the left frame in Fig. 6. The evolution
of the average MPC connectivity resembles that of the three
largest eigenvalues closely with the exception of the top ei-
genvalue in the coupling range �0.4. The results of the
simple mapping MS �as discussed below� detect a single
cluster covering the entire set of oscillators for this coupling
range. This is in agreement with the other two eigenvalues
being close to zero �cf. Fig. 6, right�. Thus, the top eigen-
value reflects the strength of the single relaxed cluster cov-
ering the entire set. Although there are three model clusters,
the eigenspectrum of the connectivity matrix does not reflect
this configuration in the weak coupling range. In Sec. III it
will be shown that nevertheless the three model clusters can
be recovered even in the weak coupling range with use of the
VARIMAX mapping.

3. Results
The experiment was in effect run twice for two different

strategies of obtaining clusters. The first strategy identified
clusters by maximizing the average association objective
over cluster count K� �1, . . . ,Kmax� with Kmax=10, which
will be denoted as the max-K strategy. The cluster member-
ship and the number of clusters were identified at the same
time. In the second strategy the resulting clustering was ob-
tained by maximizing J3 �the max-3 strategy�, hence the
number of clusters was constrained to at most three.

Twenty realizations of the time series from each oscilla-
tor were generated using the Lorenz lattice model for each
connectivity strength  with random initial conditions. Each
realization was clustered using four methods: simple map-
ping MS and VARIMAX mapping MV, both combined with
the max-K and the max-3 strategy.

Figure 7 summarizes the results of the 580 runs: the left
column contains average precision and recall curves for clus-
tering results obtained using the max-K strategy and the right
column contains results from the max-3 strategy. The top
row shows results obtained by using the VARIMAX map-
ping and the center row by the simple mapping. The bottom

row is shown for comparison purposes and applies simple
mapping with self-connectivity equal to 1 �as in the previous
study10�.

The results for VARIMAX mapping are shown in the top
row of Fig. 7: the results were markedly better than those
obtained using simple mapping MS �center and bottom
rows�. Of interest is the result in top left of Fig. 7: the model
clusters were detected accurately already for very weak cou-
plings �0.2, where the connectivity inside the clusters was
quite low �cf. Fig. 6�. Using the max-K strategy with the
VARIMAX mapping, about six clusters were consistently
obtained regardless of the value of the coupling term . The
residual set remained empty.

Surprisingly, even though that by construction the model
has exactly three clusters, neither mapping combined with
the max-3 strategy �curves in right column of Fig. 7� was
able to identify the model clusters for weak couplings. For
stronger couplings �0.5, the VARIMAX mapping �with the
max-3 strategy� identified the model clusters accurately and
all the uncoupled systems were assigned to the residual set. It
seems that although it is possible to recover model clusters
even for very weak couplings, more than three eigenvectors
are required to do so. Examination of the clustering results
indicated that if the number of clusters was constrained, os-
cillators from the residual set were affixed to the model clus-
ters by the VARIMAX mapping, which reduced the precision
of the method but did not adversely affect the recall. In the
max-K strategy, the uncoupled oscillators formed very weak
spurious clusters, which may have facilitated the precise
identification of the model clusters.
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FIG. 6. Left: average mean phase coherence in the clusters �full line� and
between uncoupled systems �dashed line� as a function of the coupling
strength . Error bars are standard deviations estimated from 20 realizations
of the coupled system for each coupling strength . The error bars of the
connectivity of the uncoupled systems are too small to show. Only one curve
is displayed for the three clusters as the coupling  is duplicated across
clusters. Right: five largest eigenvalues vs coupling strength . The fifth
eigenvalue is very close to zero for all coupling strengths.
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FIG. 7. Cluster matching results. The curves represent the average precision
�full curve� and average recall �dashed curve�. The results shown are aver-
ages over 20 realizations for each coupling strength . Left column contains
results for maximal objective clustering �max-K strategy�; right column
shows results for clustering using the max-3 strategy. The top row displays
VARIMAX mapping �Sec. II B 2� results, center row simple mapping
�Sec. II B 1� results, and the bottom row simple mapping with self-
connectivity equal to 1 for comparison purposes.
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When clusters were identified using the simple mapping
involving the participation index �cf. Fig. 7, center row�, the
accuracy of the clustering suffered in two respects. For low
couplings, the precision of the method was low as often one
cluster contained most of the oscillators, while other clusters
contained parts of the model clusters. This finding is consis-
tent with the one dominant eigenvalue in this coupling range
�cf. Fig. 6� as the relative size of the eigenvalues influences
the participation indices. For very low couplings �0.2, all
the oscillators were in one cluster, hence the average recall
was close to 1. For slightly higher couplings 0.2��0.5,
the single cluster began splitting but the identified clusters
did not match the model clusters and recall was negatively
affected. For intermediate couplings, the clustering results
were typically close to the model clusters but the accuracy
did not match that of the VARIMAX mapping. For high cou-
plings, the model clusters were often identified correctly but
in some cases model clusters were lumped together in one
identified cluster, this is visible as a slight decrease in preci-
sion for �1. An inspection of the results revealed that this
is a manifestation of the inability to discriminate clusters
with similar cluster strengths illustrated in theoretical con-
nectivity models �Sec. III A�. For such high couplings, the
MPC between coupled systems is very close to 1 and all the
model clusters have almost the same exact cluster strength
�2�. Thus, the simple mapping strategy was adversely af-
fected for both low and high values of the coupling term .

For comparison purposes, the results using an eigende-
composition of the MPC connectivity matrix with a unit di-
agonal and using simple mapping closely following previous
experiments10 are also shown. This would be equivalent to
setting the self-connectivity to 1 in the presented framework.
In this case, the maximum objective clustering resulted typi-
cally in ten or more clusters, some of which are composed of
only two elements. By comparing the center and bottom row
of Fig. 7 some differences can be seen. For low couplings
�0.5, the precision is much higher for the unit-diagonal
decomposition but the recall has dropped strongly, indicating
that the dataset is split into multiple clusters which do not
match the model clusters. For high couplings, the precision
and recall are comparable with the results of the simple
mapping strategy with zero self-connectivity �center row of
Fig. 7�.

The most important results of this numerical study are
that the VARIMAX mapping resulted in clusters which
match the model clusters accurately. Especially together with
the max-K strategy, the model clusters were recovered even
for weak coupling strengths. The VARIMAX mapping also
accurately discriminates between clusters with similar cluster
strength.

C. Results from experimental fMRI data

The results obtained from the application of the pro-
posed method to fMRI data measured from a resting human
subject �eyes open fixation on a point� are reported. The
measurements reflect the spontaneous blood oxygen level de-
pendent activity in the subject.22 The objective of the experi-
ment is to identify functional units of the brain, which are
commonly termed RSNs or intrinsic connectivity networks.

The measurement device was a 1.5 T MRI scanner. A
time series was measured from each voxel �3�3�3 mm3

cube� inside the measurement volume with a repetition time
TR=2 s. The analyzed segment contained 300 time points
or 10 min of activity in 27 644 voxels, which were located in
the gray matter of the subjects’ brain. Before analysis, the
dataset was subjected to standard preprocessing procedures.
The data were aligned in the temporal and spatial domains
and registered to the Talairach atlas.23 The dataset was then
spatially smoothed with a 6 mm full width half maximum
Gaussian filter and bandpassed in the temporal domain in the
0.009–0.08 Hz frequency band. The time series of each voxel
was orthogonalized with respect to selected sources of spu-
rious variance: six parameters obtained by rigid body correc-
tion of head motion, whole-brain signal, signal from a ven-
tricular region, and signal from a white matter region.

The connectivity function is based on the correlation co-
efficient between the time series of each voxel and reflects a
priori knowledge about the problem. Resting state networks
are rather loosely defined as regions exhibiting higher-than-
average functional connectivity in the resting state. Some
RSNs are recognizable as functionally specific regions of the
brain which have been found using task-related studies.24

Such studies have proceeded by first specifying a seed region
in the brain and identifying voxels the time series of which
were positively correlated with the time series of the seed
region. This approach results in brain regions composed of
voxels with mutually positively correlated time series.

Independent component analysis �ICA� has also been ap-
plied to detect RSNs.25,26 ICA decomposition results in
maps, some of which correspond to resting state networks
and indicate their spatial location in the brain. Each element
of the map quantifies how much the corresponding voxel is
loaded by the RSN. Loadings may be positive or negative
and RSNs are typically identified by selecting those voxels
which have a positive loading larger than some threshold.
This practice implies that the correlations between the pro-
jections of the time series corresponding to the RSN in each
selected voxel are positive.

From the above, it seems that voxels inside one resting
state network should have a pairwise positively correlated
time series. Regions that correlate negatively to a given RSN
may constitute another anticorrelated RSN.24 Thus, in our
analysis we have set any negative correlations to zero to
prevent negatively correlated regions from falling into the
same cluster.

The processing of the fMRI dataset required the eigen-
decomposition of a 27 644�27 644 dense symmetric matrix
which was performed on a distributed memory parallel com-
puter using the message-passing linear algebra library
ScaLAPACK.27 Since the computation of eigenvectors and
eigenvalues is time-consuming, only 50 largest eigenvalues
and eigenvectors were computed. The value of the objective
has not peaked even for 40–50 clusters and thus it was not
possible to follow the max-K strategy for this dataset.
Twenty-five clusters were extracted as a manageable number
that could be visually scanned and labeled. Approximately
1200 voxels were assigned to the residual set.

033103-10 M. Vejmelka and M. Paluš Chaos 20, 033103 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



An inspection of the results revealed that the localization
of some clusters matched the previously known resting state
networks.28 Other clusters were clearly of artifactual nature
and contained voxels at the edge of the gray matter or par-
tially overlapping regions containing cerebrospinal fluid.
Clusters corresponding to well-known resting state networks
are shown on selected axial slices in Fig. 8. From top to
bottom these are visual network, dorsal attention network,
motor network, language network, auditory network, and de-
fault mode network.

Interestingly, the default mode network was split into an
anterior part �left slice at the bottom row� and a posterior part
�center and right image at the bottom row� and has thus been
mapped into two clusters. When the number of clusters was
reduced, the default mode network emerged as one cluster
but some of the other resting state networks were combined
into single clusters as well. We conclude that clusters identi-
fied by average association clustering of the fMRI data re-
flect the functional structure of the spontaneous activity of
the human brain. Commonly reported RSNs can be matched
to clusters at different levels of detail which may be obtained
by changing the number of requested clusters K.

IV. DISCUSSION

Here we discuss some open questions related to aspects
of the proposed theoretical framework.

A. Cluster assignment

One important open question is that of the optimality of
the cluster assignment procedure. In spectral graph clustering
approaches, the procedure is typically a heuristic and there is
no guarantee that a good relaxed solution will be mapped to
a good discrete solution �discrete cluster memberships�. An
important step in finding better discrete solutions was the
realization that the relaxed solution of the multiway normal-
ized cut objective was not unique9 which also holds for the
framework of average association clustering.

In this work, we have proposed using the VARIMAX
rotation16 which has been applied in psychology and social
sciences to discover concise factors influencing observed
variables. The VARIMAX objective �19� rates highly relaxed

solutions that have simple structure,19 resulting in indicator
vectors close to the form of the normalized discrete indicator
vectors �18�: some elements close to zero and some as large
as possible while respecting the unit length constraint on the
vector. This approach has been shown to be effective but
improved approaches may be possible.

More generally, if the framework is further relaxed and
the discrete solution is said to lie in the linear subspace
spanned by the K largest eigenvectors, then it becomes pos-
sible to seek relaxed clusters which are not orthogonal to
each other. This has also been explored in factor analysis and
principal component analysis resulting in new methods and
criteria such as OBLIMIN.29 New cluster assignment proce-
dures can be formulated, which exploit these possibilities.
An open question is whether cluster assignments can be
found which would provide tight bounds on the difference of
the objective of the relaxed and discrete solutions.

B. Relevant clusters

The proposed method accepts a connectivity matrix as
input, a number of requested clusters K, and produces K
clusters and a residual set �which may be empty�. The clus-
tering procedure finds the most prominent or salient subsets
of the clustered data which have a sufficiently high internal
connectivity. This raises two important issues: how to find
clusters in problems where the number of clusters is un-
known and what do the discovered clusters represent.

In the numerical study of the Lorenz lattice, spurious
clusters not related to genuine coupling were returned by the
cluster method when the max-K strategy was applied �cf.
Sec. III B�. Another problem in practical applications, for
example, within the context of computational neuroscience,
is that some clusters may be generated by mechanisms the
investigator is not interested in. We shall refer to these clus-
ters as artifactual clusters. Ideally, artifactual clusters should
not form part of a clustering result. It should be stressed that
artifactual clusters are an entirely different concept from spu-
rious clusters. Spurious clusters arise by chance when the
estimated connectivity in an unrelated set of systems is
higher than the average connectivity level among other un-
related systems. On the other hand, artifactual clusters are

VISUALDORSAL
ATTENTION

MOTORLANGUAGEAUDITORYDEFAULT
MODE

FIG. 8. Selected axial slices of the brain showing RSNs detected in the example fMRI dataset, one RSN in each row. Voxels that are members of the respective
networks are white. Each RSN corresponds to one identified cluster except in the last row �default mode network�, where the left slice is from a different
cluster than the other two slices. The names of the respective resting state networks are displayed on each row.
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induced by connectivity patterns which do not reflect the
underlying mechanisms the investigator is interested in.

These connectivity patterns may result in structures that
obscure clusters generated by the physical mechanism that is
the focus of the conducted research. An important example
in neuroimaging studies is given by motion artifacts, where
the time series corresponding to sets of voxels on the border
of gray matter are simultaneously affected by the motion of
the subjects head. This introduces commonalities into the
time series and their connectivity is thus artificially in-
creased. If the effect is sufficiently strong, then this group of
voxels will be assigned to their own cluster, instead of par-
ticipating in a cluster to which they functionally belong. Ad-
ditionally, the affected �true� cluster is weaker because it has
diminished in size.

The problem of spurious clusters may be resolved by
testing each identified cluster against a cluster model, assum-
ing such a model is available. However to mitigate the prob-
lem of artifactual clusters, it would be necessary to have a
model that would be able to discriminate between different
types of underlying coupling resulting in the observed con-
nectivity. Alternatively, prior information related to the cou-
pling mechanisms could result in a modification of the con-
nectivity function which would then ideally be insensitive to
artifactual connectivity.

V. CONCLUSION

In this work a mathematical framework based on spec-
tral graph clustering approaches was described. The method
identifies clusters of coupled systems by maximizing the av-
erage association objective while allowing for a residual set.
The residual set is composed of systems that do not belong to
any identified cluster. The formulation of the approach al-
lows for effective means of introducing prior information
into the clustering procedure via the connectivity function.
By formally relaxing the discrete problem into a continuous
domain, it could be recognized that the nonuniqueness of the
relaxed solution of the multiway normalized cut objective9

also holds for average association objective clustering, and
classical methods16,19 for factor rotation could be applied to
significantly improve the performance of the clustering
method especially for weakly coupled systems. The theoret-
ical investigation yielded a relationship between the average
association objective and some spectral properties of the
connectivity matrix.

The effectivity of the proposed solution was demon-
strated using numerical studies of theoretical connectivity
models and a Lorenz lattice of 32 oscillators.10 The numeri-
cal studies where the model clusters were known have en-
abled the comparison of two different cluster assignment
strategies. The simple mapping cluster assignment �based on
the participation index� was not able to detect weak clusters
consistently and failed to recover well-separated clusters of
similar cluster strengths �the latter issue was also noted
previously10�. The VARIMAX mapping has demonstrated a
marked improvement over simple mapping in recovering
weak model clusters and is able to separate clusters of equal
or similar strengths effectively.

An example functional magnetic resonance imaging
dataset assessing resting state activity in a human subject
was analyzed using the proposed method with VARIMAX
mapping and the resulting clusters corresponded to several
previously described resting state networks.28 The example
asserted that the method can be applied in situations where
the data have very high dimensionality and short time series.

Some open questions pertaining to the use of clustering
methods for exploratory data analysis were discussed and
potential ways of addressing the problems were suggested.
We conclude that average association clustering is a flexible
and useful approach to discovering communities in net-
works.
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