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Abstract. This contribution derives guaranteed upper bounds of the
energy norm of the approximation error for linear elliptic partial differen-
tial systems. We generalize the complementarity error estimates known
for scalar elliptic problems to general diffusion-convection-reaction lin-
ear elliptic systems. For systems we prove analogous properties of these
error bounds as for the scalar case. A brief description how the pre-
sented general theory applies to linear elasticity is included as well as
an application to chemical systems with reactions of at most first order.
Numerical experiments showing the sharpness of the obtained upper
bounds and their behavior in the adaptive procedure are presented, too.

1. Introduction

Complementarity approach in the calculus of variation is connected with
the method of hypercircle which has deep roots going back to 1950, see [26]
and also [4]. This approach is based on a formulation of a complementary
problem for cogradients of the primal solution. The complementarity can
be practically utilized for computation of guaranteed upper bounds of the
energy norm of the approximation error.

The guaranteed upper bounds of the error are especially important for
reliability of numerical computations. They enable together with an adap-
tive procedure to solve the problem within the prescribed tolerance. Since
the upper bound is guaranteed, the error of the computed approximation is
guaranteed to be below this tolerance.

The complementary a posteriori error estimates posses interesting prop-
erties. Besides the fact they are guaranteed upper bound, they are indepen-
dent from the way the approximate primal solution is obtained and hence
they can be used for arbitrary conforming solution method. Further, pro-
vided they are evaluated exactly, the complementary error estimates bound
the total error of the approximation – including possible round-off errors,
iteration errors in the linear algebraic solver, quadrature errors, etc. Fur-
thermore, certain variants of these error estimates are fully computable in
the sense that they contain no problematic constants (like constants form
the Friedrichs’ and trace inequalities).

On the other hand, the evaluation of the complementarity estimates might
be complicated. Moreover, it requires suitable approximation of the com-
plementary solution. This approximation might be also complicated and/or
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expensive to compute. However, in certain cases fast and explicit formulas
for the complementary solution exist [2].

The complementary approach to a posteriori error estimates is well estab-
lished especially for scalar linear elliptic problems. Starting from 1970’s we
can find several results about the complementary approach (or dual finite
element methods), for example in [8, 9, 10, 12, 27]. The complementary
approach was worked out by S. Repin and his group into the concept of
so-called error majorants, see e.g. [11, 18, 20, 21, 23]. There are also other
papers [5, 30], where the complementary idea can be traced. Anyway, the
complementarity is not limited to elliptic problems only. There are appli-
cations to linear elasticity [16], thermoelasticity [15], Stokes problem [19],
Maxwell type problem [3], nonlinear problems [22], etc. In this contribu-
tion we generalize the complementary technique to general systems of linear
elliptic partial differential equations.

The rest of the paper is organized as follows. Section 2 introduces sys-
tems of linear elliptic equations and the needed notation. In Section 3 we
derive three variants of the complementary error bounds for linear elliptic
systems. In Section 4 we infer the corresponding complementary problems
and prove basic properties of the error bounds. In Section 5 we mention how
to generalize the presented theory to the system of linear elasticity which is
not – strictly speaking – elliptic. Section 6 presents an application to chem-
ical systems. Section 7 provides two numerical experiments and the final
Section 8 summarizes the findings, draws conclusions, and mentions further
possible generalizations.

2. System of linear elliptic partial differential equations

Let us consider a domain Ω ⊂ R
d with Lipschitz boundary and a system

of N linear elliptic partial differential equations in the following general form

−
N∑

j=1

div
(
Aij∇uj

)
+

N∑

j=1

bij · ∇uj +
N∑

j=1

cijuj = f i in Ω, i = 1, 2, . . . , N.

(1)
Functions ui ∈ R represent the solution, f i ∈ R is the right-hand side, and
Aij ∈ R

d×d, bij ∈ R
d, and cij ∈ R, i, j = 1, 2, . . . , N stand for the diffusion,

convection, and reaction coefficients, respectively. Although not explicitly
indicated, all these quantities are in general functions of a variable x ∈ Ω.
Symbol ∇ denotes the gradient of a scalar function and div stands for the
usual divergence. Further, let us notice that throughout the paper all vectors
are understood as columns. The transposition is denoted by vT .

To introduce the boundary conditions, we consider the boundary ∂Ω to
be split into two disjoint parts ΓD and ΓN and we prescribe

ui = gi
D on ΓD, i = 1, 2, . . . , N, (2)

N∑

j=1

αijuj +
N∑

j=1

νTAij∇ui = gi
N on ΓN, i = 1, 2, . . . , N. (3)
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Here and below, ν stands for the unit outward normal to the boundary ∂Ω,
gi
D ∈ R is a function of x ∈ ΓD and gi

N ∈ R and αij ∈ R are functions of
x ∈ ΓN.

System (1) and boundary conditions (2)–(3) can be reformulated in a
vector form:

−div(A∇u) + B∇u + Cu = f in Ω, (4)

u = gD on ΓD, (5)

αu + (A∇u)ν = gN on ΓN, (6)

where the column vector u =
(
u1, . . . , uN

)T
has N components, simi-

larly as f , gD, and gN. The gradient ∇u ∈ R
N×d is defined in a stan-

dard way as ∇u =
(
∇u1, . . . ,∇uN

)T
as well as the divergence div y =

(div y1, . . . ,div yN )T ∈ R
N , where yi stands for the i-th row of the N × d

matrix y. The fourth-order tensor A ∈ R
N×d×N×d has entries Aikjℓ = Aij

kℓ,

the third-order tensor B ∈ R
N×N×d has entries Bijk = b

ij
k , where i, j =

1, 2, . . . , N and k, ℓ = 1, 2, . . . , d. The N × N matrices C =
(
cij

)N

i,j=1
, and

α =
(
αij

)N

i,j=1
are defined in a natural way.

We will concentrate on the weak formulation of problem (4)–(6). Intro-
ducing the space

V =
{

v ∈
[
H1(Ω)

]N
: v = 0 on ΓD in the sense of traces

}

and the Dirichlet lift g̃D ∈
[
H1(Ω)

]N
of the Dirichlet data gD, we define

the weak solution u ∈
[
H1(Ω)

]N
as a function satisfying u− g̃D ∈ V and

B(u, v) = F(v) ∀v ∈ V. (7)

The bilinear form B and the linear functional F are given by

B(u, v) = (A∇u, ∇v) + (B∇u, v) + (Cu, v) + 〈αu, v〉 , (8)

F(v) = (f , v) + 〈gN, v〉 . (9)

By symbols (·, ·) and 〈·, ·〉 we mean the tensor forms of the L2(Ω) and L2(ΓN)
inner products, respectively, e.g.,

(A∇u, ∇v) =

∫

Ω

N∑

i,j=1

d∑

k,ℓ=1

Aij
kℓ

∂ui

∂xk

∂vj

∂xℓ
dx.

In addition, we use the colon to denote the entrywise Euclidean scalar prod-

uct of tensors, e.g., if u, v ∈ R
N×d then u :v =

∑N
i=1

∑d
k=1 uikvik. We also

introduce matrices

D =
(
div bij

)N

i,j=1
a.e. in Ω and E =

(
bij · ν

)N

i,j=1
a.e. on ΓN.

The well-posedness of problem (7) requires the following natural assump-
tions:

(A1) All entries of tensors A, B, and C are in L∞(Ω), α ∈ [L∞(ΓN)]N×N ,
f ∈ [L2(Ω)]N , and gN ∈ [L2(ΓN)]N .
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(A2) Tensor A is symmetric and uniformly positive definite, i.e., Aij
kℓ =

Aji
ℓk for all i, j = 1, 2, . . . , N and k, ℓ = 1, 2, . . . , d and there exists a

constant λ̃ > 0 such that

(A(x)ξ) :ξ ≥ λ̃ ξ :ξ ∀ξ ∈ R
N×d and for a.e. x ∈ Ω. (10)

(A3) Coefficients bij satisfy

bij = bji ∀i, j = 1, 2, . . . , N.

(A4) Matrices C− 1
2D and α+ 1

2E are symmetric and positive semidefinite

almost everywhere in Ω and on ΓN, respectively.

Notice that condition (A1) guarantees integrability of the used integrals,
condition (A2) provides ellipticity of problem (7), and condition (A3) and
(A4) enable to prove V -ellipticity of the bilinear form B.

The unique solvability of system (7) follows from the Lax-Milgram lemma
due to the boundedness and V -ellipticity of the bilinear form B. The bound-
edness is immediate from the boundedness of the equation coefficients, see
(A1), and from the trace inequality

‖v‖0,ΓN
≤ CT

Ω,ΓN
‖v‖1,Ω ∀v ∈ H1(Ω). (11)

On the other hand, the V -ellipticity of B (see Proposition 2.1 below) requires
one of the following variants of the Friedrichs’ inequality:

‖v‖21,Ω ≤ CF
Ω,Γ

(
‖∇v‖20,Ω + ‖v‖20,Γ

)
∀v ∈ H1(Ω), (12)

‖v‖21,Ω ≤ CF
Ω,B

(
‖∇v‖20,Ω + ‖v‖20,B

)
∀v ∈ H1(Ω), (13)

where Γ 6= ∅ is a relatively open subset of ∂Ω and B ⊂ Ω is a ball. For
proofs of inequalities (11)–(13) we refer to for example to [6] and [17].

Proposition 2.1. Let assumptions (A1)–(A4) be fulfilled and let at least

one of the following conditions be satisfied:

(a) ΓD is a relatively open subset of ∂Ω,

(b) exists a constant τ > 0 and a ball B ⊂ Ω such that

ξT (C − 1
2D)ξ ≥ τξT ξ a.e. in B, for all ξ ∈ R

N ,

(c) exists a constant σ > 0 and a relatively open subset Γ0
N of ΓN such

that ξT (α + 1
2E)ξ ≥ σξT ξ a.e. on Γ0

N, for all ξ ∈ R
N .

Then the bilinear form B is V -elliptic.

Proof. This is a standard result for the scalar case, see e.g. [13]. Its general-
ization to elliptic systems is straightforward. Assumption (A3) and Green’s
theorem enable to express

B(v, v) = (A∇v, ∇v) +
(
(C − 1

2D)v, v
)

+
〈
(α + 1

2E)v, v
〉
∀v ∈ V.

The V -ellipticity

B(v, v) ≥ C ‖v‖21,Ω ∀v ∈ V

then follows from the uniform positive definiteness (A2), from the positive
semidefiniteness (A4), and from the Friedrichs’ inequalities (12)–(13). �



COMPLEMENTARY ERROR BOUNDS FOR ELLIPTIC SYSTEMS 5

3. Guaranteed upper bound on the error

In this section we derive the computable guaranteed upper bound on the
energy norm of the error of an approximate solution uh ∈ V . The approach
is independent from the particular numerical method and the approximation
uh ∈ V might be arbitrary.

The derivation of the upper bound is based on the divergence theorem.
We will use it in the following form

(div y, v) + (y, ∇v)− 〈yν, v〉 = 0 ∀v ∈ V ∀y ∈ [H(div, Ω)]N , (14)

where the space [H(div, Ω)]N consists of N × d matrices whose rows lie
in H(div, Ω). Hence, for the weak solution u ∈ V of (7), for any field
y ∈ [H(div, Ω)]N and for any uh ∈ V and v ∈ V we obtain the identity

B(u− uh, v) = (f , v) + 〈gN, v〉 − (A∇uh, ∇v)− (B∇uh, v)− (Cuh, v)

− 〈αuh, v〉+ (div y, v) + (y, ∇v)− 〈yν, v〉

= (r∗, ∇v) + (rΩ, v) + 〈rN, v〉, (15)

where we introduce the quantities

r∗ = y − A∇uh, (16)

rΩ = f − B∇uh −Cuh + div y, (17)

rN = gN −αuh − yν (18)

to simplify the exposition. Relation (15) can be used in two ways to derive
the upper bound on the error. These two possibilities are presented below
as Lemmas 3.2 and 3.3.

For their formulations we introduce the notation |||v|||2 = B(v, v) for the

energy norm and ‖v‖2
M

= (Mv, v) and 〈|v|〉2
K

= 〈Kv, v〉 for norms in-
duced by a symmetric and uniformly positive definite tensors M and K,
respectively. We will use the same notation even if M or K are positive
semidefinite only. In this case ‖v‖

M
and 〈|v|〉K are seminorms only. Fur-

thermore, we introduce the sets

Q(f , uh) =
{

y ∈ [H(div, Ω)]N :

f − B∇uh −Cuh + div y ∈
(
Ker(C − 1

2D)
)⊥

a.e. in Ω
}

,

G(gN, uh) =
{

y ∈ [H(div, Ω)]N :

gN −αuh − yν ∈
(
Ker(α + 1

2E)
)⊥

a.e. on ΓN

}
,

where Ker stands for the kernel, e.g., KerM =
{
q ∈ R

N : Mq = 0
}

is the

kernel of a matrix M ∈ R
N×N . Further, S⊥ =

{
q ∈ R

N : q ·w = 0 ∀w ∈ S
}

denotes the orthogonal complement of S ⊂ R
N . As an example, notice

that if the matrix C − 1
2D is nonsingular then

(
Ker(C − 1

2D)
)⊥

= R
N

and Q(f , uh) = [H(div, Ω)]N . On the other hand, if C − 1
2D = 0 then(

Ker(C − 1
2D)

)⊥
= {0} and Q(f , uh) is a set of those vector fields whose

divergence is equal to −f + B∇uh + Cuh a.e. in Ω. Finally, by M † we
denote the Moore-Penrose pseudoinverse of M .
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Lemma 3.1. Let H be a Hilbert space with an inner product (·, ·). Let

M : H 7→ H be linear, continuous, symmetric, and positive semidefinite

operator. If p, w ∈ H and p ∈ (Ker M)⊥ then

(p, w) ≤ ‖p‖M† ‖w‖M ,

where ‖p‖M† = (p, M †p) and ‖w‖2M = (Mw, w) are seminorms in general.

Proof. Since M is symmetric and positive semidefinite, there exists an op-
erator K : H 7→ H such that M = KT K. Further, we set q = M †p.
Since p ∈ (Ker M)⊥ and the range of M coincides with (KerM)⊥, we have
Mq = p. Now, we can directly compute

(p, w) = (KT Kq, w) = (Kq, Kw) ≤ (Kq, Kq)1/2(Kw, Kw)1/2

= (Mq, q)1/2 ‖w‖M = ‖p‖M† ‖w‖M .

�

Lemma 3.2. Let assumptions (A1)–(A4) be fulfilled. If u ∈ V stands for

the weak solution of problem (7) then

|||u− uh||| ≤ η(uh, y) ∀uh ∈ V, ∀y ∈ Q(f , uh) ∩G(gN, uh) (19)

with

η2(uh, y) = ‖r∗‖2
A−1 + ‖rΩ‖

2
(C− 1

2
D)† + 〈|rN|〉

2
(α+ 1

2
E)†

. (20)

Proof. The statement follows from the identity (15). If we apply Lemma 3.1
to the term (r∗, ∇v) with M = A (since A is invertable we have A

† = A
−1),

to the term (rΩ, v) with M = C − 1
2D, and to the term 〈rN, v〉 with

M = α + 1
2E, we obtain

B(u− uh, v) ≤ ‖r∗‖
A−1 ‖∇v‖

A
+ ‖rΩ‖(C− 1

2
D)† ‖v‖C− 1

2
D

+ 〈|rN|〉(α+ 1

2
E)† 〈|v|〉α+ 1

2
E

≤
(
‖r∗‖2

A−1 + ‖rΩ‖
2
(C− 1

2
D)† + 〈|rN|〉

2
(α+ 1

2
E)†

)1/2

×
(
‖∇v‖2

A
+ ‖v‖2

C− 1

2
D

+ 〈|v|〉2
α+ 1

2
E

)1/2
= η(uh, y)|||v|||.

Substitution v = u−uh yields immediately the statement of the lemma. �

Lemma 3.3. Let assumptions (A1)–(A4) be fulfilled and let at least one of

conditions (a)–(c) from Proposition 2.1 be satisfied. If u ∈ V stands for the

weak solution of problem (7) then

|||u− uh||| ≤ η̂(uh, y) ∀uh ∈ V, ∀y ∈ [H(div, Ω)]N , (21)

with

η̂(uh, y) = ‖r∗‖
A−1 + C0 ‖rΩ‖0,Ω + C1 ‖rN‖0,ΓN

,

where the constant C0 is given in terms of constants from the uniform

positive definiteness (10), trace theorem (11), and the Friedrichs’ inequal-

ities (12)–(13) and its value depends on the validity of conditions (a)–(c)

from Proposition 2.1. If (a) is satisfied then C2
0 = CF

Ω,ΓD
/λ̃, if (b) is sat-

isfied then C2
0 = CF

Ω,B max{λ̃−1, τ−1}, and if (c) is satisfied then C2
0 =

CF
Ω,Γ0

N

max{λ̃−1, σ−1}. If more then one of conditions (a)–(c) are satisfied

simultaneously then C0 attains the smallest of the possible values. Finally,

C2
1 = CT

Ω,ΓN
/λ̃, see (11).
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Proof. Let us consider arbitrary v ∈ V . If condition (a) is satisfied then

‖v‖20,Ω ≤ CF
Ω,ΓD

‖∇v‖20,Ω ≤ CF
Ω,ΓD

/λ̃|||v|||2.

If condition (b) is satisfied then

‖v‖20,Ω ≤ CF
Ω,B

(
‖∇v‖20,Ω + ‖v‖20,B

)
≤ CF

Ω,B

(
1

λ̃
‖A∇v‖20,Ω +

1

τ
‖v‖2

C− 1

2
D

)

≤ CF
Ω,ΓD

max{λ̃−1, τ−1}|||v|||2.

Finally, if condition (c) is satisfied then

‖v‖20,Ω ≤ CF
Ω,Γ0

N

(
‖∇v‖20,Ω + ‖v‖20,Γ0

N

)
≤ CF

Ω,Γ0

N

(
1

λ̃
‖A∇v‖20,Ω +

1

σ
〈|v|〉2

α+ 1

2
E

)

≤ CF
Ω,Γ0

N

max{λ̃−1, σ−1}|||v|||2.

Thus, in any case, we have ‖v‖0,Ω ≤ C0|||v|||. Similarly, the trace theorem

implies ‖v‖0,ΓN
≤ C1|||v|||. These estimates used in (15) yield

B(u− uh, v) ≤
(
‖r∗‖

A−1 + C0 ‖rΩ‖0,Ω + C1 ‖rN‖0,ΓN

)
|||v|||.

Similarly as before, substitution v = u− uh gives the desired result. �

The estimates (19) and (21) have their advantages and disadvantages.
The value of η(uh, y) can be easily computed only if the sets Q(f , uh) and
G(gN, uh) can be handled well. This is the case if C − 1

2D and α − 1
2E

are nonsingular, for example. On the other hand, estimate (21) is valid in
general for any y ∈ [H(div, Ω)]N , but evaluation of η̂(uh, y) requires the
knowledge of constants C0 and C1 or of their upper bounds.

The upper bounds (19) and (21) can be simplified if y ∈ [H(div, Ω)]N

is chosen in a special form. First of all, it is easy to constrain the y such
that rN = 0 a.e. on ΓN. It is just a natural boundary condition of the
Dirichlet type for vector fields from [H(div, Ω)]N . To handle this constraint
we introduce an affine space

G0(gN, uh) =
{
y ∈ [H(div, Ω)]N : yν = gN −αuh a.e. on ΓN

}
⊂ G(gN, uh).

Notice that substitution gN = 0 and uh = 0 yields a linear space

G0(0, 0) = {y ∈ [H(div, Ω)]N : yν = 0 a.e. on ΓN}.

Clearly, G0(gN, uh) = yG + G0(0, 0), where yG is an arbitrary but fixed
element of G0(gN, uh).

This constrain on y simplifies estimates (19) and (21) as follows

|||u− uh|||
2 ≤ η2(uh, y) = ‖r∗‖2

A−1 + ‖rΩ‖
2
(C− 1

2
D)† (22)

for any uh ∈ V and y ∈ Q(f , uh) ∩G0(gN, uh) and

|||u− uh||| ≤ η̂(uh, y) = ‖r∗‖
A−1 + C0 ‖rΩ‖0,Ω (23)

for any uh ∈ V and y ∈ G0(gN, uh).
Further, it is possible to constrain y even more such that rΩ = 0 a.e. in

Ω holds. This approach is advantagenous in particular if C and B vanish
(or if they are small) and if f is a simple function (e.g. a constant). Then
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it is easy to construct such y that rΩ vanishes in Ω and the resulting upper
bound provides sharp results. Formally, we introduce an affine space

Q0(f , uh) =
{
y ∈ [H(div, Ω)]N : div y = −f + B∇uh + Cuh in Ω

}
⊂ Q(f , uh)

and observe that both η(uh, y) and η̂(uh, y) collapses to

η̃(uh, y) = ‖y − A∇uh‖A−1 for all uh ∈ V and y ∈ Q0(f , uh)∩G0(gN, uh)
(24)

which is still an upper bound on the energy norm of the error.
The error estimate η̃ has certain advantages. There are no constants C0

and C1 as in η̂. It is applicable in general and no Moore-Penrose pseu-
doinverse of C − 1

2D or α + 1
2E is needed. However, there are also disad-

vantages. It might be complicated to construct suitable y ∈ Q0(f , uh) in
general. Moreover, if the coefficients C or B dominates A than the upper
bound η̃ is inaccurate. For more details how to handle the spaces Q(f , uh)
and Q0(f , uh) see [12, 28].

4. The complementary problem

For practical utilization of estimates (19), (21), and (24), it is necessary
to specify a suitable value of y. This value must be easily computable and
should lead to a sharp estimate of the error. A natural approach is to
consider fixed uh ∈ V and approximately minimize the quantity η(uh, y)
with respect to y ∈ Q(f , uh)∩G(gN, uh), quantity η̂(uh, y) with respect to
y ∈ [H(div, Ω)]N and the quantity η̃(uh, y) with respect to y ∈ Q0(f , uh)∩
G0(gN, uh).

Let us start with the minimization of η2. The minimization problem
reads: find y∗ ∈ Q(f , uh) ∩G(gN, uh) such that

η(uh, y∗) ≤ η(uh, y) ∀y ∈ Q(f , uh) ∩G(gN, uh). (25)

Since η2(uh, y) is quadratic in y, it is easy to see that this minimization
problem is equivalent to the variational problem: find y∗ ∈ Q(f , uh) ∩
G(gN, uh) such that

B∗(y∗, w) = F∗
uh

(w) ∀w ∈ Q(0, 0) ∩G(0, 0), (26)

where the bilinear form B∗ and the linear functional F∗
uh

are given by

B∗(y∗, w) =
(
(C − 1

2D)† div y∗,div w
)

+
(
A
−1y∗, w

)
+

〈
(α + 1

2E)†yν, wν
〉

,

F∗
uh

(w) =
(
(C − 1

2D)†(−f + Cuh + B∇uh),div w
)

+ (∇uh, w)

+
〈
(α + 1

2E)†(gN − αuh), wν
〉

.

The upper bound η̂(uh, y) can be also minimized with respect to y ∈
[H(div, Ω)]N , but its is not a simple quadratic minimization. However, fol-
lowing [20], we can estimate η̂2(uh, y) for y ∈ [H(div, Ω)]N as follows

η̂2(uh, y) =
(
‖r∗‖

A−1 + C0 ‖rΩ‖0,Ω + C1 ‖rN‖0,ΓN

)2
≤ η̂2

β,γ(uh, y),

η̂2
β,γ(uh, y) = (1 + β−1) ‖r∗‖2

A−1 + (1 + β)(1 + γ)C2
0 ‖rΩ‖

2
0,Ω

+ (1 + β)(1 + γ−1)C2
1 ‖rN‖

2
0,ΓN

∀β > 0, γ > 0.
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For a fixed β > 0 and γ > 0, the quantity η̂2
β,γ(uh, y) is already a quadratic

functional in y. Formally, it is in the same form as η(uh, y). As before, the
minimizer ŷ∗ of η̂2

β,γ(uh, y) solves the following variational problem: find

ŷ∗ ∈ [H(div, Ω)]N such that

B̂∗(ŷ∗, w) = F̂∗
uh

(w) ∀w ∈ [H(div, Ω)]N , (27)

where the bilinear form B̂∗ and the linear functional F̂∗
uh

are given by

B̂∗(y, w) = (1 + β)(1 + γ)C2
0 (div y,div w) + (1 + β−1)

(
A
−1y, w

)

+ (1 + β)(1 + γ−1)C2
1 〈yν, wν〉 ,

F̂∗
uh

(w) = (1 + β)(1 + γ)C2
0 (−f + Cuh + B∇uh,div w) + (1 + β−1)(∇uh, w)

+ (1 + β)(1 + γ−1)C2
1 〈gN −αuh, wν〉 .

Finally, we introduce the minimization of η̃2(uh, y) with respect to y ∈
Q0(f , uh) ∩G0(gN, uh). The minimization problem: find ỹ∗ ∈ Q0(f , uh) ∩
G0(gN, uh) such that

η̃2(uh, ỹ∗) ≤ η̃2(uh, y) ∀y ∈ Q0(f , uh) ∩G0(gN, uh)

is equivalent to the variational problem: find ỹ∗ ∈ Q0(f , uh) ∩ G0(gN, uh)
such that

(
A
−1ỹ∗, w

)
= (∇uh, w) ∀w ∈ Q0(0, 0) ∩G0(0, 0). (28)

Problems (26), (27), and (28) are called complementary problems to (7).

Consistently, we call y∗, ŷ∗, and ỹ∗ complementary solutions, B∗, B̂∗, and

B̃∗ the complementary bilinear forms, etc. For the further reference we
introduce the complementary energy norm |||w|||2∗ = B∗(w, w). Notice that
the unique solvability of the complementary problems (26), (27), and (28)
can be verified by the Lax-Milgram lemma.

In a special case, when the convection coefficients matrix B vanishes, the
complementary problem (26) has interesting properties. First of all, if B

vanishes then the complementary bilinear form B∗ and the linear function
F∗ simplify to

B∗(y∗, w) =
(
C† div y∗,div w

)
+

(
A
−1y∗, w

)
+

〈
α†yν, wν

〉
,

F∗
uh

(w) = F∗(w) =
(
−C†f ,div w

)
+ 〈gD, wν〉ΓD

+
〈
α†gN, wν

〉
.

Notice that in this case the complementary problem is independent from
the approximate solution uh ∈ V . The following theorem summarizes the
properties of the complementary solution y∗ of (26).

Theorem 4.1. Let assumptions (A1)–(A4) be fulfilled. Let B = 0. Further,

let u ∈ V be the exact solution to the primal problem (7) and let y∗ ∈
Q(f , uh) ∩ G(gN, uh) be the exact solution to the complementary problem
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(26). If uh ∈ V is arbitrary but fixed then

y∗ = A∇u, (29)

η(uh, y∗) = |||u− uh|||, (30)

η(u, yh) = |||y∗ − yh|||∗ ∀yh ∈ Q(f , uh) ∩G(gN, uh),
(31)

|||u− uh|||
2 + |||y∗ − yh|||

2
∗ = η2(uh, yh) ∀yh ∈ Q(f , uh) ∩G(gN, uh). (32)

Proof. From the weak formulatin (7), from the facts that f −Cu ∈ L2(Ω)
and from the definition of the distributional divergence, we immediately
conclude that A∇u ∈ [H(div, Ω)]N . Hence the traces (A∇u)ν ∈ L2(ΓN)
are well defined and we have (A∇u)ν = gN−αu, see (6). Using y = A∇u

in (16)–(18) we obtain

r∗ = A∇(u− uh), rΩ = C(u− uh), rN = α(u− uh), (33)

and, hence, A∇u ∈ Q(f , uh) and A∇u ∈ G(gN, uh) clearly hold. In addi-
tion, relations (33) immediately yield

η(uh, A∇u) = |||u− uh|||. (34)

Due to (19), we see that y = A∇u ∈ Q(f , uh) ∩ G(gN, uh) is a minimizer
of η(uh, A∇u). Thanks to the equivalence of problems (25) and (26) we
conclude that the complementary solution to (26) is y∗ = A∇u.

Equality (30) was already shown in (34). Equality (31) can be shown
similarly. Indeed, if we use uh = u and y = yh in (16)–(18) we find that

r∗ = yh − A∇u = yh − y∗,

rΩ = f −Cu + div yh = −div(A∇u) + div yh = div(yh − y∗),

rN = gN −αu− yhν = (A∇u)ν − yhν = (y∗ − yh)ν.

These relations together with the definition of the complementary energy
norm immediately proof (31).

Finally, the relation (32) can be verified by a direct inspection. �

In the context of Theorem 4.1, we point out two important special cases.
First, if tensors C and α are nonsingular then Q(f , uh) ∩ G(gN, uh) =
[H(div, Ω)]N , Moore-Penrose pseudoinverse of these tensors turns into usual
inverse and the error estimate assumes more-less simple form. Second, if
both C and α vanish then Q(f , uh) =

{
y ∈ [H(div, Ω)]N : f + div y = 0 a.e. in Ω

}
,

G(gN, uh) =
{
y ∈ [H(div, Ω)]N : yν = gN a.e. on ΓN

}
, and the Moore-Penrose

pseudoinverse is not needed. This case is well treatable, especially if f and
gN are simple functions, e.g. constants, see e.g. [12, 28, 29].

5. Linear elasticity system

In this section we briefly mention how the system of linear elasticity fits
into the general setting of elliptic systems. For simplicity, we restrict our-
selves to two-dimensional problem, i.e., d = 2. The classical formulation of
the problem of elasticity for an elastic body Ω ⊂ R

2, reads as follows: find
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the displacement u such that

−div σ(u) = fu in Ω, (35)

u = g on Γu

D, (36)

σ(u)ν = t on Γu

N. (37)

The meaning of the above symbols is standard. The stress tensor σ(u) ∈
R

2×2 is defined by
σ(u) = 2µǫ(u) + λ(div u)I

with ǫ(u) = 1
2(∇u + (∇u)T ) denoting the symmetric gradient of u and

I being the 2 × 2 identity matrix. Further, λ ∈ R and µ ∈ R are the
Lamé constants, fu ∈ R

2 is the density of the volume force, g ∈ R
2 is the

prescribed displacement on the part of the boundary Γu

D, and t ∈ R
2 is the

traction on the part of the boundary Γu

N.
Elasticity problem (35)–(37) can be seen as a special case of the general

elliptic system (4)–(6). Indeed, setting N = 2,

A1111 = A2222 = 2µ+λ, A1122 = A2211 = λ, A1212 = A1221 = A2112 = A2121 = µ

and the other entries of A as zeros then A∇u = Aǫ(u) = σ(u). Further,
putting B = 0, C = 0, α = 0, f = fu, gD = g, ΓD = Γu

D, gN = t, and
ΓN = Γu

N, the general system (4)–(6) transforms to (35)–(37).
The bilinear form (8) and the linear functional (9) are then

Bu(u, v) = (A∇u, ∇v) = (Aǫ(u), ǫ(v)) = (σ(u), ǫ(v)),

Fu(v) = (fu, v) + 〈t, v〉

and the energy norm |||u|||2u = Bu(u, u) = (Aǫ(u), ǫ(u)).
However, strictly speaking the elasticity problem is not elliptic – assump-

tion (A2) is not satisfied, because the tensor A is singular. Indeed, the kernel
of A consists of antisymmetric matrices:

Ker A = R
2×2
anti =

{
u =

(
0 ξ
−ξ 0

)
, ξ ∈ R

}
.

Theoretically, there is a simple remedy to this problem. To generalize the
estimates (19), (21), and (24), we can handle the positive semidefinite tensor
A in the same way as the positive semidefinite matrices C− 1

2D and α+ 1
2E.

In particular, we will restrict the possible complementary solutions y to
those who are in the range of A. We define

R =
{

y ∈ [H(div, Ω)]2 : y ∈ (Ker A)⊥
}

=
{
y ∈ [H(div, Ω)]2 : y ∈ R

2×2
sym

}
,

where R
2×2
sym stands for the space of 2× 2 symmetric matrices.

In general, estimates (19), (21), and (24) remain valid even in the case
of positive semidefinite tensor A, but the inverse A

−1 has to be replaced by
the Moore-Penrose pseudoinverse A

† and the admissible y must lie in R.
In the case of linear elasticity, the Moore-Penrose pseudoinverse A

† can
be expressed as A

† = (4µ(µ + λ))−1
M, where

M1111 = M2222 = 2µ + λ, M1122 = M2211 = −λ,

M1212 = M1221 = M2112 = M2121 = µ + λ

and the remaining entries of M vanish.
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Since the convection and reaction coefficients are not present in the linear
elasticity system, estimate (19) collapse to (24). For the singular tensor A

of the linear elasticity coefficients we obtain

|||u− uh|||u ≤ η̃u(uh, y),

where

η̃u(uh, y) = ‖y − A∇uh‖A† for all uh ∈ V and y ∈ R∩Q0(f
u, uh)∩G0(t, uh),

Q0(f
u, uh) =

{
y ∈ [H(div, Ω)]2 : fu + div y = 0 a.e. in Ω

}
, and G0(t, uh) ={

y ∈ [H(div, Ω)]2 : yν = t a.e. on ΓN

}
.

The complementary problem (26) for linear elasticity system (35)–(37)
reads as follows: find y ∈ R ∩Q0(f

u, uh) ∩G0(t, uh) such that

1

2µ
(y, w)−

λ

4µ(µ + λ)
(try, trw) = (ǫ(uh), w) ∀w ∈ R∩Q0(0, 0)∩G0(0, 0).

Notice that Q0(0, 0) =
{
y ∈ [H(div, Ω)]2 : div y = 0 a.e. in Ω

}
, and G0(0, 0) ={

y ∈ [H(div, Ω)]2 : yν = 0 a.e. on ΓN

}
. We point out that of the space

R ∩ Q0(0, 0) ∩ G0(0, 0) corresponds to symmetric tensors with vanishing
divergence in Ω and with vanishing normal components on ΓN. This space
might be practically problematic to handle.

Another possibility is to use a variant of (21). This approach is treated
in detail in [16, 20].

6. Application to chemical systems

The guaranteed upper bounds derived in Sections 3 for a general elliptic
problem can be directly applied to the diffusion–convection–reaction prob-
lem in chemistry. The same approach might be equally well applied for the
modeling of air pollution in the presence of convection (the wind) and chem-
ical reactions between various pollutants. A typical example is the traffic
pollution. The exhalations from the combustion engines undergo various
chemical reactions in the air. These reactions have various rates and the
result might be high concentrations of pollutants (e.g. of ozone) quite far
away from the original source.

The general elliptic system (4)–(6) describes the steady state concentra-
tions u1, u2, . . . , uN of chemical species S1, S2, . . . , SN , which undergo the
following chemical reactions:

∅
qi

−→ Si, i = 1, 2, . . . , N, (38)

Si
kij

←→ Sj , i, j = 1, 2, . . . , N, i 6= j, (39)

Si
kii

−→ ∅, i = 1, 2, . . . , N. (40)

Reaction (38) is the production of Si with the constant rate qi. Reaction
(39) is the conversion of Si to Sj and vice versa. Both directions have the
same rate constant kij . Reaction (40) is the degradation of Si with the rate
constant kii. All these rate constants are nonnegative.
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The concentrations u1, u2, . . . , uN can be computed by the following
diffusion-reaction-convection system

−δi∆ui + div(uib̃) +
N∑

j=1

kijui −
N∑

j=1,j 6=i

kijuj = qi in Ω, (41)

where i = 1, 2, . . . , N , δi is the diffusivity of Si, and b̃ describes the velocity
field.

This system is readily in the form (1). We have Aii = δiI for i =

1, 2, . . . , N , Aij = 0 for i 6= j, bii = b̃ and bij = 0 for i 6= j, i, j = 1, 2, . . . , N ,

cii = div b̃ +
∑N

j=1 kij for i = 1, 2, . . . , N , and cij = −kij for i 6= j.

If the diffusivity coefficients δi do not vanish then the corresponding tensor

A is diagonal and invertible. The matrices D = (div b̃)I and E = (b̃ · ν)I

are just multiples of the identity matrix I in this case. If kii + 1
2 div b̃ > 0 for

all i = 1, 2, . . . , N then the matrix C − 1
2D is diagonally dominant. Hence,

since it is symmetric, it is positive definite. This elliptic system then satisfies
assumptions (A1)–(A4) and we can directly apply the presented guaranteed
upper bounds.

7. Numerical examples

In this section we present two numerical examples. In the first example
the exact solution is known and we test the sharpness of the guaranteed
upper bound (19). In the second example the exact solution is unknown
and we present an adaptive procedure which together with the guaranteed
upper bounds enables to compute the solution with guaranteed accuracy.

Example 1. Let us consider an elliptic system of N = 3 equations in
d = 2 dimensions in the form (4)–(6). The domain Ω = (0, 3/2)× (0, 1) is a

rectangle. The diffusion terms consist of Laplacians, i.e., Aikjℓ = Aij
kℓ with

Aij = I, i, j = 1, 2, 3, k, ℓ = 1, 2. The velocity field b̃(x1, x2) = ρ2(x2(1 −

x2), 0)T is divergence free and Biik = b̃k and Bijk = 0 for i 6= j, i, j = 1, 2, 3,
k = 1, 2. The constant ρ is a parameter. The reaction coefficients are given
by the following matrix

C = κ2




3 −1 −1
−1 3 −1
−1 −1 3


 ,

where the constant κ is the second parameter. We prescribe the Dirich-
let boundary conditions on the edge x1 = 0 and the Neumann bound-
ary conditions on the remaining part of ∂Ω. The functions f , gD, and
gN are chosen in such a way that the exact solution is u = u1, where
u(x1, x2) = sin(πx1) cos(πx2) and 1 = (1, 1, 1)T . Thus, gD = 0, gN = 0
on edges x2 = 0 and x2 = 1, gN = −π sin(πx1) on the edge x1 = 3/2, and

f = (2π2 + κ2)u + ρ2(b̃ · ∇u)1.
We solve this problem by the lowest-order finite element method to obtain

a piecewise linear approximation of uh. The used triangular mesh is shown
in Figure 1 (right). We use the guaranteed upper bound η(uh, yh) given
by (20). The complementary solution yh is computed as the finite element
approximation of the complementary problem (26). We use piecewise linear
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Figure 1. The initial finite element mesh (left) and its uni-
form refinement (right).

ρ κ = 1 κ = 5 κ = 10 κ = 15 κ = 20 κ = 25
0 8.062 1.459 1.069 1.025 1.014 1.009
5 7.986 1.498 1.095 1.037 1.020 1.013
10 16.150 2.530 1.386 1.136 1.062 1.034
15 29.373 4.375 2.121 1.446 1.198 1.101
20 42.600 6.256 3.042 1.967 1.476 1.249
25 55.490 8.145 3.940 2.580 1.874 1.492

Table 1. Index of effectivity Ieff for the error bound (19)
for various ρ and κ (Example 1).

approximation yh on the same mesh. Since the exact solution is known,
we can test the sharpness of the computed upper bounds η(uh, yh). More
precisely, we evaluate the index of effectivity Ieff = η(uh, yh)/|||u−uh|||. The
results are presented in Table 1 for various values of κ and ρ.

In [2] and [29] we investigate the complementary error estimates for a
scalar diffusion-reaction problem. These results show that the upper bound
(20) provides sharp results if the reaction term dominates the diffusion.
Results in Table 1 confirm that this is the case even for systems and for
problems with convection. The results clearly show that the error estimate
(20) is very sharp for elliptic systems if the reaction term dominates both the
diffusion and convection. On the other hand, if reaction does not dominate
then the estimate gives quite inaccurate results. To obtain sharp results even
for small values of the reaction term (i.e. of κ) it is necessary to implement
the error bound (21) or (24).

We also point out that all indices of effectivity in Table 1 are greater or
equal to one. Hence, as Lemma 3.2 predicts, the computed error estimates
are really greater than the energy norm of the error.

Example 2. Let us consider a system of three chemical reactions of
the form (38)–(40) with the rate constants kij = κ2 and qi = κ2/2 for
i, j = 1, 2, 3. The diffusivity is considered as δi = 1 for i = 1, 2, 3. The

domain Ω and the velocity field b̃ are considered the same as in Example 1.
Using these data in (41) and translating them to the form (4)–(6), we obtain
the same A, B, and C as in Example 1. On the other hand, the source terms
f , gD, and gN differ. The production coefficients qi yield f = (κ2/2)1. On
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the Dirichlet edge x1 = 0 we prescribe

gi
D(x1, x2) = exp

(
−9(4x2 − i)2

)
, i = 1, 2, 3.

These are Gaussian functions with peaks at x2 = i/4, i = 1, 2, 3. On the
remaining parts of the boundary ∂Ω we consider homogeneous Neumann
boundary conditions:

(∇u)ν = 0.

The goal of the presented numerical computations is to obtain an approx-
imate solution with relative error at most 5 %. This can be achieved by
a standard adaptive procedure, in combination with the guaranteed upper
bound (20). A general adaptive procedure follows these steps, see e.g. [7]:

(1) Construct the initial mesh Th.
(2) Find the finite element solution uh on Th.
(3) Find the error indicators ηK for all elements K ∈ Th.
(4) Stop, if η2 =

∑
K∈Th

η2
K is under the prescribed tolerance.

(5) Mark those elements for which ηK < θ maxK∈Th
ηK .

(6) Refine the marked elements and create a new mesh Th.
(7) Go to 2.

The guaranteed upper bound (20) can be well used both as the local
error indicators ηK and the global error estimator η. Indeed, η2(uh, yh) =∑

K∈Th
η2

K(uh, yh), where

η2
K(uh, yh) = ‖r∗‖2

A−1,K + ‖rΩ‖
2
(C− 1

2
D)†,K + 〈|rN|〉

2
(α+ 1

2
E)†,K

and the local (semi)norms are defined in a natural way as

‖v‖2
M,K =

∫

K
vT Mv dx and 〈|v|〉2M,K =

∫

ΓN∩∂K
vT Mv dx.

As above, the complementary solution yh is computed by the finite element
method using the piecewise linear approximation on the same mesh as for
uh.

The initial mesh for the adaptive procedure is depicted in Figure 1 (left).
The relative error tolerance of 5 % was met in the seventh adaptive step.
More precisely, after seven adaptive steps we obtained the ratio η(uh, yh)/|||uh|||
less then 5 %. Thus, Lemma 3.2 guarantees that the energy norm of the true
relative error |||u− uh|||/|||uh||| is below the prescribed tolerance.

The three components of the finite element solution uh and the adapted
mesh in the final adaptive step are shown in Figure 2. As expected, the mesh
is refined close to the edge x1 = 0, where the solution possesses steep gradi-
ents. On the other hand, the solution is almost constant in the opposite half
of the domain and we observe very coarse mesh there. This, confirms that
the approximate complementary solution yh used in ηK(uh, yh) provides
quality indicator of the local behaviour of the error.

8. Conclusions

In this paper we generalized the complementary a posteriori error esti-
mates to systems of linear elliptic problems. We introduced three variants
of these error estimates: (19), (21), and (24). We proved the upper bound
property for these variants, we derived the corresponding complementary
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Figure 2. The three components of the finite element so-
lution uh at the last adaptive step and the corresponding
adapted mesh (Example 2).

systems, and for the case (19) we proved properties (29)–(32). All these
properties are analogous to the scalar case, see [29]. However, a nontriv-
ial feature of systems which is not present in the scalar case is the fact the
equation coefficients might be nonzero and singular matrices. This technical
difficulty was solved by the use the Moore-Penrose pseudoinverse.

There are also other properties of the complementary a posteriori error
estimates known from the scalar case which are not treated in this paper.
For example, if the coefficients B, C, and α vanish the upper bound (24)
possesses properties analogous to those listed in Theorem 4.1. Another result
known from the scalar case is the so-called method of hypercircle. It enables
to construct an approximation whose error is known exactly [4, 14, 27, 29].
It is very likely that all these results and properties generalize to systems as
well.

Further, we point out that the approximate complementary solution yh

was computed as finite element approximation of the corresponding comple-
mentary problem. This approach is not practical due to its high computa-
tional cost. If we use the same mesh for both primal and complementary
problem, we need several times more degrees of freedom to solve the comple-
mentary problem than the primal one. Computationally cheap approximate
complementary solution yh can be found by suitable postprocessing of uh

and its gradient. One possibility is the method of equilibrated residuals [1].
This method was employed in [2] and a fast, robust, and guaranteed upper
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bound for a scalar diffusion-reaction problem was derived there. General-
ization of this result to systems of elliptic equations is possible as well.

Anyway, the presented numerical experiments show the capability of the
complementary error estimates to provide sharp upper bounds even for ellip-
tic systems at least if the reaction term dominates. In addition, the experi-
ments confirm that the localized version of the complementary bounds may
serve as precise local error indicators for guidance of the adaptive process.

Furthermore, an efficient software for solution of systems of partial differ-
ential equations has to approximate each component of solution on its own,
individually adapted mesh. An automatically hp-adaptive strategy of this
kind is developed in [24, 25]. We stress that the complementary error esti-
mates can be well used even in this case. Evenmore, the complementary
approach is completely independent from the way how the approximate
solution uh is obtained and the complementary error estimates are valid
for arbitrary approximation of the complementary solution yh. This raises
a question suitable for further research: how to construct an optimal yh

yielding sharp, robust, and fast complementary error bounds provided uh

has been computed in a particular way.
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[30] M. Vohraĺık, A posteriori error estimation in the conforming finite element method

based on its local conservativity and using local minimization, C. R. Math. Acad. Sci.
Paris, 346 (2008), pp. 687–690.

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ–115 67
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