SEVENTY YEARS OF PROFESSOR MIROSLAV FIEDLER

Zdeněk VavŘín, Praha

In the paper [R1], J. Sedláček and A. Vrba described the life and work of Professor Miroslav Fiedler on the occasion of his sixtieth birthday. Also, the list of M. Fiedler's publications was included.

On April 7, 1996, Prof. Fiedler celebrated his seventieth birthday. We shall try here to continue the paper [R1] and show that though retired since 1992, his activities have by no means diminished during the past ten years. ${ }^{1}$

He still is Chief Editor of the Czechoslovak Mathematical Journal, editor of three other journals: Linear Algebra and Its Applications, Mathematica Slovaca, and Numerische Mathematik. Since 1994, he has been chairman of the Czech National Committee for Mathematics. In recognition of his merits he was awarded the Hans Schneider ILAS (International Linear Algebra Society) Prize in 1993.

We shall briefly describe Prof. Fiedler's scientific achievements. (The list of publications below includes a few papers which were listed in [R1] but were not published at that time. The numbering continues that in [R1].)

In the past ten years, M. Fiedler published nearly 50 papers. A vast majority of them concern matrix theory, in particular special classes of matrices.

Prof. Fiedler resumed studying Hankel matrices (his first paper on this topic was published in 1964) and related classes, such as Toeplitz, Bézout, and Loewner matrices, in mid-eighties $[106,107,109,110,117,118,121,122,123,135,140,143]$.

While the basis of their theory was given by famous mathematicians of the end of the last and the beginning of this century, these matrices have become very popular again since the seventies, especially due to their occurrance in linear systems theory. M. Fiedler (in some cases jointly with his colleague and for decades the closest collaborator V. Pták) studied mutual relations and connections with associated polynomials and rational functions.

[^0]It may be surprising that Loewner matrices played a role in the solution of the following problem [132]: Given a polynomial $\varphi(x)$ with all its roots real numbers, find its symmetric companion matrix (the characteristic polynomial of which equals $\varphi(x))$ [133], [134].

Another series of papers, in some cases jointly with T.L. Markham, concerned the classes related to M-matrices $[119,120,125,126,129,136,159]$, completion problems [114, 116], Hadamard products of matrices [120, 124, 148, 154], and generalized inverses [129, 139, 141, 151]. Several of these papers [125, 126, 136] gave an exhausting answer to topics studied previously by other authors.

Let us also mention an interesting new notion introduced and studied in a recent joint paper of M. Fiedler and V. Pták [156], the notion of spectral geometric mean of two positive definite matrices A and B (of the same order). The spectral geometric mean of A, B is the matrix F (always existing and unique) which satisfies $F=C A C$ and $F=C^{-1} B C^{-1}$ for some positive definite matrix C.

In graph theory, one of Prof. Fiedler's pioneering ideas was his definition of algebraic connectivity [59] as the second smallest eigenvalue of the Laplacian matrix of the graph (i.e. the matrix of the quadratic form $\sum_{(i, k) \in E}\left(x_{i}-x_{k}\right)^{2}$ if $G=(V, E)$, $V=\{1, \ldots, n\}$ being the set of vertices and E the set of edges.) It is interesting to note that it found important applications in the numerical solution of large systems of linear equations as well as in the so called seriation problems. In fact, it served as a basis for spectral methods in both areas. It turned out that the eigenvector (now generally called Fiedler vector) of the Laplacian corresponding to the algebraic connectivity has good both the separation and ordering properties for the vertex set of the graph.

Another original Fiedler's idea was to study classes of minimax problems for graphs ([131], [137], [142]) based on minimizing (or, maximizing) various characteristics of a weighted graph when all weightings on edges with a constant sum are considered, thus obtaining absolute characteristics. In particular, an explicit formula for the absolute algebraic connectivity of a tree was obtained [130].

Quite recently, Prof. Fiedler returned $[144,151]$ to the topic which had interested him decades ago - geometry of simplexes and its connection with graphs, matrices and resistive electrical networks. In [151], he found a simple relationship between the Menger matrix and the Moore-Penrose inverse of the Gram matrix of outward normals to the simplex (normalized in such a way that the sum of the normals is zero).

In conclusion, we use the opportunity to extend to Professor Miroslav Fiedler our best wishes of good health, full success in his scientific work and much happiness in his personal life.
[R1] J. Sedláčěk, A. Vrba: Sixty years of Professor Miroslav Fiedler. Czechoslovak Math. J. 36(111) (1986), 495-510.
[R2] Z. Vavřin: Miroslav Fiedler and Vlastimil Pták: Life and Work, Linear Algebra Appl. 223/224 (1995), 3-29.

Publications of Miroslav Fiedler 1984-1996

[105] S-matrices. Linear Algebra Appl. 57 (1984), 157-167.
[106] Hankel and Loewner matrices. Linear Algebra Appl. 58 (1984), 75-95.
[107] Binomial matrices. Math. Slovaca 34 (1984), 229-237.
[108] On a conjecture of P. R. Vein and its generalization. Linear and Multilinear Algebra 16 (1984), 147-154.
[109] Quasidirect decompositions of Hankel and Toeplitz matrices. Linear Algebra Appl. 61 (1984), 155-174.
[110] Polynomials and Hankel matrices. Linear Algebra Appl. 66 (1985), 235-248.
[111] A trace inequality for M-matrices and the symmetrizability of a real matrix by a positive diagonal matrix (with C. R. Johnson, T. L. Markham, M. Neumann). Linear Algebra Appl. 71 (1985), 81-94.
[112] Signed graphs and monotone matrices. In: Graphs, Hypergraphs and Applications, Eyba 1984. Teubner 1985, pp. 36-40.
[113] Some applications of graph theory in numerical mathematics. In: Proceedings of the Summer School of Numerical Mathematics and Theory of Graphs. Štrbské Pleso 1986, pp. 4-12.
[114] Completing a matrix when certain entries of its inverse are specified (with T.L. Markham). Linear Algebra Appl. 74 (1986), 225-237.
[115] Some numerical aspects of Loewner matrices. In: Numerical Methods, Colloq. Math. Soc. János Bolyai vol. 50, North-Holland 1987, pp. 160-184.
[116] Rank-preserving diagonal completions of a matrix (with T. L. Markham). Linear Algebra Appl. 85 (1987), 49-56.
[117] Bézoutians and intertwining matrices (with V.Pták). Linear Algebra Appl. 86 (1987), 43-51.
[118] Intertwining and testing matrices corresponding to a polynomial (with V.Pták). Linear Algebra Appl. 86 (1987), 53-74.
[119] Notes on inverse M-matrices (with C. R. Johnson and T. L. Markham). Linear Algebra Appl. 91 (1987), 75-81.
[120] An inequality for the Hadamard product of an M-matrix and an inverse M-matrix (with T.L. Markham). Linear Algebra Appl. 101 (1988), 1-8.
[121] Loewner and Bézout matrices (with V.Pták). Linear Algebra Appl. 101 (1988), 187-220.
[122] Bézout, Hankel and Loewner matrices. Linear Algebra Appl. 104 (1988), 185-193.
[123] Characterizations of Bézout and Hankel-Bézout matrices. Linear Algebra Appl. 105 (1988), 77-89.
[124] On the range of the Hadamard product of a positive definite matrix and its inverse (with T. L. Markham). SIAM J. Matrix Anal. Appl. 9 (1988), 343-347.
[125] A characterization of the closure of inverse M-matrices (with T. L. Markham). Linear Algebra Appl. 105 (1988), 209-223.
[126] Characterizations of $M M A$-matrices. Linear Algebra Appl. 106 (1988), 233-244.
[127] Doubly stochastic matrices and optimization. In: Advances in Mathematical Optimization (J. Guddat et al., eds.), Math. Res. vol. 45, AW Berlin 1988, pp. 44-51.
[128] Laplacian of graphs and algebraic connectivity. In: Combinatorics and Graph Theory, Banach Center Publ. vol. 25, PWN, Warszawa 1989, pp. 57-70.
[129] Some connections between the Drazin inverse, P-matrices and the closure of inverse M-matrices (with T. L. Markham). Linear Algebra Appl. 132 (1990), 163-172.
[130] Absolute algebraic connectivity of trees. Linear and Multilinear Algebra 26 (1990), 85-106.
[131] A minimax problem for graphs and its relation to generalized doubly stochastic matrices. Linear and Multilinear Algebra 27 (1990), 1-23.
[132] Pencils of real symmetric matrices and real algebraic curves. Linear Algebra Appl. 141 (1990), 53-60.
[133] Expressing a polynomial as characteristic polynomial of a symmetric matrix. Linear Algebra Appl. 141 (1990), 265-270.
[134] A symmetric companion matrix of a polynomial (with Z. Vavřín). In: Colloq. Math. Soc. János Bolyai vol. 59, 1990, pp. 9-16.
[135] A subclass of symmetric Loewner matrices (with Z. Vavřín). Linear Algebra Appl. 170 (1992), 47-51.
[136] A classification of matrices of class Z (with T. L. Markham). Linear Algebra Appl. 173 (1992), 115-124.
[137] An extremal problem for the spectral radius of a graph. Discrete Math. 108 (1992), 149-158.
[138] Structure ranks of matrices. Linear Algebra Appl. 179 (1993), 119-128.
[139] A characterization of the Moore-Penrose inverse (with T. L. Markham). Linear Algebra Appl. 179 (1993), 129-134.
[140] Polynomials compatible with a symmetric Loewner matrix (with Z. Vavřín). Linear Algebra Appl. 190 (1993), 235-251.
[141] Quasidirect addition of matrices and generalized inverses (with T. L. Markham). Linear Algebra Appl. 191 (1993), 165-182.
[142] Some minimax problems for graphs. Discrete Mathematics 121 (1993), 65-74.
[143] Remarks on eigenvalues of Hankel matrices. IMA Preprint Series, \# 903. Minneapolis 1992.
[144] A geometric approach to the Laplacian matrix of a graph. In: Combinatorial and Graph-Theoretical Problems in Linear Algebra (R.A. Brualdi, S. Friedland, V. Klee, eds.), Springer, New York 1993, pp. 73-98.
[145] Elliptic matrices with zero diagonal. Linear Algebra Appl. 197, 198 (1994), 337-347.
[146] On a theorem of Everitt, Thompson and de Pillis (with T.L. Markham). Math. Slovaca 44 (1994), 441-444.
[147] An estimate for the non-stochastic eigenvalues of doubly stochastic matrices. Linear Algebra Appl. 214 (1995), 133-143.
[148] An observation on the Hadamard product of Hermitian matrices (with T.L. Markham). Linear Algebra Appl. 215 (1995), 179-182.
[149] Numerical range of matrices and Levinger's theorem. Linear Algebra Appl. 220 (1995), 171-180.
[150] On a special type of generalized doubly stochastic matrices and its relation to Bézier polygons. SIAM J. Matrix Anal. Appl. 16 (1995), 735-742.
[151] Moore-Penrose involutions in the classes of Laplacians and simplices. Linear and Multilinear Algebra 39 (1995), 171-178.
[152] A note on the row-rhomboidal form of a matrix. Linear Algebra Appl. 232 (1996), 149-154.
[153] Some results on the Bergström and Minkowski inequalities (with T. L. Markham). Linear Algebra Appl. 232 (1996), 199-212.
[154] Some inequalities for the Hadamard product of matrices (with T. L. Markham). Linear Algebra Appl. (To appear.)
[155] Diagonal blocks of two mutually inverse positive definite matrices (with V.Pták). Czechoslovak Math. J. (To appear.)
[156] A new geometric mean of two positive definite matrices (with V.Pták). Linear Algebra Appl. (To appear.)
[157] Some inverse problems for acyclic matrices. Linear Algebra Appl. (To appear.)
[158] Strong majorization for hermitian matrices (with V. Pták). Linear Algebra Appl. (To appear.)
[159] Block analogies of comparison matrices (with V.Pták). Linear Algebra Appl. (To appear.)
[160] Consecutive-column and -row properties of matrices and the Loewner-Neville factorization (with T.L. Markham), Linear Algebra Appl. (Submitted.)

[^0]: ${ }^{1}$ Last year a special issue of Linear Algebra and Its Applications was dedicated to M. Fiedler and V. Pták. It contains a survey of their scientific career up to now [R2].

