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�� Introduction

1.1. Preliminaries. Oscillating motions enjoy a privileged position in many

technical as well as theoretical domains� The central role is played here by peri�

odic motions represented by periodic functions� Unfortunately� the class of periodic

functions is not linear since the sum of two periodic functions� which do not have

a non�zero period in common� gives rise to a non�periodic function� This lack of

linearity is circumvented by introducing almost periodic functions�

1.2. Properties of continuous periodic functions. The de�nition of an al�

most periodic function is based upon two properly generalized concepts� the period

to the so�called almost period and the periodic distribution of periods to the so�called

relative density of almost periods�

An equivalent de�nition makes use of the generalization of the relative compactness

of translates of a continuous periodic function�

���



�� Notation and definitions

2.1. Sets and set-theoretical operations. Standard set�theoretical notation is

used� The symbol N denotes the set of all positive integers� Z the set of all integers�

Q the set of all rational numbers� R the set of all real numbers� C the set of all

complex numbers� If M is a non�empty set of numbers then G(M) denotes the

smallest additive group which contains M as a subset� G(∅) = ∅�

2.2. Spaces, mappings, functions. A Banach space is also called a B�space

and is denoted by capital letters X � Y � The norm in the B�space X is denoted by

‖ · ‖X or simply ‖ · ‖ if no confusion may arise�

If X is a B�space �e� g� also R or C normed by the absolute value	� then C(X )

denotes all mappings �functions	 f : R → X continuous on R� The symbol CB(X )

denotes the set of all functions from C(X ) the range Rf of which is a bounded set

in X � In the space CB(X ) the norm is introduced by the formula

‖f‖ = ‖f‖CB�X � = sup
t

‖f(t)‖X = sup{‖f(t)‖X : t ∈ R}

for f ∈ CB(X )� This makes CB(X ) into a B�space� The symbol CP (X ) stands for

the set of all periodic functions from CB(X )�

2.3. Translates. If a function f ∈ C(X ) and a number s ∈ R are given� then

the function g ∈ C(X ) de�ned by the formula g(t) = f(t + s)� t ∈ R� is called the

s�translate �s�shift	 or simply the translate �the shift	 of the function f �

In the sequel we often handle translates and limits of sequences of translates� hence

for a given sequence α = {αm} of real numbers and for a given function f ∈ C(X )
the symbol T�f is introduced for convenience in writing by the formula

T�f(t) = lim
m→∞

f(t+ αm) = lim f(t+ αm)

for t ∈ R� The statement 
T�f exists �or T�f = g	 uniformly� means that the limit

exists �or exists and is equal to g(t)	 uniformly for t ∈ R�

If the sequence α is constant and αm = h� m = 1, 2, . . .� then the h�translate of

the function f is denoted alternatively by Thf �

2.4. Relative compactness. Let M be a non�empty subset of a B�space X �

M is called relatively compact �in X 	 if the closure M is compact�
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�� Almost periodic functions

3.1. Definition and basic properties. Harald Bohr ����������	� creator of

the theory of almost periodic functions� published his results in the twenties of this

century� Since then his theory has been developed by a number of outstanding

mathematicians�

Definition 3.1. Let f ∈ C(X )� where X is a B�space� let ε be a positive

number� A real number τ is called an ε-almost period or merely an almost period of

the function f if ‖f(t+ τ) − f(t)‖ � ε for all t ∈ R�

Definition 3.2. A set M of real numbers is said to be relatively dense in R if

there exists a positive number l such that for any real number a the intersection

M ∩ 〈a, a+ l〉 is non�empty�

Definition 3.3. A function f ∈ C(X ) is said to beX -almost periodic or merely

almost periodic if for any positive number ε the set of all ε�almost periods of the

function f is relatively dense in R�

Any continuous periodic function� à fortiori any constant function� is readily seen

to be almost periodic� It is easy to derive that an almost periodic function has

a relatively compact range in X � is uniformly continuous and that the limit of

a uniformly convergent sequence of almost periodic functions is again an almost

periodic function�

An equivalent de�nition of an almost periodic function is due to Salomon Bochner�

Definition 3.4. A function f ∈ C(X ) is called almost periodic if any sequence

α′ of real numbers contains a subsequence α such that T�f exists uniformly�

This Bochner de�nition ensures that the sum or the product �if it exists	 of a �nite

number of almost periodic functions or the limit of a uniformly on R convergent

sequence of almost periodic functions are again almost periodic functions� This

means that the space AP (X ) of all X �almost periodic functions is a closed linear

subspace of the space CB(X ) with the induced norm� i� e� AP (X ) is a B�space�

3.2. Trigonometric polynomials. Given N pairwise di�erent real numbers

λ�, . . . , λN and N elements b�, . . . , bN from the B�space X � where N ∈ N � then the

function Q de�ned by the formula

Q(t) = b� exp(iλ�t) + . . .+ bN exp(iλN t), t ∈ R,

is called an X -trigonometric or simply trigonometric polynomial� Any trigonomet�

ric polynomial Q is an almost periodic function� �The value et of the exponential

function is denoted here by exp(t)�	
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3.3. Harmonic analysis. Given an almost periodic function f then the number

M(f) =Mt{f(t)} = lim
T→�∞

1

T

∫ a�T

a

f(t) dt,

which exists uniformly with respect to a ∈ R� is called the mean value of the function

f � This means that Mt{f(t+ a)} =M(f) for every a ∈ R�

The function

a(λ) =Mt{f(t) exp(−iλt)}, λ ∈ R,

is called the Bohr transformation of an almost periodic function f � and a real number

λ for which a(λ) = a(λ, f) is non�zero� is called the Fourier exponent and a(λ)

is called the Fourier coefficient of the almost periodic function f � The inequality

‖a(λ, f)‖X � ‖f‖ holds for any Fourier exponent a(λ, f)�

The set of all Fourier exponents of an almost periodic function f will be denoted

by Λf � The set Λf is at most countable� If f is a zero function then Λf = ∅�
The theory of almost periodic functions shows �see ���� ���	 that for anyX �almost

periodic function f and for any ε > 0 there exists an X �trigonometric polynomial

Q = Q��f such that ‖Q−f‖ � ε and ΛQ ⊂ Λf � Hence� the set of allX �trigonometric

polynomials is densely distributed in AP (X )�

3.4. Kronecker’s theorem. If λ�, . . . , λN and θ�, . . . , θN � where N ∈ N � are

real numbers� then a necessary and su�cient condition that for any positive number

δ the system of �congruent	 inequalities

|λjt− θj | � δ (mod 2p), j = 1, . . . , N,

have at least one solution is that each equality q�λ�+. . .+qNλN = 0 where q�, . . . , qN
are integers� imply the �congruent	 equality q�θ� + . . .+ qNθN = 0 (mod 2p)�

Remark ���� The elements of the theory of almost periodic functions including

the proof of the Kronecker theorem may be found in ���� ���� ���� ����

�� Regular sequences

4.1. Definitions and basic properties. Given any function de�ned on R then

with every sequence of real numbers we associate a sequence of translates of the given

function�

Definition 4.1. Let f ∈ C(X ) and let α be a sequence of real numbers� The

sequence α is called a regular sequence of the function f if T�f exists uniformly� The

set of all regular sequences of the function f will be denoted by the symbol Sf �
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Example ���� �	 For the function f(t) = t� t ∈ R� the set Sf coincides with

the set of all convergent sequences of real numbers� The same is true for the function

f(t) = arctan t� t ∈ R�

�	 If f ∈ C(X ) is a constant function then Sf is the set of all sequences of real

numbers�

�	 If f ∈ AP (X ) then every sequence α of real numbers contains a subsequence

from Sf � �Bochner�s de�nition	�

If we are given a sequence θ�, θ�, . . . of real numbers then the statement 
there

exists lim θm(mod 2p)� means that there exists a real number θ and a sequence of

integers k�, k�, . . . such that lim(θm + 2pkm − θ) = 0� which is denoted by lim θm =

θ(mod 2p)� It may be easily proved that the existence of lim θm(mod 2p) is equivalent

to the existence of lim exp(iθm)�

Theorem 4.3. If a function f ∈ AP (X ) and a sequence α = {αm} ∈ Sf then
the limit lim exp(iλαm) exists for any λ ∈ Λf .

Proof� For any λ ∈ R we have

‖a(λ, f)‖ · | exp(iλαm)− exp(iλαn)| =
∥∥Mt{[f(t+ αm)− f(t+ αn)] exp(−iλt)}

∥∥
� sup

t

‖f(t+ αm)− f(t+ αn)‖ → 0 for m,n→ ∞.

If λ ∈ Λf then a(λ, f) 
= 0 and the limit lim exp(iλαm) exists� �

Corollary 4.4. If Q is an X -trigonometric polynomial and α = {αm} ⊂ R then

the existence of lim exp(iλαm) for any λ ∈ ΛQ is a necessary and sufficient condition
for the validity of the incidence α ∈ SQ.

Definition 4.5. For a non�empty set M ⊂ C(X ) we de�ne SM =
⋂

f∈M
Sf �

Theorem 4.6. If a sequence of X -trigonometric polynomials M = {Qp} con-
verges uniformly on R to a function f ∈ AP (X ) and if ΛQp

⊂ Λf , p = 1, 2, . . . , then
SM = Sf .

Proof� The inclusion Sf ⊂ SM results from Theorem ��� and Corollary ����

We prove the reversed inclusion� Let a sequence α ∈ SM and let Qp� = T�Qp�

p = 1, 2, . . .� For any positive number ε there exists a real number p(ε) such that for

any positive integers p� q greater than p(ε) the following inequalities are valid�

sup
t

‖Qp(t+ αm)−Qq(t+ αm)‖ � ε, m = 1, 2, . . .
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�uniform convergence on R	� The passage to the limit for m→ ∞ yields

sup
t

‖Qp�(t)−Qq�(t)‖ � ε.

This means that the sequence of trigonometric polynomials {Qp�} converges uni�

formly on R� Denote Q� = limQp�� Evidently Q� is an almost periodic function�

Taking into account the uniform convergence of R we get the equality

T�f = T�( lim
p→∞

Qp) = lim
p→∞

T�Qp = lim
p→∞

Qp� = Q�

uniformly on R� This yields α ∈ Sf and SM = Sf � �

In the publications ���� ��� the following assertion is proved�

Theorem 4.7. Let X , Y be two B-spaces and let f ∈ AP (X ), g ∈ AP (Y ).
A necessary and sufficient condition for Sf ⊂ Sg to be valid is that Λg ⊂ G(Λf ) (the
smallest additive group containing Λf as a subset).

Corollary 4.8. If f ∈ AP (X ) andM is the closure of the set of all trigonometric
polynomials Q for which ΛQ ⊂ G(Λf ) then SM = Sf .

4.2. The H property. Here we deal with the class of almost periodic functions

for which uniformly on R convergent sequences of translates have the same properties

enjoyed by continuous periodic functions�

Definition 4.9. A function f ∈ AP (X ) is said to have theH property� symboli�

cally f ∈H � if for any sequence α ∈ Sf there exists a real number h = h(α) = h(α, f)
such that T�f = Thf uniformly �Thf(t) = f(t+ h)� t ∈ R	�

Example ���� �	 The function f(t) = t� t ∈ R� has the H property and

for α ∈ Sf there exists a unique h = h(α, f)� The same is true for the function

g(t) = arctan t� t ∈ R�

�	 Any continuous periodic function has the H property� but h(α) corresponding

to a regular sequence α need not be determined uniquely� In fact� the set of such

numbers is relatively dense in R�

Theorem 4.11. If an X -almost periodic function f has the propertyH then its

range Rf is a closed set.

Proof� Let z� be an arbitrarily given point from the closure of Rf � There

exists a sequence {zm} of values of the function f such that lim zm = z�� {zm} being
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the sequence of values of the function f there exists a sequence α′ = {α′
m} of real

numbers such that f(α′
m) = zm� m = 1, 2, . . .� The almost periodicity of the function

f yields the existence of a sequence α ⊂ α′ such that α ∈ Sf � In virtue of f ∈ H
there exists a real number h = h(α, f) such that T�f = Thf uniformly� For t = 0 we

have f(h) = T�f(0) = lim zm = z�� i� e� z� = f(h) ∈ Rf � Since z� ∈ Rf has been

chosen arbitrarily it follows that Rf = Rf � �

Theorem 4.12. A necessary and sufficient condition for an X -almost periodic

function f to have the H property is that for every sequence α ∈ Sf there exists a
number h� such that lim exp(iλαm) = exp(iλh�) for any λ ∈ Λf . In the affirmative
case of the existence we have h� = h(α, f).

Proof� The validity of the assertion is immediate for the trigonometric poly�

nomial f � In case f is not a trigonometric polynomial there exists a sequence of

trigonometric polynomials Qp uniformly convergent on R to f for which ΛQp
⊂ Λf �

p = 1, 2, . . .� It remains to use Theorem ���� �

Let us denote by S� the set of all sequences of real numbers with constant members

starting from a certain index which depends upon the particular sequence�

Definition 4.13. A non�empty setM ⊂ AP (X ) is said to have theH property�

symbolicallyM ⊂H � provided each function fromM has theH property� SM 
= S�
and for any sequence α ∈ SM there exists a real number h = h(α) = h(α,M) such

that for every function f ∈M the equality T�f = Thf holds uniformly�

If the set M ⊂ AP (X ) is at most countable and M ⊂ H then every sequence

of real numbers contains a subsequence belonging to SM � �By Cantors�s diagonal

method�	 Theorem ���� yields the following statements�

Corollary 4.14. Let the sequence of trigonometric polynomials M = {Qp} con-
verge uniformly on R to an almost periodic function f and let ΛQp

⊂ Λf , p = 1, 2, . . ..
If the set M has the H property then also the function f has the H property and

{f} ∪M ⊂ H holds.

Corollary 4.15. Let X , Y be B-spaces. If a function f ∈ AP (X ) has the
H property and the set M ⊂ AP (Y ) is the closure in AP (Y ) of the set of all
functions g ∈ AP (Y ) for which Λg ⊂ G(Λf ) then M has the H property.
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�� Periodicity

5.1. Structure of Fourier exponents. Here we shall show the analogy between

the structure of Fourier exponents of continuous periodic functions and a certain class

of almost periodic functions�

Definition 5.1. �	 Real numbers λ�, . . . , λN � where N ∈ N � are said to be

linearly dependent (over Z) if there exist integers n�, . . . , nN such that n�λ� + . . .+

nNλN = 0 while |n�|+ . . .+ |nN | > 0�
�	 A non�empty set M of real numbers is said to be a dependent set provided any

two numbers from M are linearly dependent�

�	 By de�nition� the empty set is a dependent set�

Each one�point set M ⊂ R is a dependent set� Each subset of a dependent set is

a dependent set� The union of a dependent set and the set {0} is a dependent set�

Theorem 5.2. If a function f ∈ AP (X ) has the H property then Λf is a

dependent set.

Proof by contradiction� Let there exist two linerly independent Fourier ex�

ponents µ� µ′ of the function f ∈ H � According to the Kronecker theorem the

solvability of the system of inequalities

|µt− θ| � δ (mod 2p), |µ′t− θ′| � δ (mod 2p)

is guaranteed for arbitrary real numbers θ� θ′ and any positive number δ� Let us

denote by α′
m a solution of this system for θ = 0� θ′ = p

� and δ = �
m
� m = 1, 2, . . .�

Owing to the almost periodicity of the function f the sequence α′ = {α′
m} contains

a subsequence α = {αm} ∈ Sf � Hence� there exists a real number h = h(α, f)

for which limλαm = λh (mod 2p) for every λ ∈ Λ� Consequently� the following

equalities are valid�

limµαm = 0 (mod 2p) = µh (mod 2p),

limµ′ αm =
p

� (mod 2p) = µ
′h (mod 2p).

This means that there exist integers k� k′ such that µh = 2pk, µ′h = p

� + 2pk
′ =

(4k′ + 1)�p� � Because of the linear independence of numbers µ� µ′ we get µµ′ 
= 0�
Since also 4k′+1 
= 0 we infer that h 
= 0 and the ratio µ/µ′ = 4k/(4k′+1)� It follows

that (4k′ +1)µ− 4kµ′ = 0 with a non�zero coe�cient at µ� which is a contradiction�

Thus� the numbers µ� µ′ are necessarily linearly dependent� �
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Let N ∈ N � Integers n�, . . . , nN are said to be relatively prime if their great�

est common divisor is equal to one� Otherwise� integers n�, . . . , nN are called non

relatively prime� For N = 1 and |n�| > 1 the number n� is non relatively prime�

Definition 5.3. �	 If non�zero real numbers λ�, . . . , λN � where N ∈ N � form a

dependent set then positive numbers σ�, . . . , σN are called their primitive divisors

�with due regard to the order	 if λj = njkσk� j = 1, . . . , k� where n�k, . . . , nkk are

relatively prime integers� k = 1, . . . , N �

�	 If a sequence of non�zero real numbers λ�, λ�, . . . forms a dependent set then a

sequence of positive numbers σ�, σ�, . . . is called a sequence of their primitive divisors

if for any N ∈ N the numbers σ�, . . . , σN are primitive divisors of the numbers

λ�, . . . , λN �

Theorem 5.4. If non-zero real numbers λ�, . . . , λN , N ∈ N form a dependent set

then

�	 their primitive divisors σ�, . . . , σN exist and are uniquely determined;

�	 for N > 1 the ratio νk = σk/σk�� is a positive integer, k = 1, . . . , N − 1, so
that σ� � . . . � σN .

Proof� The fact that {λ�, . . . , λN} is a dependent set implies the existence

of rational numbers r�, . . . , rk such that λk = rk |λ�|� k = 1, . . . , N � Suppose that

these rational numbers are of the form of ratios of two relatively prime integers and

qk is the smallest common positive denominator of fractions r�, . . . , rk and pk is

the greatest common divisor of integer numbers r�qk, . . . , rkqk� k = 1, . . . , N � Now�

we already obtain the system of equalities λj = njkσk� where σk = |λ�| pk/qk and

njk = rjqk/pk� j = 1, . . . , k� are relatively prime integers� k = 1, . . . , N � Thus� the

existence of primitive divisors has been veri�ed� We leave it to the reader to check

their uniqueness�

Let us prove � by contradiction� Let N > 1� The set of primitive divisors

σ�, . . . , σN forms a dependent set since the numbers λ�, . . . , λN form a dependent set�

Hence νk ∈ Q � k = 1, . . . , N−1� Let νk = σk/σk�� = p/q for some k ∈ {1, . . . , N−1}�
where p� q are two relatively prime positive integers and q > 1� But this means that

λj = njkσk = njkpσk��/q = njk��σk��� j = 1, . . . , k� It follows that the numbers

n�k, . . . , nkk are divisible by an integer q > 1 and this is a contradiction with the

fact that they are relatively prime� We infer q = 1 and νk ∈ N � k = 1, . . . , N −1� �

Corollary 5.5. If a sequence of non-zero real numbers λ�, λ�, . . . forms a de-

pendent set then the sequence σ�, σ�, . . . of their primitive divisors exists and is

determined uniquely, while the ratio νk = σk/σk�� is a positive integer, k = 1, 2, . . .,

so that σ� � σ� � . . ..
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Remark ���� If σ�, σ�, . . . is a sequence of primitive divisors of a sequence of

non�zero real numbers λ�, λ�, . . . then the numbers νk−�, nkk are relatively prime�

k = 2, 3, . . .�

Lemma 5.7. If a function g ∈ AP (X ) is not a trigonometric polynomial and the
sequence Λ�g = {λ�, λ�, . . .}, the set of all non-zero Fourier exponents of the function
g, is a dependent set and σ�, σ�, . . . is the sequence of their primitive divisors, then

the sequence αm =
m∑
j��
Tj , where Tj = 2p/σj , j = 1, . . . ,m, m = 1, 2, . . ., belongs to

Sg .

Proof� For k > 1 and 1 � j < k the equality

σk

σj
=
σk · . . . · σj��
σk−� · . . . · σj

=
1

νk−� · . . . · νj

is valid� hence σkTj = 2p/(νk−� · . . . · νj)� For 1 � k < j we have

σk

σj
=
σk · . . . · σj−�

σk�� · . . . · σj
= νk · . . . · νj−�

so that σkTj = 2pνk · . . . · νj−� = 0 (mod 2p)� For j = k we evidently get σkTk =

0 (mod 2p) as well� For m � k > 1 we have

λkαm =
m∑
j��

λkTj = nkk

m∑
j��

σkTj = nkk

k−�∑
j��

σkTj (mod 2p)

= 2pnkk

k−�∑
j��

1

νk−� · . . . · νj
(mod 2p).

We conclude that there exists limλαm (mod 2p) for every λ ∈ Λ�g� namely

limλ�αm = 0 (mod 2p)� limλkαm = 2pnkk
k−�∑
j��
1/(νk−� · . . . · νj) (mod 2p) for

k = 2, 3, . . .� so that α = {αm} ∈ Sg� �

5.2. Aperiodicity. For a function f ∈ AP (X ) we denote again the set of all its

non�zero Fourier exponents by the symbol Λ�f �

Theorem 5.8. Let a sequence of non-zero real numbers λ�, λ�, . . . form the de-

pendent set Λ�g of anX -almost periodic function g and let σ�, σ�, . . . be the sequence

of its primitive divisors. If νk = σk/σk�� � 3, k = 1, 2, . . . , then limσk = 0 and the

function g does not possess the H property and consequently g is not periodic.
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Proof by contradiction� Assume that g ∈ H � Let α = {αm} ∈ Sg be the

sequence de�ned in Lemma ���� For the sequence α there exists a real number h =

h(α, g) such that T�g = Thg uniformly� We get the equality limλαm = λh (mod 2p)

for every λ ∈ Λg� Hence� there exist integer numbers nk, k = 1, 2, . . .� such that we

obtain successively the equalities

0 = λ�h− 2pn� = n��σ�h− 2pn�,

2pnkk

k−�∑
j��

1

νk−� · . . . · νj
= λkh− 2pnk = nkkσkh− 2pnk, k = 2, 3, . . . .

Since σ� = |λ�| and |n��| = 1� σ�h is an integer multiple of the number 2p� Let

	� be the integer for which σ�h = 2p	�� hence n� = 	�n��� If we have determined

successively the equalities nj = 	jnjj � where 	j = (	j−�−1)/νj−� for j = 2, . . . , k−1
is an integer for k > 2� then the equality nk = nkk (	k−� − 1)/νk−� = 	knkk and the

fact that the integer numbers νk−�� nkk are relatively prime and nk ∈ Z yields that

the ratio 	k = (	k−� − 1)/νk−� is an integer� Thus� for any positive integer k there

exists an integer 	k such that nk = 	knkk while 	� = (	� − 1)/ν� and for k > 2 we

have

	k =
	� − 1

νk−� · . . . · ν�
− 1

νk−� · . . . · ν�
− . . .− 1

νk−�
.

By assumption� νk � 3 for k = 1, 2, . . .� so that

∞∑
k��

1

νk−� · . . . · ν�
� �

�

and for all su�ciently large k ∈ N necessarily |	� − 1|/(νk−� · . . . · ν�) < �
� � Hence

for all su�ciently large k ∈ N we have |	k| < 1� Since 	k are integer numbers we

conclude that 	k = 0 starting from a certain index k�� For every k � k� by using the

equality 	k = 0 we obtain the equality

	� − 1− ν� − ν�ν� − . . .− (ν� · . . . · νk−�) = 0.

However� the left hand side of this equality diverges to −∞ for k → ∞� which leads

to a contradiction� The function g cannot have the H property� �

Theorem 5.9. Let a sequence of non-zero real numbers µ�, µ�, . . . form the depen-

dent set Λ�f of an X -almost periodic function f and let σ
′
�, σ

′
�, . . . be the sequence

of their primitive divisors. If limσ′
k = 0 then the function f has not theH property;

consequently f is not periodic.

���



Proof� The sequence Λ�f contains a subsequence µkj = λj � j = 1, 2, . . . such

that for the almost periodic function g(t) =
∑
2−k exp(iλkt)� k ∈ N � t ∈ R� the

assumptions of Theorem ��� are satis�ed� So the function g does not possess the

H property and in view of the fact that Λg ⊂ G(Λf ) we conclude by Corollary ����

that the function f does not have the H property either� �

5.3. Criterion of periodicity. Now� we shall determine the relation between

the H property and the periodicity of X �almost periodic functions�

Theorem 5.10. If Q is an X -trigonometric polynomial and ΛQ is a dependent

set then Q is a periodic function and also has the H property.

Proof� If Λ�Q = ∅ then Q is a constant function� If Λ�Q = {λ�, . . . , λN}� where
N is a positive integer� is a dependent set with the primitive divisors σ�, . . . , σN then

T = 2p/σN is the primitive period of the function Q� �

Theorem 5.11. Let the X -almost periodic function f be not a trigonometric

polynomial and let Λf be a dependent set. If the dependent set Λ�f is ordered into

a sequence and the limit of the corresponding sequence of its primitive divisors is

positive then f is a periodic function and, consequently, has the H property.

Proof� Let σ�, σ�, . . . be the corresponding sequence of primitive divisors and

let limσk = σ > 0� In other words� starting from a certain index the primitive

divisors remain constant and T = 2p/σ is the primitive period of the function f � �

Corollary 5.12. Any X -almost periodic function with the H property is peri-

odic. (On the other hand, any continuous periodic function has the H property.)

5.4. Closure of the class CP (X ). The class CP (X ) is neither linear nor closed

in CB(X )� For instance� the function f(t) =
∞∑
k��

3−k exp(it3−k)� t ∈ R� is the sum

of an absolutely uniformly convergent trigonometric series the partial sums of which

are periodic functions� The function f is almost periodic� however� according to

Theorem ��� it is not periodic�

Theorem 5.13. If a sequence of functions {fk} ⊂ CP (X ) converges uniformly
on R to a function f then f ∈ AP (X ) and Λf is a dependent set.

Proof� It is readily seen that f ∈ AP (X )� Without restricting generality

we may assume that fk are periodic trigonometric polynomials� k = 1, 2, . . .� Since

‖a(λ, fk)‖ � ‖a(λ, f)‖ − ‖a(λ, fk − f)‖ for any λ ∈ R� for arbitrary two Fourier

��



exponents µ� µ′ of the function f there exists k su�ciently large such that µ� µ′ are

at the same time Fourier exponents of the periodic function fk� consequently� they

are linearly dependent� �

Thus� the closure of the class CP (X ) consists of all X �almost periodic functions

f the set Λf of which is a dependent set� It follows that for everyX �almost periodic

function f whose Λf is not a dependent set the distance from the element f to

CP (X ) in the space CB(X ) is positive� This is of considerable theoretical as well

as practical importance for the uniform approximation of almost periodic functions

on R by means of continuous periodic functions�

5.5. Bochner’s transformation. Any continuous periodic function has a com�

pact range� This property is not a su�cient� but only a necessary condition for the

periodicity of an almost periodic function� A promising conjecture naturally arises

that any trigonometric polynomial with a compact range is periodic� The author has

managed to verify this conjecture for scalar trigonometric polynomials of the second

degree� Nonetheless� from a certain more general viewpoint the compactness of the

range becomes a su�cient and necessary condition for periodicity�

Definition 5.14. Let a function f ∈ C(X ) = Y be given� The function Bf =

f̃ ∈ C(Y ) de�ned for any s ∈ R by the formula f̃(s)(t) = f(t+ s)� t ∈ R �s�translate

of the function f	 is called the Bochner transformation of the function f �

If f ∈ CB(X ) then the inequality

sup
s

‖f̃(s+ τ)− f̃(s+ ν)‖Y = sup
s

sup
t

‖f̃(s+ τ)(t) − f̃(s+ ν)(t)‖X

= sup
s

sup
t

‖f(t+ s+ τ) − f(t+ s+ ν)‖X

= sup
t

‖f(t+ τ) − f(t+ ν)‖X , s ∈ R, t ∈ R,

which is valid for any real numbers τ � ν� implies that the periodicity� the almost

periodicity of the function f and the incidence α ∈ Sf � respectively� is ensured by

the periodicity� the almost periodicity of the function f̃ and by α ∈ S 	f � respectively�

The pertinent periods or almost periods� respectively� coincide for f and f̃ �

Theorem 5.15. A necessary and sufficient condition for a function f ∈ CB(X ) =
Y to be periodic is that its Bochner transformation Bf = f̃ have a compact range

in the space Y .

Proof� The necessity is evident� The su�ciency follows from the fact that the

compactness of the range of Bochner�s transformation f̃ yields the H property and

due Bochner�s de�nition also the almost periodicity of the function f � �

���



Conclusion� Original results of this paper contribute to the theory of almost

periodic functions� Above all� the paper deals with almost periodic functions which

are limits of sequences of continuous periodic functions� and determines the struc�

ture of their Fourier exponents and their ranges� Key ingredients of the paper are

contained in Sections ���� ���� ��� and ����

It follows from the results of the paper that the class CP (X ) of continuous periodic

functions is not densely distributed in the space AP (X )� considerable importance

and unexchangeability of the position of almost periodic functions has been borne

out again by this result�
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