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1 Introduction

In the theory of partial differential equations the classical maximum principle
is well-known. It states that each harmonic function u takes its maximum
and minimum values always at the boundary ∂Ω of the corresponding bounded
domain Ω. This result remains true also for solutions of more general elliptic
equations of second order with regular coefficients. However, for solutions of
higher order equations or for solutions of elliptic systems it is not true in general
(see e.g. [38]). In these cases, a so-called maximum modulus estimate of the
form

max
x∈Ω

|u(x)| ≤ cΩ max
x∈∂Ω

|u(x)|

might be valid, with some constant c = cΩ depending only on Ω.

Concerning the linearized steady Stokes system

−∆u +∇p = 0 in Ω, ∇ · u = 0 in Ω, (1)

a maximum modulus estimate has been proved, recently (see [30], [31], [33]):
Let Ω ⊂ R3 be a bounded or an unbounded domain with a compact boundary
∂Ω ∈ C1,α, 0 < α < 1. Let u ∈ C2(Ω)3 ∩ C0(Ω)3 and p ∈ C1(Ω) satisfy the
Stokes system (1), where in case of unbounded Ω we require |u(x)| = O(|x|−1),
|∇u(x)|+ |p(x)| = O(|x|−2) as |x| → ∞, in addition. Then

sup
x∈Ω

|u(x)| ≤ cΩ max
x∈∂Ω

|u(x)|

with a constant cΩ depending only on Ω. Moreover, if Ω is a ball, special state-
ments about the size of cΩ are possible (see Kratz [26, 27, 28]).
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It is the aim of the present paper to prove a maximum modulus estimate for
the Oseen equations. These equations represent a mathematical model describ-
ing the motion of a viscous incompressible fluid flow around an obstacle. They
are obtained by linearizing the steady Navier-Stokes equations at a nonzero con-
stant vector u = u∞, where u∞ represents the velocity at infinity, and have the
form

−ν∆u + u∞ · ∇u +∇p = 0 in Ω, ∇ · u = 0 in Ω. (2)

Here Ω ⊂ R3 denotes an exterior domain, i.e. a domain having a compact
complement R3 \ Ω. The velocity field u and the pressure function p are un-
known, while the kinematic viscosity ν > 0 and the nonzero constant velocity
u∞ are given data.

The system (2) is well-known in hydrodynamics. It has been introduced
in 1910 by C. W. Oseen [36] as a linearization at t = ∞ of the nonstation-
ary Navier-Stokes equations describing the motion of a viscous incompressible
fluid. In contrast to the simpler Stokes approximation (1) the Oseen system
(2) avoids certain paradoxes related to the flow behavior at infinity and shows,
in particular, a paraboloidal wake region behind the obstacle, extending with
axis directed to u∞. The Oseen equations have mostly been studied in exterior
domains with Dirichlet boundary conditions. Early fundamental works are due
to Finn [17, 18, 19] and Babenko [4] who considered these equations in two-
and three-dimensional exterior domains using a weighted L2-approach. Further
important contributions are due to Farwig [14, 15] introducing anisotropically
weighted spaces in an L2-framework, and Farwig, Sohr [16], Kračmar, Novotný,
Pokorný [25] using weighted Sobolev spaces. Galdi considered the system in
Wm,p

loc -spaces, and, moreover, investigated a generalized Oseen system recently
(see [20]). Enomoto, Shibata [12] and Kobayashi, Shibata [23] studied the cor-
responding Oseen semigroup. Concerning the scalar Oseen equation, important
results in weighted Sobolev spaces are given by Amrouche, Bouzit [1, 2] and
Amrouche, Razafison [3]. The stationary Oseen system has been studied using
a potential approach by Deuring, Kračmar [9, 10], the corresponding nonsta-
tionary Oseen system has been considered recently by Deuring [6, 7, 8].

Choosing ν = 1 and u∞ = (2λ, 0, 0), without loss of generality from (2) we
obtain the Oseen system in the form

−∆u + 2λ∂1u +∇p = 0 in Ω, ∇ · u = 0 in Ω (3)

in an exterior domain Ω. Here 0 6= λ ∈ R is fixed (for λ = 0 the system (3)
reduces to (1)). Without loss of generality, the Oseen equations are usually
studied for λ > 0: If (3) holds true for u and p, then for ũ(x) = u(−x) and
p̃(x) = −p(−x) we find −∆ũ− 2λ∂1ũ+∇p̃ = 0, ∇ · ũ = 0 in Ω̃ = {x;−x ∈ Ω}.
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We study the Dirichlet problem for the Oseen equations (3) in an exterior
domain Ω ⊂ R3 with a compact Ljapunov boundary ∂Ω (i.e. of class C1,α,
0 < α < 1) by the method of integral equations. We look for a solution in form
of a linear combination of an Oseen single layer potential and an Oseen double
layer potential both with the same density Ψ. This leads to a system of bound-
ary integral equations of the form SΨ = g in C0(∂Ω)3, where g ∈ C0(∂Ω)3 is
the prescribed Dirichlet boundary value. The operator S − (1/2)I is a compact
operator in C0(∂Ω)3, where I means the identity. To study the properties of
the operator S we can use Fredholm’s alternative theorem. For this reason we
investigate the Robin problem for the adjoint equations −∆u−2λ∂1u+∇p = 0,
∇ · u = 0 in the complementary bounded open set G = R3 \ Ω. We look for a
solution of the Robin problem in form of an Oseen single layer potential with
an unknown density Φ. This leads to the boundary integral equations’ system
S′Φ = f , where f is the Robin boundary value. We prove the unique solvability
of the Robin problem and the corresponding integral equations S′Φ = f . Since
S′ is the operator adjoint to S we conclude that the operator S is continuously
invertible, too. Thus we have proved that for each g ∈ C0(∂Ω)3 there exists
a solution of the Dirichlet problem for the Oseen equations (3) with boundary
value g such that u(x) → 0, p(x) → 0 as |x| → ∞.

To prove a maximum modulus estimate for all classical solutions u, p of the
Oseen equations we start with a Liouville-type theorem as follows: If u and p
are tempered distributions satisfying the Oseen equations (in a distributional
sense) in the whole space R3, then u and p are polynomials. In particular, if
u is bounded, then u and p are constant. Similar results have been proved
recently for the scalar Oseen equation (see [1], [3]). Using this result we prove
that if u, p are solving the Oseen equations in an exterior domain and if u is
bounded, then there are constants u∞, p∞ with u(x) → u∞, p(x) → p∞ as
|x| → ∞. This implies that for g ∈ C0(∂Ω)3, u∞ ∈ R3, p∞ ∈ R, there exists
a unique solution of the Dirichlet problem for the Oseen equations (3) with the
boundary condition u = g on ∂Ω such that u(x) → u∞, p(x) → p∞ as |x| → ∞.
Moreover, we also know the integral representation of this solution.

Now, using the integral representation just mentioned and the closed graph
theorem we can prove a maximum modulus estimate of the following form:
Let Ω ⊂ R3 be an exterior domain with ∂Ω of class C1,α, 0 < α < 1, λ ∈
R \ {0}. Then there exists a constant c = cΩ with the following property: If
u ∈ C2(Ω)3 ∩C0(Ω)3 and p ∈ C1(Ω) solve the Oseen equations (3) in Ω, and if

|u| ≤M on ∂Ω, lim sup
|x|→∞

|u(x)| ≤M,

then
|u(x)| ≤ cΩM in Ω.

3



2 Stokes potentials

Let x = [x1, x2, x3] ∈ R3 and |x| =
√
x2

1 + x2
2 + x2

3. Then for 0 6= x ∈ R3 and
j, k ∈ {1, 2, 3} we define the Stokes fundamental solution by

Ejk(x) =
1
8π

{
δjk

1
|x|

+
xjxk

|x|3
}
, (4)

Qk(x) =
xk

4π|x|3
. (5)

If f ∈ C0(R3)3 has a compact support, then the convolution integrals (Stokes
volume potentials)

E ∗ f(x) =
∫
R3

E(x− y)f(y) dy, Q ∗ f(x) =
∫
R3

Q(x− y)f(y) dy

are well defined, and it holds E ∗ f ∈ C0(R3)3, Q ∗ f ∈ C0(R3), ∂j(E ∗ f) =
(∂jE)∗ f ∈ C0(R3)3 (see e.g. [40], II.2.3) and −∆E ∗ f +∇Q∗ f = f , ∇·E ∗ f = 0
in Ω in the sense of distributions. If f ∈ Wm,q(R3)3 with 1 < q < ∞, m ≥ 0,
then E ∗ f ∈ Wm+2,q

loc (R3)3, Q ∗ f ∈ Wm+1,q
loc (R3) (see e.g. [20], Chapter IV,

Theorem 4.1).
Let Ω ⊂ R3 be an open set with compact boundary of class C1,α, 0 < α < 1,

and Ψ ∈ C0(∂Ω)3. Define the hydrodynamical single layer potential with density
Ψ by

(EΩΨ)(x) =
∫

∂Ω

E(x− y)Ψ(y) dσy

and the corresponding pressure by

(QΩΨ)(x) =
∫

∂Ω

Q(x− y)Ψ(y) dσy

whenever it makes sense. Then the pair (EΩΨ, QΩΨ) ∈ C∞(R3 \ ∂Ω)4 solves
the Stokes system in R3 \ ∂Ω. Moreover, EΩΨ ∈ C0(R3)3 and EΩΨ ∈ Cα(∂Ω)3

(see [35]).

For u, p we define the stress tensor

T (u, p) = 2∇̂u− pI, (6)

where I denotes the identity matrix and

∇̂u =
1
2
[∇u + (∇u)T ]
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is the deformation tensor, with (∇u)T as the matrix transposed to ∇u = (∂juk),
j, k = 1, 2, 3.

For y ∈ ∂Ω we define KΩ(·,y) = T (E(· − y), Q(· − y))nΩ(y) on R3 \ {y}.
Here and in the following, nΩ(y) is the outward unit normal of Ω at y ∈ ∂Ω.
We set

KΩ
k,j(x,y) =

3
4π

(yk − xk)(yj − xj)(y − x) · nΩ(y)
|y − y|5

for j, k = 1, 2, 3, and

Πj(x,y) =
1
2π

{
−3

(yj − xj)(y − x) · nΩ(y)
|x− y|5

+
nΩ

j (y)
|x− y|3

}

for j = 1, 2, 3.
For Ψ ∈ C0(∂Ω)3 we define the hydrodynamical double layer potential with

density Ψ by

(DΩΨ)(x) =
∫

∂Ω

KΩ(x,y)Ψ(y) dσy, x ∈ R3 \ ∂Ω

and the corresponding pressure by

(ΠΩΨ)(x) =
∫

∂Ω

ΠΩ(x− y)Ψ(y) dσy, x ∈ R3 \ ∂Ω.

Then the pair (DΩΨ,ΠΩΨ) ∈ C∞(R3\∂Ω)4 solves the Stokes system in R3\∂Ω.
For x ∈ ∂Ω we denote the so-called directed values of the above potentials by

(KΩΨ)(x) =
∫

∂Ω

KΩ(x,y)Ψ(y) dσy,

(K ′
ΩΨ)(x) =

∫
∂Ω

KΩ(y,x)Ψ(y) dσy.

Then we find
lim

x → z
x ∈ Ω

DΩΨ(x) =
1
2
Ψ(z) +KΩΨ(z) (7)

for z ∈ ∂Ω (see [35], [29], Chapter III, §2).
For x ∈ ∂Ω, β > 0 denote the non-tangential approach region of opening β

at the point x by

Γβ(x) := {y ∈ Ω; |x− y| < (1 + β) dist(y, ∂Ω)}.
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Suppose that β is large enough. If

c = lim
y → x
y ∈ Γβ(x)

u(y),

we call c the non-tangential limit of u at x ∈ ∂Ω. Note that x ∈ Γβ(x) for
every x ∈ ∂Ω. If now u is a function defined in Ω, we denote the non-tangential
maximal function of u on ∂Ω by

u∗(x) = sup{|u(y)|;y ∈ Γβ(x)}.

If Ψ ∈ C0(∂Ω)3, then we obtain

‖|EΩΨ|∗ + |∇EΩΨ|∗ + |QΩΨ|∗‖L2(∂Ω) ≤ C‖Ψ‖L2(∂Ω)3

with some constant C depending only on Ω (see [5], Lemma 6.1). If z ∈ ∂Ω,
then Ψ(z)/2 −K ′

ΩΨ(z) is the non-tangential limit of T (EΩΨ, QΩψ)nΩ(z) (see
[13] or [22]).

3 Oseen fundamental solution and potentials

In this section we recall some basic facts about the fundamental solution to the
Oseen problem. Denote by O(· ; 2λ) =

(
Oij(· ; 2λ)

)
, Q = (Qi) its fundamental

solution; it satisfies the identities

−∆Oij + 2λ∂1Oij + ∂jQi = δijδ, ∂jOij = 0 (8)

in the sense of distributions, where δij denotes the Kronecker delta, while δ
denotes the Dirac delta–distribution.

We can easily verify (see e.g. [20], Chapter VII, §VII.3) that for λ > 0 the
fundamental solution can be written as

Qi(x) =
1
4π

xi

|x|3
(9)

Oij(x; 2λ) = (δij∆− ∂i∂j)ϕO(x; 2λ) , (10)

where
ϕO(x; 2λ) =

−1
8πλ

ψ
(
λs(x)

)
(11)

with

ψ(z) =
∫ z

0

1− e−t

t
dt =

∞∑
k=1

(−1)k+1

k! k
zk (12)

and
s(x) = |x| − x1. (13)
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The formulas (11)–(13) yield useful rescaling property

|2λ|O(2λx; 1) = O(x; 2λ), λ ∈ R. (14)

Since O(x,−2λ) = O(−x, 2λ), an easy calculation yields that (O(x, 2λ), Q(x))
is the fundamental solution of the Oseen equation (3) for arbitrary λ 6= 0.

Proposition 3.1 ([20, VII.3]). If β is a multi-index, then we have

∂βO(x, 2λ)| = O(|x|−1−|β|/2) as |x| → ∞. (15)

If r > 0 and q > 4/3 then we have

|∇O(·, 2λ)| ∈ Lq(R3 \B(0; r)). (16)

Here B(z; r) = {y ∈ R3; |x − y| < r} denotes the open ball with center z and
radius r > 0.

The integral representation (12) implies

ψ′(t) = 1−e−t

t , ψ′′(t) = −1+e−t+te−t

t2 , ψ′′′(t) = 2−2e−t−2te−t−t2e−t

t3 .

The representation by the sum in (12) yields,

ψ(k)(t) =
(−1)k+1

k
+O(t) as t→ 0 , k = 1, 2, . . . . (17)

When differentiating (13), we obtain

∂s(x)
∂xi

=
xi

|x|
− δ1i . (18)

From here we get the estimates

∣∣∣∣∂s(x)
∂xk

∣∣∣∣ ≤


s(x)
|x| (k = 1)

√
2
√

s(x)
|x| (k 6= 1)

|Dαs(x)| ≤ c(α)
|x||α|−1

. (19)

From (11)–(13) and (19) it is seen that O(· ; ·) ∈ C∞
(
(R3 \ {0}) × R

)
and

for fixed x 6= 0, O(x; ·) is an analytic function.

Now we calculate the derivatives of ϕO(· ;λ) in order to establish the asymp-
totic behaviour of the difference R(x, 2λ) = O(· ; 2λ) − E(x) and of its first
derivatives near zero. The behavior of this difference gives us the possibility
to prove (24) analogous to (7), i.e. the jump relation property of the double
layer potential of the Oseen problem, see proofs of Proposition 3.3 and Propo-
sition 3.4. The asymptotic of this difference near zero implies also compactness
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of operator L2λ
Ω −KΩ and its dual operator, see proofs of Lemma 5.2 and The-

orem 5.3. We follow here the approach used in [24, §2], for another approach
based on the explicit expressions of the Oseen fundamental solution see [37,
§ II.1.2]. The both approaches are applicable for the asymptotic of the second
order derivatives.

−∂iϕO(x; 2λ) = 1
8πψ

′(λs(x)) ∂is(x)

−∂r∂iϕO(x; 2λ) = λ
8πψ

′′(λs(x)) ∂rs(x) ∂is(x) + 1
8πψ

′(λs(x)) ∂r∂is(x)

−∂k∂r∂iϕO(x; 2λ) = λ2

8πψ
′′′(λs(x)) ∂ks(x)∂rs(x)∂is(x)

+ λ
8πψ

′′(λs(x))
[
∂k∂rs(x) ∂is(x) + ∂k∂is(x) ∂rs(x)

+∂r∂is(x) ∂ks(x)
]
+ 1

8πψ
′(λs(x)) ∂k∂r∂is(x)

These formulas, together with (17), (19) and (10) yield

|R(x; 2λ)| = |O(x; 2λ)− E(x)| = λO(1) as λ|x| → 0,

|∇R(x; 2λ)| = |∇O(x; 2λ)−∇E(x)| = λ2O( 1
λ|x| ) as λ|x| → 0,

(20)

where (E,Q) is the Stokes fundamental solution. In particular, for λ ∈ (0;λ0),
R > 0, k = 0, 1 and |λx| ≤ R

∣∣∇kO(x; 2λ)
∣∣ ≤ c(R;λ0, k)

|x|k+1
. (21)

Since E(x) = |2λ|E(2x) we obtain this relation also for λ < 0. Formulas
(20), (21) and Proposition 3.1 give us in particular that O(· ; 2λ), R(· ; 2λ), and
∇R(· ; 2λ) are weakly singular kernels of integral operators in R3 and in R2.

Remark that

O11(x, 1) =
1

4π|x|

{
e−(|x|−x1)/2+

x1(1− e−(|x|−x1)/2)
|x|2

− (|x| − x1)e−(|x|−x1)/2

2|x|

}
,

O22(x, 1) =
e−(|x|−x1)/2

4π|x|
− (x2

1 + x2
3)(1− e(|x|−x1)/2)

4π(|x| − x1)|x|3

− x2
2e
−(|x|−x1)/2

8π(|x| − x1)|x|2
+

[1− e−(|x|−x1)/2]x2
2

4π(|x| − x1)2|x|2
,

O33(x, 1) =
e−(|x|−x1)/2

4π|x|
− (x2

1 + x2
2)(1− e−(|x|−x1)/2)

4π(|x| − x1)|x|3

− x2
3e
−(|x|−x1)/2

8π(|x| − x1)|x|2
+

[1− e−(|x|−x1)/2]x2
3

4π(|x| − x1)2|x|2
,

O12(x, 1) = O21(x, 1) =
x2

4π|x|2

[
e−(|x|−x1)/2

2
− 1− e−(|x|−x1)/2

|x|

]
,
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O13(x, 1) = O31(x, 1) =
x3

4π|x|2

[
e−(|x|−x1)/2

2
− 1− e−(|x|−x1)/2

|x|

]
,

O23(x, 1) = O32(x, 1) =
x2x3

4π|x|3

{
1− e−(|x|−x1)/2

(|x| − x1)
− |x|e−(|x|−x1)/2

2(|x| − x1)

+
|x|[1− e−(|x|−x1)/2]

(|x| − x1)2

}
.

(See [20]), Chapter VII, §VII.3).

Let Ω ⊂ R3 be an open set with compact boundary ∂Ω ∈ C1,α, 0 < α < 1,
and Ψ ∈ C0(∂Ω)3. Define the Oseen single layer potential with density Ψ by

(O2λ
Ω Ψ)(x) =

∫
∂Ω

O(x− y, 2λ)Ψ(y) dσy,

whenever it makes sense. Then the pair (O2λ
Ω Ψ, QΩΨ) ∈ C∞(R3 \ ∂Ω)4 solves

the Oseen system (3) in R3\∂Ω. Let R2λ
Ω Ψ = O2λ

Ω Ψ−EΩΨ denote the difference
of the Oseen and the Stokes single layer potentials. If β is a multi-index then
we have

|∂βO2λ
Ω Ψ(x)| = O(|x|−1−|β|/2) as |x| → ∞.

Moreover, if r > 0, ∂Ω ⊂ B(0; r) and q > 4/3, then |∇O2λ
Ω Ψ| ∈ Lq(R3\B(0; r)).

For y ∈ ∂Ω define LΩ(·,y; 2λ) = T (O(·−y; 2λ), Q(·−y))nΩ(y) in R3 \{y}.
If G = R3 \ Ω, then LΩ(x,y; 2λ) = −LG(x,y; 2λ).

For Ψ ∈ C0(∂Ω)3 and x ∈ ∂Ω denote

(L2λ
Ω Ψ)(x) =

∫
∂Ω

LΩ(x,y; 2λ)Ψ(y) dσy, (22)

(L̃2λ
Ω Ψ)(x) =

∫
∂Ω

LΩ(y,x; 2λ)Ψ(y) dσy. (23)

Although the following statement is needed for the case m = 3 only, we give
the proof for general m.

Lemma 3.2. Let Ω ⊂ Rm be an open set with bounded Lipschitz boundary.
Let k(x,y) be defined for [x,y] ∈ Rm×∂Ω;x 6= y and |k(x,y)| ≤ C|x−y|1−m+β

with positive constants C, β. Suppose that k(x, ·) is measurable and k(·,y) is
continuous. Let f ∈ L∞(∂Ω). Then

kf(x) =
∫

∂Ω

k(x,y)f(y) dσy

9



is a continuous function in Rm.

Proof. The function kf is continuous in Rm \ ∂Ω. Fix z ∈ ∂Ω, ε > 0 and
choose M > 0 such that |f | ≤M . Since ∂Ω is Lipschitz there exists a constant c
such that σ(B(x; r)∩ ∂Ω) ≤ crm−1 for each x ∈ Rm and r > 0. Here σ denotes
the surfice measure.

Now fix x ∈ Rm, r > 0, and set B(j) = ∂Ω ∩ B(x; 2−j+1r) \ B(x; 2−jr) for
j ∈ N . Then ∫

∂Ω∩B(x;r)

|k(x,y)f(y| dσy ≤ CM
∞∑

j=1

∫
B(j)

|x− y|β+1−m dσy

≤ CM
∞∑

j=1

(2−jr)β+1−mc(2−j+1r)m−1 =
CcM2m−1−β

1− 2−β
rβ .

Fix r > 0 such that (2r)βCcM2m−1−β/(1− 2−β) < ε/2. If |x− z| < r then∫
∂Ω∩B(z;r)

|k(z,y)f(y)| dσy +
∫

∂Ω∩B(z;r)

|k(x,y)f(y)| dσy ≤ ε.

Since ∫
∂Ω\B(z;r)

k(x,y)f(y dσy →
∫

∂Ω\B(z;r)

k(z,y)f(y dσy

as x → z, we infer that kf is continuous.

Proposition 3.3. Let Ω ⊂ R3 be an open set with bounded boundary of class
C1,α, 0 < α < 1. If Ψ ∈ C0(∂Ω)3, then O2λ

Ω Ψ ∈ C0(R3)3 and |∇O2λ
Ω Ψ|∗ ∈

L2(∂Ω). If z ∈ ∂Ω, then Ψ(z)/2 − L̃−2λ
Ω Ψ(z) is the non-tangential limit of

T (OΩΨ(x), QΩΨ(x))nΩ(z) at z.

Proof. It holds |R(x, 2λ)| = O(1), |∇R(x, 2λ)| = O(|x|−1) as x → 0. Thus
R2λ

Ω Ψ, ∇R2λ
Ω Ψ are continuous in R3 by Lemma 3.2. The properties of EΩΨ

imply O2λ
Ω Ψ ∈ C0(R3)3 and |∇O2λ

Ω Ψ|∗ ∈ L2(∂Ω). If z ∈ ∂Ω then

lim
x → z
x ∈ Γβ

T (OΩΨ(x), QΩΨ(x))nΩ(z) = lim
x → z
x ∈ Γβ

T (EΩΨ(x), QΩΨ(x)nΩ(z)

+ lim
x → z
x ∈ Γβ

T (RΩΨ(x), 0)nΩ(z) =
Ψ(z)

2
−K ′

ΩΨ(z)

+
∫

∂Ω

2∇̂zR(z− y, 2λ)nΩ(z)Ψ(y) dσy =
Ψ(z)

2
− L̃−2λ

Ω Ψ(z).

10



Proposition 3.4. Let Ω ⊂ R3 be an open set with compact boundary of class
C1,α, 0 < α < 1. For Ψ ∈ C0(∂Ω)3, x ∈ R3 \ ∂Ω define

W 2λ
Ω Ψ(x) =

∫
∂Ω

LΩ(x,y; 2λ)Ψ(y) dσy,

w2λ
Ω Ψ(x) =

∫
∂Ω

[2nΩ(y) · ∇yQ(x− y) + 2λQ1(x− y)nΩ(y)]Ψ(y) dσy.

Then (W 2λ
Ω Ψ, w2λ

Ω Ψ) ∈ C∞(R3 \ ∂Ω)4 solves the Oseen system (3) in R3 \ ∂Ω.
If z ∈ ∂Ω, then

lim
x → z
x ∈ Ω

W 2λ
Ω Ψ(x) =

1
2
Ψ(z) + L2λ

Ω Ψ(z). (24)

If β is a multi-index then

|∂βW 2λ
Ω Ψ(x)| = O(|x|−3/2−|β|/2) as |x| → ∞.

Proof. An easy calculation yields that (W 2λ
Ω Ψ, w2λ

Ω Ψ) ∈ C∞(R3 \ ∂Ω)4

solves the Oseen system (3) in R3 \∂Ω. Since |∇R(x, 2λ)| = O(|x|−1) as x → 0,
we infer that |KΩ(x,y)− LΩ(x,y; 2λ)| ≤ M |x− y|−1. Hence the relation (24)
is a consequence of (7) and Lemma 3.2.

Remark 3.5. If u ∈ C1(Ω)3, p ∈ C0(Ω) solve the homogeneous Oseen
system (3), then

u = O2λ
Ω [T (u, p)nΩ] +W 2λ

Ω u− 2λO2λ
Ω (n1u)

p = QΩ[T (u, p)nΩ] + w2λ
Ω u− 2λQΩ(n1u)

in Ω (compare [20], Chapter VII, Lemma 6.2 or [37], Chapter II, Lemma 2.5).
The fact that W 2λ

Ω Ψ, w2λ
Ω Ψ solve the Oseen system (3) in R3 \ ∂Ω can be

deduced from these relations.

4 Unique solvability of the Oseen problem

Concerning the Stokes system we have the following result (see [33], Theo-
rem 5.5) :

Lemma 4.1. Let Ω ⊂ R3 be a bounded domain with boundary of class C1,α

with 0 < α < 1, g ∈ C0(∂Ω)3, u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω), u, p solve the
Stokes system (1), u = g on ∂Ω. Then

sup
x∈Ω

|u(x)| ≤ K sup
x∈∂Ω

|g(x)|,

11



where the constant K depends only on Ω.

We say that u ∈ C2(Ω)3, p ∈ C1(Ω) are an L2-solution of the Dirichlet
problem for the Stokes system in Ω with the boundary condition g if (1) holds
true, u∗ ∈ L2(∂Ω) and g(x) is the non-tangential limit of u at almost all x ∈ ∂Ω.

Lemma 4.2. Let Ω ⊂ R3 be a bounded domain with boundary of class C1,α

with 0 < α < 1, g ∈ L2(∂Ω)3. Then there exist an L2-solution u ∈ C2(Ω)3,
p ∈ C1(Ω) of the Dirichlet problem of the Stokes system in Ω with the boundary
condition g if and only if ∫

∂Ω

g · nΩ dσ = 0.

The function u is unique and p is unique up to an additive constant. If g ∈
C0(∂Ω)3, then u ∈ C0(Ω)3. If g ∈W 1,2(∂Ω)3, then (∇u)∗, p∗ ∈ L2(∂Ω).

For the proof of this Lemma see [33], Proposition 3.3 and [33], Theorem 5.3.

Lemma 4.3. Let Ω ⊂ R3 be a bounded domain with boundary of class C1,α,
0 < α < 1, and let v ∈ C0(Ω). If v∗ ∈ Ls(∂Ω), 1 < s <∞, then v ∈ Ls(Ω).

For the proof of this Lemma see [32], Lemma 2 or [34], Lemma 4.1.

Lemma 4.4. Let Ω ⊂ R3 be a bounded open set with boundary of class C1,α

with 0 < α < 1, g ∈ C0(∂Ω)3, u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω), u, p solve
the Stokes system (1), u = g on ∂Ω. If g ∈ H1/2(∂Ω)3 then u ∈ W 1,2(Ω)3,
p ∈ L2(Ω).

Proof. Lemma 4.2 gives that g is orthogonal to the unit normal nΩ. Choose
a sequence gk ∈ [W 1,2(∂Ω)]3 ∩ C0(∂Ω)3 orthogonal to the normal nΩ such that
gk → g in H1/2(∂Ω)3 and in C0(∂Ω)3. Then there exist uk ∈ C2(Ω)3∩C0(Ω)3∩
W 1,2(Ω)3, pk ∈ C1(Ω) ∩ L2(Ω) such that uk, pk solve (1) and uk = gk on ∂Ω
(see Lemma 4.2 and Lemma 4.3). According to Lemma 4.1 we have uk → u. By
virtue of [20], Chapter IV, Theorem 1.1 there exist w ∈W 1,2(Ω)3 and q ∈ L2(Ω)
such that w, q solve (1) and g is the trace of w. Moreover, uk → w in W 1,2(Ω)3.
Thus u = w ∈ W 1,2(Ω)3. Since ∇p −∇q = ∆u −∆w = 0, the function p − q
is constant.

Now we are ready to state the uniqueness result for the Oseen equations:

Theorem 4.5. Let Ω ⊂ R3 be an exterior domain with boundary of class C1,α,
0 < α < 1. Let λ ∈ R \ {0} and u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω) solve the
Oseen equations (3) in Ω. Fix r > 0 such that ∂Ω ⊂ B(0; r). If u = 0 on ∂Ω,
then u ∈ [W 1,2(Ω ∩ B(0; r))]3, p ∈ L2(B(0; r)). If, moreover, |u(x)| → 0 as
|x| → ∞, |∇u| ∈ L2(Ω), then u ≡ 0, p is constant.

Proof. Without loss of generality we can suppose λ > 0. Set u = 0 on
R3 \ Ω. Then u ∈ C0(R3)3. Moreover, u ∈ C∞(Ω)3, p ∈ C∞(Ω) due to [20],
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Chapter VII, Theorem 1.1. Choose a cut-off function ϕ ∈ C∞(R3) such that
ϕ = 1 in B(0; 2r), ϕ = 0 in R3 \ B(0; 3r). Set v = E ∗ (uϕ), q = Q ∗ (uϕ).
Then v ∈ C1(R3)3 ∩ [W 2,2(B(0; 3r))]3, q ∈ C0(R3) ∩ W 1,2(B(0; 3r)). Since
ϕu ∈ C∞(R3 \ ∂Ω)3, we have v ∈ C∞(R3 \ ∂Ω)3, q ∈ C∞(R3 \ ∂Ω). Moreover,
−∆v + ∇q = ϕu in R3 \ ∂Ω. Define w = u + 2λ∂1v, ρ = p + 2λ∂1q. Then
w ∈ C0(R3)3 ∩ C∞(Ω)3, ρ ∈ C∞(Ω) and

−∆w +∇ρ = −∆u +∇p+ 2λ∂1(ϕu) = −2λ∂1u+ 2λ∂1(ϕu).

Therefore −∆w +∇ρ = 0 in Ω∩B(0; 2r). Similarly, ∇ ·w = 0 in Ω∩B(0; 2r).
Moreover, w ∈ H1/2(∂(Ω ∩ B(0; 2r)))3. Thus w ∈ [W 1,2(Ω ∩ B(0; 2r))]3, ρ ∈
L2(Ω ∩ B(0; 2r)) by Lemma 4.4. Since ∂1v ∈ [W 1,2

loc (R3)]3, ∂1q ∈ L2
loc(R

3), we
conclude that u ∈ W 1,2(Ω ∩ B(0; 2r))3, p ∈ L2(Ω ∩ B(0; 2r)). If |u(x)| → 0 as
|x| → ∞, |∇u| ∈ L2(Ω), then u ≡ 0 (see [20], Chapter VII, Theorem 2.1). Since
∇p = ∆u− 2λ∂1u = 0, we infer that p is constant.

5 Solution of the Oseen problem

Lemma 5.1. Let G ⊂ R3 be a bounded open set with boundary of class C1,α,
0 < α < 1. Let c, λ ∈ R, 0 < c. If u ∈ C2(G)3∩C0(G)3, p ∈ C1(G), |∇u|∗+p∗ ∈
L2(∂G), u, p solve the homogeneous Oseen system (3), T (u, p)nG−λn1u+cu =
0 on ∂G in the sense of the non-tangential limit, then u ≡ 0, p ≡ 0 in G.

Proof. Without loss of generality we can suppose that G is connected. Ac-
cording to [42], Theorem 1.12, there exists a sequence of open sets G(j) with
C∞-boundary with the following properties:

1. G(j) ⊂ G.

2. There exist homeomorphisms Λj : ∂G → ∂G(j) and β > 0 such that
Λj(y) ∈ Γβ(y) for every j and every y ∈ ∂G, and

sup{|y − Λj(y)|;y ∈ ∂G} → 0, as j →∞.

3. There are positive functions σj on ∂G bounded away from zero and infinity
uniformly in j such that for any measurable set E ⊂ ∂G we have∫

E

σj dσ =
∫

Λj(E)

dσ,

and such that σj → 1 point-wise a.e..

4. The normal vectors nj(Λj(y)) to G(j) converge point-wise almost every-
where to nG(y).
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Using Green’s formula and Lebesque’s lemma we obtain

0 =
∫

∂G

u · [T (u, p)nG−λn1u+cu] dσ = lim
j→∞

∫
∂G(j)

u · [T (u, p)nG +λn1u+cu] dσ

= lim
j→∞

{ ∫
G(j)

[u ·∆u + |∇̂u|2 − u∇p− 2λu · ∂1u] dy +
∫

∂G(j)

|u|2c dσ
}

= lim
j→∞

[ ∫
G(j)

|∇̂u|2 dy +
∫

∂G(j)

|u|2c dσ
]

=
∫
G

|∇̂u|2 dy +
∫

∂G

|u|2c dσ.

Therefore ∇̂u ≡ 0 in G, u = 0 on ∂Ω. Since ∇̂u ≡ 0 there exists a skew
symmetric matrix A and a vector b such that u = Ax + b (see [32], Lemma 6).
Hence u1, u2, u3 are harmonic functions vanishing on ∂G. The maximum
principle gives u ≡ 0. Therefore ∇p = ∆u − 2λ∂1u ≡ 0. Hence, there is a
constant a such that p ≡ a. But 0 = T (u, p)nG − λn1u + cu = −anG on ∂G
yields p ≡ a = 0.

Lemma 5.2. Let G ⊂ R3 be a bounded open set with boundary of class C1,α

with 0 < α < 1, λ ∈ R \ {0}, c ∈ R, c > 0. Suppose, moreover, that R3 \ G is
connected. Denote by I the identity operator. Then the operator 1

2I − L̃−2λ
G +

(c− λnG
1 )O2λ

G is continuously invertible on C0(∂G)3. If f ∈ C0(∂G)3, then there
exist unique u ∈ C2(G)3∩C0(G)3, p ∈ C1(G) such that |∇u|∗+p∗ ∈ L2(∂G), u,
p solve the homogeneous Oseen system (3), and T (u, p)nG − λn1u + cu = f on
∂G in the sense of the non-tangential limit. This solution is given by u = O2λ

G Ψ,
p = QGΨ, where Ψ = [ 12I − L̃−2λ

G + (c− λnG
1 )O2λ

G ]−1f .

Proof. Proposition 3.3 gives that u = O2λ
G Ψ, p = QGΨ with Ψ ∈ C0(∂G)3

is a solution of the Robin problem for the Oseen system with the boundary
condition f if and only if

1
2
Ψ− L̃−2λ

G Ψ + (c− λnG
1 )O2λ

G Ψ = f .

If f ≡ 0, then the uniqueness of a solution of the Robin problem (see Lemma 5.1)
implies O2λ

G Ψ = 0, QGΨ = 0 in G. Since O2λ
G Ψ is continuous in R3, the

functions O2λ
G Ψ, QGΨ solve the Oseen problem with zero boundary condition

in Ω = R3 \G. From Theorem 4.5 we find that O2λ
G Ψ ≡ 0 and QGΨ is constant

in Ω. The behavior at infinity implies QGΨ = 0 in Ω. The jump of the normal
stresses of the single layer potential (Proposition 3.3) leads to

Ψ =
[
Ψ
2
− L̃−2λ

G Ψ
]

+
[
Ψ
2
− L̃−2λ

Ω Ψ
]

= 0.

Hence the operator 1
2I − L̃−2λ

G + (c − λnG
1 )O2λ

G is one to one. The integral
operators K ′

G, O2λ
G , L̃−2λ

G −K ′
G have weakly singular kernels, hence compact on
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C0(∂G)3 (compare [41] or [43]). By the Riesz-Schauder theory we obtain that
the operator 1

2I − L̃−2λ
G + (c − λnG

1 )O2λ
G is continuously invertible in C0(∂G)3.

So, if Ψ = [ 12I − L̃−2λ
G + (c − λnG

1 )O2λ
G ]−1f , then u = O2λ

G Ψ, p = QGΨ solve
the Robin problem for the Oseen system with the boundary value f .

Theorem 5.3. Let Ω ⊂ R3 be an exterior domain with compact boundary of
class C1,α with 0 < α < 1, λ ∈ R \ {0}, c ∈ R, c > 0. For Ψ ∈ C0(∂Ω)3

set SΨ = 1
2Ψ + L2λ

Ω Ψ + O2λ
Ω (c + λnΩ

1 )Ψ. Then S is a continuously invertible
operator on C0(∂Ω)3. For a fixed f ∈ C0(∂Ω)3 put Ψ = S−1f . Then

u = W 2λ
Ω Ψ +O2λ

Ω (c+ λnΩ
1 )Ψ, (25)

p = w2λ
Ω Ψ +QΩ(c+ λnΩ

1 )Ψ (26)

are the unique solution of the problem u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω),

−∆u + 2λ∂1u +∇p = 0, ∇ · u = 0 in Ω, u = f on ∂Ω,

|u(x)|+ |p(x)|] = o(1) as |x| → ∞,

|∇u| ∈ L2(R3 \B(0; r)) for some r > 0.

Proof. Let G = R3 \ Ω. The operator S̃ = 1
2I − L̃2λ

G + (c − λnG
1 )O−2λ

G =
1
2I+L̃

2λ
Ω +(c+λnΩ

1 )O−2λ
Ω is continuously invertible on C0(∂Ω)3 (see Lemma 5.2).

So, S̃′, the adjoint operator of S̃, is also continuously invertible (on the space
of vector measures on ∂Ω). If Ψ,Φ ∈ C0(∂Ω)3, then Fubini’s theorem gives∫

∂Ω

Ψ(S̃Φ) dσ =
∫

∂Ω

(SΨ)Φ dσ.

If we denote by σ the surface measure on ∂Ω then S̃′(Ψσ) = (SΨ)σ. Since S̃′

is injective, the operator S is also one to one. The integral operators KΩ, O2λ
Ω ,

L2λ
Ω − KΩ have weakly singular kernels. Hence they are compact on C0(∂Ω)3

(see [41] or [43]). The Riesz-Schauder theory implies that the operator S is
continuously invertible in C0(∂Ω)3.

If Ψ = S−1f , then u, p given by (25), (26) are a solution of the Oseen
problem with boundary value f (see Proposition 3.4 and Proposition 3.3). The
uniqueness follows from Theorem 4.5.

6 Theorems of Liouville type

Proposition 6.1. Denote by S ′(R3) the space of complex tempered distribu-
tion on R3. Suppose that u1, u2, u3, p ∈ S ′(R3) satisfy (3) in R3 in the sense of
distributions. Then u1, u2, u3, p are polynomials.

Proof. Suppose first that p ∈ S ′(R3). Denote by Fh the Fourier transfor-
mation of h. Then

0 = F(∇ · u)(x) = ix · Fu(x),
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0 = F [−∆u + 2λ∂1u−∇p](x) = [|x|2 + 2λix1]Fu(x)− ixFp(x).

Thus
i|x|2Fp(x) = [|x|2 + 2λix1]x · Fu(x) = 0.

Therefore Fp(x) = 0 in R3 \ {0}. Hence [|x|2 + 2λix1]Fu(x) = ixFp(x) = 0 in
R3 \ {0}.

Fix j ∈ {1, 2, 3}. Denote by v the real part of Fuj and by w the imagi-
nary part of Fuj . Then |x|2v(x) − 2λx1w(x) = 0, |x|2w + 2λx1v = 0. Hence
v(x) = 2λx1w(x)/|x|2 = −(2λx1)2v(x)/|x|4 and w(x) = −2λx1v(x)/|x|2 =
−(2λx1)2w(x)/|x|4 in {x ∈ R3; |x| 6= 0}. Since [|x|4 + (2λx1)2]v(x) = 0,
[|x|4 + (2λx1)2]w(x) = 0 in {x ∈ R3; |x| 6= 0}, we infer that Fu is supported in
{0}. According to [39], Chapter II, §10, there exist k ∈ N0 and constants aα

such that
Fuj =

∑
|α|≤k

aα∂
αδ0.

Set
Pj(x) =

∑
|α|≤k

aα(−ix)α.

Then
FPj =

∑
|α|≤k

aαF [(−ix)α1] =
∑
|α|≤k

aα∂
αδ0 = Fuj .

Since the Fourier transform is an isomorphism on S ′(R3), we infer that uj = Pj .
Let p be general. Then ∂kuj ∈ S ′(R3), ∂kp = ∆uk−2λ∂1uk ∈ S ′(R3) by [11],

Theorem 14.21. Moreover, ∂ku, ∂kp satisfy (3) in R3. Thus we have proved that
∂kuj are polynomials. Hence uj are polynomials. Since ∂kp = ∆uj − 2λ∂1uj

are polynomials, we infer that p is a polynomial, too.

Corollary 6.2. Let u1, u2, u3, p ∈ S ′(R3) be distributions in R3. Suppose,
moreover, that there exists a compact set F ⊂ R3 such that u = (u1, u2, u3) ∈
L∞(R3 \F )3. If u, p satisfy in R3 the homogeneous Oseen equations (3) in the
sense of distributions, then u, p are constant.

Proof. Consider ϕ ∈ C∞(R3) with compact support such that ϕ ≡ 1 in a
neighborhood of F . The distribution ϕuj has a compact support, hence it is
a tempered distribution. The function (1 − ϕ)uj ∈ L∞(R3) is also a tempered
distribution. Proposition 6.1 implies that u1, u2, u3, p are polynomials. The
behavior at infinity yields that uj is constant (j =1,2,3). Thus ∇p = ∆u −
2λ∂1u = 0, and it follows immediately that p is constant.

7 Maximum modulus estimate

Proposition 7.1. Let F ⊂ R3 be a compact set. Let u, p solve the Oseen
equations (3) in R3 \ F , and let u be bounded. Then there exist constants u∞,
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p∞ such that u(x) → u∞, p(x) → p∞ as |x| → ∞. If β is a multi-index, then
|∂β [u(x) − u∞]| = O(|x|−1−|β|/2), |∂β [p(x) − p∞]| = O(|x|−2−|β|) as |x| → ∞.
If F ⊂ B(0; r) then |∇u| ∈ L2(R3 \B(0; r)).

Proof. Fix r > 0 such that F ⊂ B(0; r) and let Ω = R3 \B(0; r). According
to Theorem 5.3 there exists Ψ ∈ C0(∂Ω)3 such that v = W 2λ

Ω Ψ+O2λ
Ω (c+λnΩ

1 )Ψ,
q = w2λ

Ω Ψ +QΩ(c + λnΩ
1 )Ψ are a classical solution of the Oseen problem in Ω

with the boundary value u. We have v(x) → 0, q(x) → 0 as |x| → 0, and
|∂βv(x)| = O(|x|−1−|β|/2), |∂βq(x)| = O(|x|−2−|β|) as |x| → ∞. Moreover,
|∇v| ∈ L2(R3 \B(0; r)).

Set ũ = u − v, p̃ = p − q in R3 \ B(0; r) and ũ = 0, p̃ = 0 in B(0; r).
Then ũ ∈ C0(R3)3 ∩ L∞(R3)3. Moreover, ũ, p̃ solve the Oseen equations (3)
in R3 \ ∂B(0; r). We have ũ ∈ W 1,2(B(0; 2r) \ B(0; r))3, p̃ ∈ L2(B(0; 2r)) by
Theorem 4.5, which implies ũ ∈W 1,2(B(0; 2r))3. Therefore∇·ũ ∈ L2(B(0; 2r)).
Since ∇ · ũ = 0 in R3 \ ∂B(0; r), we infer ∇ · ũ = 0 in R3.

Define f = −∆ũ + 2λ∂1ũ +∇p̃. Since ũ, p̃ satisfy (3) in R3 \ ∂B(0; r), the
functions f1, f2, f3 are distributions supported on ∂B(0; r). Fix ϕ ∈ C∞(R3)
supported in B(0; 2r) such that ϕ = 1 in a neighborhood of ∂B(0; r). If x ∈
R3 \B(0; 2r), then for each multi-index β we have

|∂βO2λ ∗ f(x)| = |〈f , ϕ∂β
xO

2λ(x− ·)〉| =
∫
R3

{∆y[ϕ(y)∂β
xO

2λ(x− y)]}ũ(y) dy

+
∫
R3

{
2λ

∂

∂y1
[ϕ(y)∂β

xO
2λ(x− y)]

}
ũ(y) dy

+
∫
R3

{∇y · [ϕ(y)∂β
xO

2λ(x− y)]}p̃(y) dy = O(|x|−1−|β|/2), |x| → ∞,

|∂βQ ∗ f(x)| = |〈f(y), ϕ(y)∂β
xQ(x− y)〉| =

∫
R3

{∆y[ϕ(y)∂β
xQ(x− y)]}ũ(y) dy

+
∫
R3

{
2λ

∂

∂y1
[ϕ(y)∂β

xQ(x− y)]
}
ũ(y) dy

+
∫
R3

{∇y · [ϕ(y)∂β
xQ(x− y)]}p̃(y) dy = O(|x|−2−|β|), |x| → ∞.

Moreover, |∇O2λ ∗ f | ∈ L2(R3 \B(0; r)).
Set ṽ = ũ+O2λ ∗ f , q̃ = p̃+Q ∗ f . Since (O2λ, Q) is the fundamental tensor

of the Oseen equations (3), ṽ, q̃ solve the Oseen system (3) in R3. Thus we
have proved O2λ ∗ f(x) = O(|x|−1) as |x| → ∞. Since ṽ is bounded, ṽ, q̃ are
constant by Corollary 6.2.
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Corollary 7.2. Let Ω ⊂ R3 be an exterior domain with boundary of class
C1,α with 0 < α < 1, λ ∈ R \ {0}. If f ∈ C0(∂Ω)3, u∞ ∈ R3, p∞ ∈ R, then
there exists a unique solution of the problem u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω)
satisfying

−∆u + 2λ∂1u +∇p = 0, ∇ · u = 0 in Ω, u = f on ∂Ω,

p(x) → p∞, u(x) → u∞ as |x| → ∞.

Proof. The Corollary is an easy consequence of Theorem 5.3 and Proposi-
tion 7.1.

Theorem 7.3. Let Ω ⊂ R3 be an exterior domain with boundary of class C1,α

with 0 < α < 1, and λ ∈ R \ {0}. Then there exists a constant C such that the
following statement holds true: If u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω) solve the
Oseen equations (3) in Ω, and if |u| ≤M on ∂Ω,

lim sup
|x|→∞

|u(x)| ≤M, (27)

then |u| ≤ CM in Ω.

Proof. For Ψ ∈ C0(∂Ω)3 set SΨ = 1
2Ψ + L2λ

Ω Ψ + O2λ
Ω (c + λnΩ

1 )Ψ on ∂Ω,
τΨ = W 2λ

Ω Ψ + O2λ
Ω (c + λnΩ

1 )Ψ in Ω, τΨ = SΨ on ∂Ω. Then τ is a linear
mapping from C0(∂Ω)3 to C0(Ω)3 ∩L∞(Ω)3 equipped with the supremum norm
(see Proposition 3.3 and Proposition 3.4). If Ψk → Ψ in C0(∂Ω)3, τΨk → g
in C0(Ω)3 ∩ L∞(Ω)3, then g(x) = lim τΨk(x) = τΨ(x) for each x ∈ Ω. Thus
g = τΨ and τ is a closed operator. By the Closed Graph Theorem ([21],
Theorem II.1.9) there is a constant C1 such that

sup
x∈Ω

|τΨ(x)| ≤ C1 sup
y∈∂Ω

|Ψ(y)|.

Now let u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω) solve the Oseen equations (3)
in Ω satisfying |u| ≤ M on ∂Ω and (27). According to Proposition 7.1 there
exist u∞ ∈ R3, p∞ ∈ R such that u(x) → u∞, p(x) → p∞ as |x| → ∞ and
|∇(u − u∞)(x)| = O(|x|−2) as |x| → ∞. Clearly, |u∞| ≤ M . According to
Theorem 5.3 and Corollary 7.2 the operator S is continuously invertible and
u− u∞ = τS−1(u− u∞) in Ω. If x ∈ Ω, then

|u(x)| ≤ |u∞|+ |τS−1(u− u∞)(x)| ≤M + C1‖S−1‖2M.

This proves the theorem.
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[32] Medková, D.: Integral representation of a solution of the Neumann problem
for the Stokes system. Numer. Algorithms 54 (2010), No. 4, 459–484
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