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1. INTRODUCTION

In [14] M. G.Platone Garroni has extended the classical generalized maximum
principle (see, for instance, [15]), when the coefficients of the operator are discon-
tinuous, to subsolutions of elliptic linear second order equations with mixed type
boundary unilateral conditions, that is, on a portion of the boundary 992 of Q, the
values of the solution are assigned, while on the other part a unilateral condition
on the solution and its conormal derivative is given. In the present paper we will
establish a similar result (see Theorem 5.1) for degenerate parabolic equations, us-
ing a technique different from that of [14]. As a corollary, we obtain a comparison
theorem (see Theorem 6.1). Our procedure, rather similar to that followed in [12]
and in [13] allows us to obtain more general results. Other sufficient conditions for
the boundedness of weak subsolutions of Cauchy-Dirichlet problem, in the non de-
generate case, may be obtained from [6] and [17], while in the degenerate case some
results are announced in [3] and in [4].
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2. FUNCTIONAL SPACES

Let R™ be the Euclidean space (m > 2) with a generic point x = (21, z2, ..., Zm),
Q a bounded open subset of R™ whose boundary satisfies locally a Lipschitz condition,
T a real positive number. Let us denote by Q(m1,72) (0 < 1 < 7 < T) the
cylinder Qx]7y, 2] and let @ = Q(0,T); T is the parabolic boundary of @, that is
L= (Qx {t=0}) U (09x]0,T]).

Let 995 be a closed subset of 92, T's = 9Qs x [0, T], and let us set 90 = 0N\ Ny,
Fl = 891 X [O,T]

The symbol meas, will henceforth denote the m-dimensional measure.

If u(x) is a measurable function defined in ©Q, we will denote by |u], (1 < p < o)
the usual norm in the space LP(2).

Hypothesis 2.1. Let v(x) be a positive function defined in Q2 such that
g(m—1)

v(r) € Lo (), v i(z) € LYQ), g>m.

The symbol H L(v, Q) stands for the completion of C* (Q) with respect to the norm

1
2\ 2

)
2)

C*(9) denotes the following linear subspace of C*>(Q):

| ou
_ 2
oo = (10 + 30|

C*(Q)={ueC>®(): u=0on o}

H*(v, ) denotes the closure of C*(2) in H'(v, ).

If u(z,t) is a measurable real function in @, we will denote by |ul,, (1 < p,
q < +00) the usual norm in the space LP>%(Q), with the obvious modification if p or
q are +00.

Hypothesis 2.2. Let ¢(¢) be a positive monotone nondecreasing function de-
fined in |0, T'[ such that
Y(t) € L*0,T).

The symbol H':0 (v, Q(11,7)) (0 < 71 < 72 < T) stands for the completion of
C'(@Q(r1, 72)) with respect to the norm

m Ou 12 3
lll0.rm) = ( / <|u|2+ | 2| )am) ;
( ) Q(11,72) ; axl

lwll0 = [[ulli0,0.1)-
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~- HYO (v, Q(71,72)) is a Hilbert space with respect to the norm [|u|[1,0,(, r,)-

~ C*(Q(11,72)) (0 < 71 < 7» < T) denotes the following linear subspace of
C™> (Q(Tl,Tg)) N CO(Q(Tl,TQ))Z

- C* (Q(Tl,Tg)) = {u e C> (Q(Tl,Tg)) ﬂCO(Q(Tl,Tg)): u =0 on 03 X [7'1,72]}.

~ H° (v, Q(11,72)) (0 < 71 < 72 < T) is the closure of C*(Q(71,72)) in
HY (v, Q(11,m2)).

Finally, we will denote by V%(v4, Q) the space of functions u(x,t) belonging to

ﬁl’o(l/w, Q), continuous in [0, 7] with values in L?(9).!

Definition 1.  Given a real number h, if u € ﬁl’o(y’(/},Q(Tl,Tg)) 0<n <
7o < T), we will say that u(z,t) < h (= h) on 9Q; X [11,72] (i =1, 2) if there exists
a sequence {u,} of functions from C!(Q(1,72)) such that

Un(z,t) < h (= h) on 09Q; x [11, 2]

and

. tim [Jun —ull, o, 1) =

n—oo

If k is such that u(x,t) < k on 9Q; x [11, 2], we will say that u(z,t) is bounded from
above on 0%Q; X [11, T2].

Definition 2.  Ifu(z, t), w(z, t) belong to H° (v, Q(11,72)) (0K 71 <72 <T)
and w(x,t) > 0 on Q; x [11,72] (i =1, 2), let us denote?

sup” % = inf{h € R: u(z,t) — hw(x,t) <0 on 0Q; x [7'1,7'2]}.

We will consider the following generalized problem:

L0 [ ou " Ou ou .

(2.1) m
Ou + + Zd cos >0 onTI
— 4+ au iU COSNT; = 11 ,
ov P !
where
ou - ou
% — ijzz:l Q45 COS n.’Eja—xi,

and cosnz; is the j-th directional cosine of =, normal to I'y and external to Q.

! For more details concerning hypotheses (2.1), (2.2) see also [5], [7], [8] and [9].
2'We suppose that inf ) = +oco.
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By an Lr,-subsolution (Lr,-supersolution) of problem (2.1) we mean any function
u € V1O0(v1), Q) satisfying the following conditions:

i - N dudp N, Ou
(2.2) a(u,w)—/Q<Z Y Oy O +;biaxi

)=

m

—|—Zd (9<,0 )dxdt—k/augpdadtéo (=0)
It

for any ¢ € C*(Q) such that ¢(x,t) > 0 a.e. in Q, ¢(z,0) = p(z,T) = 0 for

a.e. x € L
Of particular interest are Lr,-subsolutions (Lpl—supersolutions) such that
) dxdt

23) /Q (i @i dx; 83:1

2,7=1

—|—/ aupdodt <0 (= 0)
In

for any ¢ € C*(Q), p(z,t) 2 0 on I'1, ¢(z,0) = ¢(z,T) = 0 for a.e. z € Q.
In fact, problem (2.3) is equivalent, at least “formally,” to the problem

mo9 [ ou moou ou .
_Za%(z:awa +du>+<i§bia—xi+cu)+a—0 in Q

=1

ov

Let us consider the problem

ou
——|—au+zdiucosnxi<0 (=0) onT};.
i=1

m ou Oy om0y Oy
/Q<Z awaxjaxz-i-i; i% igo—f—cucp—f—l;dluaxi U dz dt

ij=1

+/augpdadt:/ fgpdxdt—i—/ g1 dodt
Fl Q 1_‘1

for any ¢ € C*(Q), ¢(z,T) =01in

u(w,t) ga(x,t) € HX (1), Q)
0in €.

,0)
The problem (2.4) is formally equivalent to the problem

mo 9 ou
_i:1ax (Za”a —|—du)+<i_1

i u—!—cu)—!—@:f in @
8:&

ot
0
gu + au + Z d;ucosnz; = g1 on Iy
ov i=1
U= gs on I'y
u(z,0) =0 in Q.
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3. HYPOTHESES ON COEFFICIENTS

Let us denote by A the set of pairs (a* «) with 2 < o, a < +00, such that there
exists a positive constant § for which

(3.1) ]

ana < B(llullziee + [lull10)

for any u € L*»*(Q) ﬂffl’o(l/w, Q). The set A obviously contains® the pair (2, +00).
Let us observe that, under the hypotheses on 2, we have?

(3.2) | 2m-1) 50, <Allully for any u € H (v, Q).
m— ?’

Consequently, we obtain:
v :

(33) ([ 60y g0, @) <2 (lullace + lul10)
0 m—2+ I 1

for any u € L*»*(Q) N ﬁLO(Vw, Q).
The constant in (3.2) and (3.3) depends on 2.

Hypothesis 3.1. The functions a;;(x,t), bi(z,t), c(z,t), di(z,t) (1 <i,5 < m)
are defined and measurable in Q;

Qi b; * * d; *
— € L>(Q), € LPP(Q), ce L"(Q), €L (Q),
vy ) VY Vv
where
1 1 1 1 1 1 1 2
~tx=3 to-=3 St—==1
p* oy 2 p a2 ¢ Al
1 2 1 1 1 1 1 1
-4 — = 17 — + — = -, — _ = —
q Q2 ™ oy 2 r  az 2

with (af, 1), (b, as) and (af, as) belonging to A.

Moreover, if p = +00 [q¢ = +00, r = +00] and p* < 400 [¢* < +00, r* < +00],
then there exists a function n1 (o) [n2(0), n3(0)], defined for o > 0, non decreasing,

3If ﬁ € LY(0,T) (0 < t < +00), the set A contains the pair (mg+%9_299, e(ﬁl)) for
any 0 € [0, H_Ll [, see, for instance, [13].

4 See, for instance, [11] Theorem 3.9.
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vanishing for o approaching zero and satisfying for almost all ¢ in the interval |0, T
the inequalities

=

i(/}s(%i(x,tﬂ)p* dx) < (o) Vi (1),

i=1 v(z)

K/E(|c(x,t)| e t)” dxf <m(o),
S (St )" <mioram

for all measurable subsets E of 2 such that meas, F < o.
The function «a(z,t) is defined and measurable on I'; and

% €L <O,T;Lll‘_%1r(8ﬂl)>.

Hypothesis 3.2. The functions f(z,t), g(z,t) are defined and measurable
respectively in () and in I';, moreover

fer*Q), 5—% e (0.7 L™ (6%)).

The function g2(x,t) is defined and measurable in @ and

~ 0
g2 € HY(r,Q), 2 €L’(Q). gae,t) <Oon T,

Finally, the functions f*(z,t), g5 (z,t) are defined and measurable respectively in
Q@ and in I'y, moreover

* 2(m—1)
fe L2(Q), % e (0,71 (99)).

Hypothesis 3.3. The following inequality holds for a.e. (x,t) in @ and for all

real numbers x1, X2, .- -, Xm:
m m
D ag(a,txixs = v(@)(t) Y xi-
i,j=1 i=1
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4. PRELIMINARY LEMMAS

Lemma 4.1. Let us assume that hypotheses (2.1), (2.2), (3.1) hold and let u(z, t)
be an Lr,-subsolution of the problem (2.1) bounded from above on Q3 x [0, T]. Then
if 0 <7 <7<T and k > sup* u, we get

/ (iawaav 88;1 Zb v—i—cuv—i—Zdua )dxdt
Q(71,7) Zi

1,j=1
/ (z,7 dx—f—/ / auvdo dt < / 2(2,7) dz,
o

where v = u — min(u, k) in Q; moreover, v € H-°(11), Q).

Proof. Let 7y, 7 be such that 0 < 7, < 7 < T; setting 71 = #, o ="T—"7,
we denote by C2°(Q) the set of nonnegative functions from C*(Q) equal to zero for
t > 11. Let ¢ be a function from C°(Q). We extend u, ¢ and the coeflicients of
(2.1) to Q x (—00,+00), assuming that these functions are equal at zero in those
points where they are not defined.

We define in  x |—o00, +00[ and for any integer o:

axl
0 v
Co(z,1) —/ c(x, Nu(z, A) dA
T2
t+2 m
4 e Ou(z,A)
A; oz, 1) 7'2/t Zaw (x,A) oz, dA,

5 Let us observe that, for ¢ a.e. in |0, T[, v(z,t) € H*(v,Q).
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From (2.2), in virtue of ¢ = ®,(x,t), via an exchange of the order of integration
with respect to ¢t and \,% we get

4.1 A ,—+B D; -
(4.1) /Q<Z 25y T 9¢+CQ¢+; oy T e dudt
—|—/ appdodt <0
n

for all ¢ belonging to the functional class C2°(Q).
Let {u,} be a sequence of functions of C*(Q) such that u, < sup*u on I'y and
satisfying (*). For all pairs of positive integers v and n, we define

o 17
Upn(z,t) = E/t Un (2, A) dA;

the function U, ,(x,t) belongs to C* (Q(0,71)).
Let us now introduce the function?

Vo Upn —min(U, . k) in Q(71,7),
"o in Q\ Q(71,7).

Let {q)“}u oy be a sequence of nonnegative equibounded functions from C7°(Q)

converging to V., in H"° (v, Q(71,7));* moreover, let also the functions in the

sequence {%} be equibounded.

peN
From (4.1), in virtue of ¢ = ®,(x,t), as p diverges to +00, we obtain the following
relation:
(4.2)
SN OV N V,, U,
/Q o (2 Aio=5 2%+ BoVon + CoVon + ZDLQ Pt + 5 Ven | dedt

T
=1
+// a,Vyndodt < 0.
7:1 391

Setting now in Q:

v U, —min(U,, k) in Q(71,7),
“ 1o in Q\ Q(71,7);

6 See [10], p. 141.

7 Since k > sup” u there exists a neighbourhood of 9Qg such that Vpn(z,t) = 0 for any
t €]0,T[ (see Lemma 4.2 of [3]).

8 See remark 4.1 of [3].
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the sequence {V, ,,} converges to V, in H10 (v, Q(F1,7)) N L2*°(Q(F1, 7)) and sat-
isfies the relation

lm ||(Von = V)| 2ens = 0.
n—o0o ( an ‘9) m£—2+%r,2,F1

On the other hand, the functions of the sequence {V,, } belong to H:° (v, Q(71, 7))
and so also V, belongs to this space.
From (3.1)—(3.6) we deduce, as n goes to +oo, the following inequality:®

" v, - v, oU
(4.3) /Q<Z Al,ga—x? + B,V, + C,V, + ZDi,ga—; + a—;vg,n> dz dt
i=1 v i=1 v
1
—|——/ |Ug(ac,7')—k}2dx
2 Q,(1,k)

1 T
_5/ }Ug(x,O)—k|2dx+/ / a,V,dodt < 0.
2,(0,k) 71 J O

Let us remark that the sequence {V,} converges in HY (v, Q) N L**(Q) to the
function equal to v in Q(71,7) and equal to zero in Q \ Q(71, 7).

From (4.3), the conclusion follows via another passage to the limit.

For example, we prove that

lim// angdadt:// ouvdo dt.
oS5 Jou 71 J 00

We get
/ / ongQ—auvdadt‘
7 Joo,
¥(7) Ha
< hd
Y ot st sor (lull2,00 + [lull1,0)

1m0,
9

1 \z
x (Ve =l rm + Ve = vlhon) + (55)

g amoh Tt 2
X (Ivll2,00,¢717) + 0l .0,71,m) (/ (Joo = 0u| ™ ao) df)

1

for any o € N.19

®For a fixed t €]0, T, we set Qo(t, k) = {x € Q: Up(x,t) > k}.

19 Let us remark that, by the properties of Steklov averages, it follows that a, converges
2(m—1)

to au in L2 (%1,T;L m% (am)).
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Next, it is easy to verify that the restriction of the function v to Q(71,7) belongs
to f[l’o(m/), Q) for any 0 < 71 < 7 < T and, therefore, since v by definition belongs to
H10 (1/1/), Q(’7~'1,T)), it belongs to ﬁi’o(l/w, Q), too.

Finally, if 71 = 0, as 7 > 0 is assumed, it suffices to consider 7, = 75 for n € N
recalling that the function v(z,t) is continuous in [0, T'] with values in L?(12). O

Lemma 4.2. Let us assume the hypotheses (2.1), (2.2), (3.1), (3.3) hold and let
u(z,t) be an Lr,-subsolution of the problem (2.1) satisfying the conditions

esssupu(z,0) <0, sup”u<0.
Q

Then, we have:

esssupu(zx,t) < 0.
Q

Proof. For any integer n, we consider the functions
. . 1
v =u—min(u,0), v, =u— mm(u, —).
n

From Lemma 4.1 we deduce that v, belongs to H i’o(uw, Q@) and that, provided
T €]0,T[, we have

Ui ov,, Ovy, ov
(4.4) /Q(T)<Zaij8—xj8x Zb vn—i-cuvn—i—Zduaxl)d dt

ij=1 i=1

1
+—/vfl(x,7')dx+// auvy, dodt <0
2 Ja 0 Joo,

On the other hand, we obtain

lim v,(x,t) =v(z,t), |vp(z,t)] < |u(z,t)] in Q

n—oo

and
lim ov,  Ov vy,
n—0o0 8531 8:31 ’ 8:51

ou

AN
8xi

Furthermore, also v belongs to H-%(vi, Q) and so, as n goes to +0o in (4.4),
we get

i v Ov ov ov
(4.5) /Q(T)<Z i1 5 - om ;b 8_U+CU +Zdv )dxdt

7,j=1

/ dex—i—// av?dodt 0.
o0

From (4.5) we deduce that |v|2,c = 0 and the conclusion easily follows.

a.e. in Q.
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The proof is similar to that given in Lemma 4.1 of [13]; let us remark that since
v e HYO(rh, Q) N L%*(Q) we can apply the relations (3.1) and (3.3) instead of the
hypothesis A) of [13]. O

5. A GENERALIZED MAXIMUM PRINCIPLE
We will prove

Theorem 5.1. Let us assume the hypotheses (2.1), (2.2), (3.1), (3.3) hold and
let w(x,t) be an Lr,-supersolution of the problem (2.1) satistfying the conditions

w(z,t) >0 a.e. inQ,
w(z,0) >0 a.e inQ, w(x,t)>0 onls.

Then

u(z,0) . u)

t
(5.1) ess sup u(@,?) w(x,O)’Sup -

Q w(xvt)

for any Ly, -subsolution u(x,t) of the problem (2.1).

< max (0, €ess sup
Q

Proof. The conclusion is obvious if the second term of (5.1) is equal to +oc.
Let us suppose, now, that this term is finite and let us denote by h some real number
greater than its value. Consequently, the function u(z, t)—hw(z, t) is an Lp, -subsolu-
tion of the problem (2.1) such that ess supg, [u(x,0)—hw(z,0)] < 0, sup*(u—hw) < 0.

From Lemma 4.2 we can see that u(x,t) — hw(z,t) < 0 a.e. in Q. So, we obtain
u(x,t)
w(z,t) X

esssup, < h and the conclusion easily follows. O

6. A COMPARISON THEOREM
Let us define the following closed convex sets:
K* = {z € ﬁl’o(yw,Q), z € C([O T];LQ(Q)), z(xz,0) =0, z > g2 on Fg},
o* = {<p e HY (v, Q), ¢ € L*(Q), ¢(x,T) =0, ¢ > gs on Fg}

ot
and let us suppose that there exists a solution z € K* of the variational inequality

(6.1) /Q< f_: ai; (;92« oy axz

5,j=

e
+Zd ('33:1 o )dxdt—i—/rl 2(¢ — z)do dt

/f —z dacdzH—/F 1(p—2)dodt

) +ez(p —2)
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for any ¢ € ®* The problem (6.1) is formally equivalent to the problem

L0 (& 0z L 0z 0z . .
—Za—xl< aija—x‘j—f'diZ)"f'(Zbia—xi‘i‘CZ)—f—E:f an
i=1 =1 i=1
%—i—az—i—zm:dzcosnm =g onT
81/ s 7 i — 1 1
z > %+§:d-zcosnx->0 (z = g2) %—Fid-zcosnx- =0 onTl
=z g2, 81/ . i i = Y, 92 81/ . i i - 2
z2(x,0) =0 in Q.

We will prove

Theorem 6.1. Let us assume the hypotheses (2.1), (2.2), (3.1), (3.2), (3.3) hold
and let w(x,t) be an Ly, -supersolution of the problem (2.1) satisfying the conditions

w(z,t) >0 a.e. in Q,
w(z,0) >0 ae inQ, w(zt)>=0onls.

Let z(x,t) be a solution of the problem (6.1) with f* > f in Q, g5 > g1 on T';.
Then, we have the inequality

u(z,t) < z(z,t) a.e inQ

for any solution u(z,t) of the problem (2.4).

Proof. Let us extend z(z,t) to R™*! assuming that it vanishes at points not

belonging to @; for a fixed 7 € ]0, T'[ and for any pairs of integers g, n we introduce
the functions

0 ift<7'—%,
0,(t) = n(t—i—%—T) iff—%gth—%,
1 if t>7—1,

t+55 !
oo, 1) = 0B (1) / (e, )00 (y) d.

1
t—L
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‘We have

aznm@ / t+2179
et o0, (t) 2(z,9)0n(y) dy
t 1

20

# 00,0 (=t 5 )0 (14 50) = 2t = o)t 50 )

Choosing ¢ =z, ,+ 3, 0 < 8 € C*(Q), B(x,t) =0 a.e. in Q, we get from (6.1)

Ui 0z 8(zng—|—ﬁ
6.2 ; N S
(62) /Q(Z - Z (ong + 6 2)
+cz(zn,o+ 0 — %) —|—Zd4 W)dxdt

-,

>/f*(zn,g+ﬂ—z)dxdt+/ 91 (zn,o+ 0 — 2)dodt;
Q Iy

azngd dt—/z—dxdt—l—/az(zn,g—f—ﬂ—z)dadt
In

now, taking into account the relation
/Qz(x,t)gen(t)Qn (t + 21 ) (ac t+ ) dz dt
/ dac/+C>o (x,t) 00, (t)0y ( %)z(w,t—k%@)dt
/ de /+C>o 2t — —)gen (t - %)%(t)z(x,t) dt

= /Qz(x,t)gﬁn(t)Qn (t - %)z(x,t — 2ig) dz dt,

we obtain from (6.2)

L (30 oo 2ot S o -

i,5=1
m

+cz(zne+06—2)+ Zdizw) dz dt

"
i=1 Oz

t+21f9 86
—/ (zg@il(t)/ z(x,y)&n(y)dy) dxdt—/ z——dzdt
Q t— L Q at

20

+/az(zn7g+ﬂ—z)dadt

Iy

>/f*(zn,g+ﬁ—z)dxdt+/ 91 (2n,p + 0 — 2)do dt,
Q 31

o1



and therefore, letting o tend to 400, we find that

" 0z 0 z —z 0z
(6.3) /Q<Zai]8xj (6, ()a;—ﬂ )+Z D (02(t)z+ B — 2)

ij=1 i=1

+cz(0%(t) 2+ B — 2) +f:d‘ 8(0%(15);;—&—@) dzdt

/ 220,,(1)0. () dx dt—/z—dxdt—l—/ozz(@i(t)z—i—ﬁ—z)dodt
Iy

>/f* ai(t)z+ﬁ—z)dxdt+/ gi (02(t)z + B — z) do dt.
Q I

Let us observe that 6,,(¢)0,,(t) > 0 a.e. in ]0,T[ and 0, (t)0),(t) > 2if 71— 2 <t <
7 — =. Then, from (6.3) we have

/(ia”a@z a(0 ()Z+ﬁ
Q zj

+ cz(92( )z + 0 — z) idiza(ai(ﬂz +6- Z)) dz dt

"
i=1 Oz;

—/ z%dxdt—i—/az(@i(t)z—i—ﬁ—z)dodt
o Ot n

(t)z+pB—2)

> / 220, ()0, (t) dxdt+/ 02tz +B—z)dzdt
Q Q

+/ gi(02(t)z+ B —z)dodt
It

> E/ ! dt/zQ(x,t)dx—i—/ 02tz + B—z)dzdt
2 T—% Q Q

+ / g1 (02(t)z + B — 2) do dt.
n

Finally, as n — oo and 7 — 0, we get
m

0z 0p 0 a8 B
(6.4) /(Z%azvax ;b L 5+Zdz o _Z_>d at

2,7=1 v

/Fazﬂdadt /f ﬂdxdt—f—/ 18dodt

for any 0 < 8 € C*(Q), B(x,T) =0 a.e. in Q.
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By virtue of (6.4) and (2.4) we conclude that

a(u—z,w)</Q(f—f*)ﬁdxdt+/F (91— 97)Bdo dt <0

for any 0 < 8 € C*(Q), B(x,T) =0 a.e. in Q.

Applying the above maximum principle to the Lp,-subsolution (u — z) and to the

Lr,-supersolution w, we obtain

[1]
2]

3]

[10]

[11]
[12]
[13]
[14]

[15]

u(x,t z(x,t uU—z
ess sup M < max(O,sup* ) =0.
Q w(z,t) w
This completes the proof. O
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