
169

* Corresponding author

Folia Zool. – 56(2): 169–176 (2007)

Measurement error in a burrow index to monitor relative population 
size in the common vole
 
Lenka LISICKÁ1, Jan LOSÍK1, Jan ZEJDA2, Marta HEROLDOVÁ2, Jiřina NESVADBOVÁ2 and Emil 
TKADLEC1,3* 

1 Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University, třída Svobody 26,  
 771 46 Olomouc, Czech Republic, *e-mail: tkadlec@prfnw.upol.cz
2 Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno,  
 Czech Republic
3 Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., 675 02 Studenec 122,  
 Czech Republic 

Received 10 January 2007; Accepted 2 July 2007

A b s t r a c t . Various population indices are widely used to monitor relative population size 
of many pest and game species to aid their management. However, information on the level 
of uncertainty associated with their estimates is rarely available. Here we explore sampling 
and systematic error associated with the index of re-opened burrow entrances which is used 
extensively in central Europe for surveying common vole populations. We found that relative 
sampling errors were enormous for low-density populations, attaining almost 400%. However, 
in high-density populations and for large sample sizes, the relative error dropped below 10% 
and the estimate is quite reliable. The dispersion of burrow entrances became more clumped 
at low population densities enhancing further the sampling variation. We demonstrated that the 
index is related to population size in a non-linear fashion, overestimating the population change 
at high densities. Consequently, population dynamics of the common vole described by the 
untransformed burrow index appear more variable than they are in reality.
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Introduction

Typically, most population dynamics analyses in current ecology rely upon population indices 
collected for various agricultural and forest pests and many game animals at broad spatial and 
temporal scales to aid their management. Indices represent simpler and cheaper alternatives 
to more expensive and laborious capture-recapture methods. However, they also produce 
weaker inferences because they are not based on true estimation of detection probabilities as 
other formal estimation methods. In fact, detectability is assumed to be constant over time 
and space (Y o c c o z  et al. 2001). Therefore, developing a sampling design that optimizes 
the trade off between the cost and inferential strength for informed management decisions is 
highly desirable. 

Voles are typically among small mammals for which several indices to monitor their 
relative population densities have been proposed (e.g., H a n s s o n  1979, G i r a u d o u x 
et al. 1995, H u b b s  et al. 2000, Q u é r é  et al. 2000). In the management of the common 
vole (Microtus arvalis Pallas, 1778), the most abundant mammal in central Europe regularly 
damaging crops in high-density years (T r u s z k o w s k i  1982, B a b i n s k a - W e r k a 
1979, J a c o b  2003, H e r o l d o v á  et al. 2004), counts of re-opened burrow entrances per 
unit area have been used extensively from the ‘60s of the 20th century (P o l y a k o v  1961, 
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L i r o  1974, B u k e r  1984, R o m a n k o w - Ż m u d o w s k a  & G r a l a  1994). As a 
consequence, long-term datasets are now available for modern population analyses aimed at 
describing negative feedback structure which serves a basis for drawing ecological inferences 
on a pattern of population dynamics (T k a d l e c  & S t e n s e t h  2001, T k a d l e c  et 
al. 2006). However, there is only marginal information on an error with which the index 
measures a change in vole population numbers (L i r o  1974). If the error is important, then 
the ecological inferences about the pattern of population dynamics may be flawed. 

As with any other measurement, the inferential strength of burrow indices depends 
on the accuracy with which the population size is measured, combining both precision 
(repeatability) and systematic error (bias) (W i l l i a m s  et al. 2002). The precision is high 
when the sampling variance due to the inexactness of the process of counting and spatial 
variance of counts is low (M ö n k k ö n e n  & A s p i  1998). Because the variance of a 
sample mean is inversely proportional to the sample size, it declines asymptotically to 0 
as the total sample size of the area sampled increases. However, increasing the area size 
increases the cost of the monitoring programme as well, urging a design that is optimized 
using either perspective. The sampling variance can be affected by the dispersion pattern of 
burrow entrances in space (e.g., M ö n k k ö n e n  & A s p i  1998). Clumped distributions 
are always associated with the sampling variance much higher than the mean. These 
distributions are often approximated by the negative binomial characterised by the presence 
of one frequency mode or by the Neyman type A distribution characterised by several 
frequency modes (A n s c o m b e  1950). Identifying the proper distribution might help in 
modelling the spatial processes during vole colonisation events.

Systematic error is a bias in measurements which leads to the measured values being 
systematically too high or too low. Contrary to the random variation, which arises from 
random fluctuations in measurements, the bias is consistent and repeatable. Constant 
systematic error is very difficult to deal with, because its effect is only observable if it can 
be removed. Such an error cannot be removed by repeating measurements or averaging large 
numbers of results. A common means to remove the systematic error is a calibration, i.e., a 
relationship between the true density and index values. If the bias is ignored it may lead to 
inaccurate or wrong inferences.

Here, we focus on both components of measurement error incorporated in the index 
– sampling variance and systematic bias. The sampling variance is measured as a sampling 
error (standard error of the mean). We describe how it varies with (1) sample size (the 
number of quadrates sampled) and (2) relative population density. We also analyse the 
dispersion pattern relative to the population density and attempt to discriminate between the 
unimodal negative binomial and Neyman type A distribution with several frequency modes. 
We measure the systematic error by identifying a functional relationship between the Jolly-
Seber estimate of population size, as representing the true density, and the index. 

Study Area and Methods

We collected data on a burrow index in two natural populations of the common vole in 
the Czech Republic, one in the outskirts of Olomouc city (49° 34’ N, 17° 13’ E) in central 
Moravia between 2002 and 2005, another in Drnholec (48°53’ N, 13 16°27’ E), southern 
Moravia between 1998 and 2003. Both populations were alfalfa fields situated in lowland 
about 200 m above sea level and were regularly monitored using intensive capture-recapture 
sampling programme, with trapping sessions occurring at intervals of 2–4 wks. In Olomouc, 
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the study plot of 40 × 70 m (0.28 ha) was divided to a grid of 150 squares (hereafter squares) 
4 × 4 m (16 m2) each. The plot in Drnholec was 35 × 75 m (0.2625 ha) in size and consisted of 
105 squares 5 × 5 m each. The soil in Drholec was a mollisol type (chernozem) with a much 
finer texture than that in Olomouc (fluvisol). Population densities over the period of study 
ranged from zero to 11 000 burrow entrances per hectare. 

We measured the relative population density using a modified index of re-opened burrow 
entrances during intervals between the trapping sessions. As proposed originally for use in 
alfalfa fields, all burrow entrances are closed on 4 to 5 quadrats (hereafter quadrats) 10×10 
m chosen at random and the counts of re-opened burrow entrances are taken next day 
(EPPO 1975, Z a p l e t a l  et al. 2000). We modified the method by recording the counts 
for at least 90 squares of the plot and then subjecting these counts to resampling in computer 
simulations. For instance, to obtain the number of burrow entrances per one quadrat (100 m2) 
in the Olomouc population, we sampled randomly counts for 6 squares (6 × 16 = 96 m2) with 
replacement. The sum was multiplied by 1.0417 to remove the discrepancy between 96 and 
100 m2. An estimate of index was obtained by repeating this procedure 5 times to receive 
counts for 5 quadrats and then computing the mean per quadrat. Sizes of small squares on 
both plots are large enough to harbour more than one colony of voles (see Mackin-Rogalska 
et al. 1986). This modified method assumes that the distribution of burrow entrances in a 
plot represents adequately the distribution in a population at large. Furthermore, resampling 
of data from the same plot may introduce a problem of pseudoreplication which can lead to 
the underestimation of variance parameters.

To measure the sampling variance in the index, we performed 10 000 simulations and 
then estimated the sampling error as a standard deviation of the mean (= standard error) 
according to the formula:

sampling error = √
––––––

         var (x–i)

where x–i is the estimate of index for each of the 10 000 runs (i = 1, 2, …, 10 000). In addition, 
we estimated a relative sampling error as a coefficient of variation of the sampling error 
(W h i t e  et al. 1982):

relative sampling error = (sampling error)/mean

where the mean is estimated from the sum of all counts per plot. This measure is useful if we 
want to express the amount of uncertainty to be proportional to the relative population size. 
All simulations were done using R (R Development Core Team 2006).

The relationship between the sampling error and sample size (the number of quadrats) 
was modelled as a linear regression taking logs of both variables. The dependence of 
sampling error on relative population size was described with the quadratic log-log model:

log (sampling error) = b0 + b1log (mean) + b2log2(mean),

the untransformed version of which corresponds to the equation:

sampling error = a0 mean b1 + b2 log (mean).

The pattern of spatial distribution of burrow entrances in the study plot was analysed 
using the exponent k of the negative binomial distribution for small square counts. We used 
maximum likelihood estimation as implemented in package MASS of R and linear regression 
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model to describe its relationship to index. We fitted a nonlinear regression through the 
origin to describe the relationship between the Jolly-Seber estimate (JS) of population size 
(program Jolly) and the index. The parameters of equation

JS = b1indexb2

were estimated by non-linear least squares. We used AICc to decide whether nonlinear 
or linear version (without exponent) of the regression is to be applied (B u r n h a m  & 
A n d e r s o n  1998).

Results

Increasing a sample size from 2 to 8 quadrats (10 × 10 m) reduced both relative and absolute 
sampling error of estimates substantially (Fig. 1a,b). At low population densities just above 
zero, relative sampling error for only two quadrats was enormous, reaching almost 400%. 
It remained high even for 8 quadrats (200%). In contrast, at the maximum density of about 
11 000 re-opened burrow entrances, the relative sampling error for 2 and 8 quadrats dropped 
to 13 and 6%, respectively. The decrease appears to be less pronounced for sample size higher 
than 5 quadrats. Sampling error at low population densities (<10 entrances per hectare) varies 
from 29 to 14 for 2 and 8 quadrats, respectively. However, it is from about 1400 to 700 
entrances per hectare at maximum densities. Relative sampling error drops dramatically for 
increasing population densities up to about 1000 burrow entrances (Fig. 1c). For sample sizes 
of 5 and more quadrats and densities above 1200 burrow entrances, it falls below 25%. At the 
maximum of about 11 000 entrances, relative sampling errors become small even for a sample 
size of 2 quadrats, attaining 10%. Increasing sample size to 8 quadrats, relative sampling 
error declines to 135 and 5% for the minimum and maximum population size, respectively. 
The corresponding absolute sampling errors for 2 quadrats are 22 and 1700 entrances for the 
minimum and maximum population size, respectively. For 8 quadrats, the sampling errors are 
about 10 and 800 entrances, respectively.

Sampling variation is known to depend on the degree of aggregation in space. The most 
clumped dispersions were observed at low densities when the parameter k of the negative 
binomial distribution attained values below 0.1 in both of the populations studied (Fig. 2a,b). 

Fig. 1. Relative sampling error (a) and sampling error (b) as regressed on a sample size (the number of 10 × 10 m 
quadrats) for data from Olomouc and Drnholec. The relationship was modelled by linear regression using log-
transformed values of both variables. The arrows indicate the direction along which the relative population 
densities increase. (c) The dependence of relative sampling error and sampling error on the mean index for various 
sample size (n = 1–8) for both locations. The lines for a sample size of 5 are in bold to indicate a design employed 
in practice. All curves are corrected for a bias introduced by log-transformation (S p r u g e l  1983).
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The two populations seem to differ in dependencies of clumping on a relative population size 
(slopeOlomouc = 0.00027, slopeDrnholec = 0.013), with the Drnholec population being less clumped 
at high density than the population in Olomouc (interaction population×population size: 
F1,31 = 7.39, p = 0.011). Typically, the frequency distributions of counts per square exhibited 
several periodic modes at frequencies around the mean number of burrow entrances and their 
multiples. This suggests that the Neyman type A distribution may be more appropriate for 
description of a vole colonisation process than the binomial one (Fig. 2c).

The relationship between index and Jolly-Seber estimate of population size was 
obviously nonlinear in either location, indicating the presence of a systematic error 
(Olomouc: the difference in AICc = 9.3; Drnholec: the difference in AICc = 13; Fig. 3). 
The index increases more rapidly than the Jolly-Seber estimates, overestimating population 
change especially at high densities. 

Discussion

We explored sampling and systematic error associated with the index of re-opened burrow 
entrances which has been used extensively in central Europe to monitor common vole 
populations. We found that relative sampling error is enormous for low-density populations, 
attaining almost 400%. This is partly because the dispersion of burrow entrances becomes 
more clumped at low population densities. However, for high-density populations and 

Fig. 2. The relationship between the parameter k of the negative binomial distribution and the index for locations 
Olomouc (a) and Drnholec (b) and an example of frequency distribution of burrow entrances counts per small 
square (c) from location Olomouc in July 2005. 

Fig. 3. The non-linear relationship between population size (Jolly-Seber estimate) and index for Olomouc (a) and 
Drnholec (b). The dashed curve depicts prediction from a model with averaged parameters over both locations. For 
the sake of a direct comparison, we fitted a model with the same structure to published data from Łomna (c) near 
Warsaw, Poland (L i r o  1974). Equations for the three populations were as follows: Olomouc JS = 17.277index 0.526,  
Drnholec JS = 16.395index 0.459, Łomna JS = 24.618index 0.423. 
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large sample sizes, it drops below 10% and the estimate is therefore quite reliable. We 
further demonstrated that the index is related to population size in a non-linear fashion, 
systematically overestimating the size of population change, especially at high density. These 
findings suggest that sample size of 5 quadrats 10×10 m is a reasonable compromise between 
the required level of uncertainty and the cost but that further optimization is still possible by 
lowering the number of quadrats sampled at high density without any substantial reduction in 
the precision of estimates. The observation that index systematically overestimates variation 
in population numbers indicates that the inferences that have been drawn on the pattern of 
population dynamics from time series analyses based on raw indices may be affected. 

A key influence on power of any index to reveal a trend in monitoring programmes for 
agricultural pests is its variability (G i b b s  et al. 1998). Even with robust indices, ecologists 
developing monitoring designs have to confront complex sampling issues, including how 
many quadrats to sample and how often to survey the population within any given year. The 
index of re-opened burrow entrances has been used to survey the common vole populations 
for many decades. Currently, it presents not only the main tool for management decisions 
but also the primary source of long-term data for analyzing its population dynamics (e.g., 
T k a d l e c  & S t e n s e t h  2001, T k a d l e c  et al. 2006). Considering a sample size in 
terms of costs and benefits, we conclude that 5 quadrats is a reasonable solution combining 
the highest efficiency with the lowest possible cost. Extremely high relative sampling errors 
observed at densities less than 100 do not pose a serious problem for decision-makers, for 
the upper limits of confidence interval does not exceed 500 entrances even for the largest 
sampling errors of about 200%. At population densities much above 1000 entrances, the 
relative error becomes small falling below 10% which is a desired level of precision for most 
population measurements in general (W h i t e  et al. 1982). Thus, the risk of being wrong 
here by forecasting low densities is relatively small. For managers, estimates from about 
500 to 1000 entrances seem to be most critical. Overestimation of the true density may result 
in wasting resources into unnecessary controlling measurements, whereas underestimation 
entails losses in a crop yield. Under these circumstances, it pays to invest more in sampling 
to achieve more precise estimates. These extra-resources spent at critical densities can 
however be saved at high densities when the sample size can be effectively lowered.

The findings on spatial variance of burrow entrances indicate that the dispersion pattern 
varies with population density, being less aggregated at high density. This is what can be 
expected because in a very dense local population, most or all suitable sites may be occupied 
and no place is left for random or aggregated dispersion (M ö n k k ö n e n  & A s p i  1998). 
Moreover, a multimodal Neyman type A distribution seems to be superior to the negative 
binomial in describing the spatial pattern of burrow entrances. Unlike the negative binomial 
distribution, arising from random distribution of colonies in which entrances are distributed 
independently in a logarithmic series, the type A of Neyman distribution arises from the 
model of randomly distributed colonies in which both the number of colonies per sample and 
the number of entrances per sample have a Poisson distribution (A n s c o m b e  1950). This 
study therefore lends more support to the latter as a better descriptor of the vole colonization 
pattern. When densities grow, the counts of entrances increase primarily because of 
increasing numbers of colonies rather than that of the colony size. As a result, the degree of 
clumping decreases with increasing density. The differences between Drnholec and Olomouc 
may reflect differences in quadrat size and soil type. Softer soils may allow voles to dig their 
burrows more regularly in space. Consequently, spatial variation in sampling errors is to be 
expected among soil types with different textures. 
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We are the first to demonstrate in an unambiguous way that the relationship between 
the burrow index for the common vole and its population size is non-linear. This is not at 
variance with the previous work (L i r o  1974) indicating a linear dependence, for it was 
obtained at much lower densities and using simple enumeration technique for estimating 
population size. In fact, applying non-linear regression to data published by Liro, no essential 
difference in the pattern can be found over the comparable densities (Fig. 3c). Hence, we 
conclude that the burrow index strongly overestimates population change at high densities. 
This may have serious implications to ecological analyses of population dynamics patterns in 
the common vole and small rodents in general. It is obvious that the burrow index magnifies 
temporal variation in numbers by overestimating peak densities. As population variation is 
correlated with cyclicity (H e n t t o n e n  et al. 1985, T k a d l e c  & S t e n s e t h  2001), 
the population dynamics of the common vole, when depicted using original untransformed 
index, may appear more cyclic than they are in reality. 

Therefore, there are two problems to cope with when inferring the common vole dynamic 
pattern based on burrow indices. In low-density populations, the estimates are less biased but 
very noisy, suffering from the huge sampling error. In high-density populations, the relative 
population sizes measured are more precise but may be biased. However, unlike the former 
error that can only be dealt with prospectively, through a more elaborate sampling design, the 
latter error is amenable to retrospective elimination, at least partially. Variability within and 
among sites will preclude removing this type of error completely. Hence, further research 
into how much the elimination of systematic error from time series data affects the resulting 
structure of density dependence in the common vole is clearly warranted. 
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