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Abstract. Theorems on the Fredholm alternative and well-posedness of the
characteristic initial value problem

∂2u(t, x)

∂t ∂x
= `(u)(t, x) + q(t, x),

u(t, x0) = ϕ(t) for t ∈ [a, b], u(t0, x) = ψ(x) for x ∈ [c, d],

are established, where ` : C(D;R) → L(D;R) is a linear bounded operator,
q ∈ L(D;R), t0 ∈ [a, b], x0 ∈ [c, d], ϕ : [a, b]→ R, ψ : [c, d]→ R are absolutely

continuous functions, and D = [a, b]× [c, d]. Some solvability conditions of the

problem considered are given as well.

1. Introduction

On the rectangle D = [a, b] × [c, d], we consider the linear partial functional-
differential equation

∂2u(t, x)

∂t ∂x
= `(u)(t, x) + q(t, x), (1.1)

where ` : C(D;R) → L(D;R) is a linear bounded operator and q ∈ L(D;R). As
usual, C(D;R) and L(D;R) denote the Banach spaces of continuous and Lebesgue
integrable functions, respectively, equipped with the standard norms.

A function u ∈ C∗(D;R) is said to be a solution to the equation (1.1) if it satisfies
the equality (1.1) almost everywhere on the set D.

Various initial and boundary value problems for hyperbolic differential equations
and their systems are studied in literature (see, e.g., [4, 8, 9, 11, 14–16,19,26,28,29]
and references therein). We shall consider the so-called characteristic initial value
problem (Darboux problem). In this case, the values of the solution u of (1.1) are
prescribed on both characteristics t = t0 and x = x0, i.e., the initial conditions are

u(t, x0) = ϕ(t) for t ∈ [a, b], u(t0, x) = ψ(x) for x ∈ [c, d], (1.2)

where t0 ∈ [a, b], x0 ∈ [c, d], and ϕ : [a, b] → R, ψ : [c, d] → R are absolutely
continuous functions such that ϕ(t0) = ψ(x0).

A particular case of the problem (1.1), (1.2) (if t0 = a and x0 = c) is studied in
the paper [23]. The aim of this preprint is to generalize the paper mentioned and
prove the Fredholm alternative and well-posedness of the problem (1.1), (1.2) (see
Sections 4 and 6). Moreover, some conditions are given in Section 5 under which
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the problem (1.1), (1.2) has a unique solution. The results obtained are applied for
the equation with deviating arguments

∂2u(t, x)

∂t ∂x
= p(t, x)u

(
τ(t, x), µ(t, x)

)
+ q(t, x), (1.1′)

where p, q ∈ L(D;R) and τ : D → [a, b], µ : D → [c, d] are measurable functions.
Let us note that analogous results for the “ordinary” functional-differential equa-

tions and their systems are given in [2, 10,12,13].

2. Notations and Definitions

The following notation is used throughout the paper.

(1) N is the set of all natural numbers. R is the set of all real numbers, R+ =
[0,+∞[ . Ent(x) denotes the entire part of the number x ∈ R.

(2) D = [a, b]× [c, d], where −∞ < a < b < +∞ and −∞ < c < d < +∞.
(3) The first and the second order partial derivatives of the function v : D →

R at the point (t, x) ∈ D are denoted by v′[1](t, x) (or vt(t, x), ∂v(t,x)
∂t ),

v′[2](t, x) (or vx(t, x), ∂v(t,x)
∂x ), v′′[12](t, x) (or vtx(t, x), ∂

2v(t,x)
∂t ∂x ), and v′′[21](t, x)

(or vxt(t, x), ∂2v(t,x)
∂x ∂t ).

(4) C(D;R) is the Banach space of continuous functions v : D → R equipped
with the norm ‖v‖C = max

{
|v(t, x)| : (t, x) ∈ D

}
.

(5) AC([α, β];R), where −∞ < α < β < +∞, is the set of absolutely continu-
ous functions u : [α, β]→ R.

(6) C∗(D;R) is the set of functions v : D → R admitting the representation

v(t, x) = e+

∫ t

a

k(s)ds+

∫ x

c

l(η)dη +

∫ t

a

∫ x

c

f(s, η)dηds for (t, x) ∈ D,

where e ∈ R, k ∈ L([a, b];R), l ∈ L([c, d];R), and f ∈ L(D;R). Equivalent
definitions of the class C∗(D;R) are presented in Proposition 2.1 below.

(7) L(D;R) is the Banach space of Lebesgue integrable functions p : D → R
equipped with the norm ‖p‖L =

∫∫
D |p(t, x)|dtdx.

(8) L(D) is the set of linear bounded operators ` : C(D;R)→ L(D;R).
(9) mesA denotes the Lebesgue measure of the set A ⊂ Rm, m = 1, 2.

(10) If X, Y are Banach spaces and T : X → Y is a linear bounded operator
then ‖T‖ denotes the norm of the operator T , i. e.,

‖T‖ = sup
{
‖T (z)‖Y : z ∈ X, ‖z‖X ≤ 1

}
.

(11) A÷B stands for the symmetric difference of the sets A and B, i. e., A÷B =
(A \B) ∪ (B \A).

The following proposition dealing with the equivalent characterization of func-
tions absolutely continuous in the sense of Carathéodory plays very important role
in our investigation.

Proposition 2.1 ([22, Thm. 2.1]). The following three statements are equivalent:

(1) the function v : D → R is absolutely continuous on D in the sense of
Carathéodory1;

(2) v ∈ C∗(D;R);
(3) the function v : D → R satisfies the conditions:

1This notion is introduced in [3] (see also [22]).
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(a) v(·, x) ∈ AC([a, b];R) for every x ∈ [c, d], v(a, ·) ∈ AC([c, d];R);

(b) v′[1](t, ·) ∈ AC([c, d];R) for almost every t ∈ [a, b];

(c) v′′[12] ∈ L(D;R).

Remark 2.1. It is clear that the conditions (3a)–(3c) stated in the previous propo-
sition can be replaced by the symmetric ones, i. e.,

(3) the function v : D → R satisfies the conditions:
(A) v(·, c) ∈ AC([a, b];R), v(t, ·) ∈ AC([c, d];R) for every t ∈ [a, b];

(B) v′[2](·, x) ∈ AC([a, b];R) for almost every x ∈ [c, d];

(C) v′′[21] ∈ L(D;R).

Moreover, for an arbitrary function v ∈ C∗(D;R), the equality

v′′[12](t, x) = v′′[21](t, x) for a. e. (t, x) ∈ D
holds.

Definition 2.1. Let t0 ∈ [a, b] and x0 ∈ [c, d]. An operator ` ∈ L(D) is said to
be an (t0, x0)–Volterra operator if, for an arbitrary rectangle D0 ⊆ D and every
function v ∈ C(D;R) such that (t0, x0) ∈ D0 and

v(t, x) = 0 for (t, x) ∈ D0,

the relation
`(v)(t, x) = 0 for a. e. (t, x) ∈ D0

is fulfilled.

Remark 2.2. If the operator ` appearing in the equation (1.1) is a (t0, x0)–Volterra
one, then the problem (1.1), (1.2) can be restricted to an arbitrary rectangle D0 ⊆ D
containing the point (t0, x0).

Let the operator ` ∈ L(D) be defined by the formula

`(v)(t, x) = p(t, x)v
(
τ(t, x), µ(t, x)

)
for a. e. (t, x) ∈ D and all v ∈ C(D;R), (2.1)

where p ∈ L(D;R) and τ : D → [a, b], µ : D → [c, d] are measurable functions. The
following statement can be derived from Definition 2.1.

Proposition 2.2. Let t0 ∈ [a, b] and x0 ∈ [c, d]. Then the operator ` defined by the
formula (2.1) is a (t0, x0)–Volterra one if and only if the conditions

|p(t, x)|(τ(t, x)− t)(τ(t, x)− t0) ≤ 0 for a. e. (t, x) ∈ D (2.2)

and
|p(t, x)|(µ(t, x)− x)(µ(t, x)− x0) ≤ 0 for a. e. (t, x) ∈ D (2.3)

are satisfied.

3. Auxiliary Statements

The following proposition plays a crucial role in the proofs of statements given
in Sections 4–6.

Proposition 3.1. Let t0 ∈ [a, b], x0 ∈ [c, d], and ` ∈ L(D). Then the operator
T : C(D;R)→ C(D;R) defined by the formula

T (v)(t, x) =

∫ t

t0

∫ x

x0

`(v)(s, η)dηds for (t, x) ∈ D, v ∈ C(D;R) (3.1)

is completely continuous.
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The statement stated above can be easily proved in the case where the operator
` is strongly bounded, i.e., if there exists a function η ∈ L(D;R+) such that

|`(v)(t, x)| ≤ η(t, x)‖v‖C for a. e. (t, x) ∈ D and all v ∈ C(D;R). (3.2)

H. H. Schaefer proved however that there exists an operator ` ∈ L(D), which is
not strongly bounded (see [21]). To prove Proposition 3.1 without the additional
requirement (3.2) we need a number of notions and statements from functional
analysis. Note here that the proof is analogous to the proof of Proposition 2.9 of
[10].

Definition 3.1. Let X be a Banach space, X∗ be its dual space.
We say that a sequence {xn}+∞n=1 ⊆ X is weakly convergent if there exists x ∈ X

such that f(x) = limn→+∞ f(xn) for every f ∈ X∗. The element x is said to be
a weak limit of this sequence.

A set M ⊆ X is called weakly relatively compact if every sequence of elements
from M contains a subsequence which is weakly convergent in X.

A sequence {xn}+∞n=1 of elements from X is said to be weakly fundamental if the
sequence {f(xn)}+∞n=1 is fundamental in R for every f ∈ X∗.

We say that the spaceX is weakly complete if every weakly fundamental sequence
of elements from X possesses a weak limit in X.

Definition 3.2. Let X and Y be Banach spaces, T : X → Y be a linear bounded
operator. The operator T is said to be weakly completely continuous if it maps
a unit ball of X into a weakly relatively compact subset of Y .

Definition 3.3. We say that a set M ⊆ L(D;R) has a property of absolutely
continuous integral if, for every ε > 0, there exists δ > 0 such that the relation∣∣∣∣∫∫

E

p(t, x)dtdx

∣∣∣∣ < ε for every p ∈M

holds whenever a measurable set E ⊆ D is such that mesE < δ.

The following three lemmas can be found in [6].

Lemma 3.1 (Theorem IV.8.6). The space L(D;R) is weakly complete.

Lemma 3.2 (Theorem VI.7.6). A linear bounded operator mapping the space
C(D;R) into a weakly complete Banach space is weakly completely continuous.

Lemma 3.3 (Theorem IV.8.11). If a set M ⊆ L(D;R) is weakly relatively compact
then it has a property of absolutely continuous integral.

Proof of Proposition 3.1. Let M ⊆ C(D;R) be a bounded set. We will show that
the set T (M) = {T (v) : v ∈ M} is relatively compact in C(D;R). According to
Arzelà-Ascoli’s lemma, it is sufficient to show that the set T (M) is bounded and
equicontinuous.

Boundedness. It is clear that

|T (v)(t, x)| ≤
∫ t

t0

∫ x

x0

|`(v)(s, η)|dηds ≤ ‖`(v)‖L ≤ ‖`‖ ‖v‖C

for (t, x) ∈ D and every v ∈M . Therefore, the set T (M) is bounded in C(D;R).
Equicontinuity. Let ε > 0 be arbitrary but fixed. Lemmas 3.1 and 3.2 yield

that the operator ` is weakly completely continuous, that is, the set `(M) = {`(v) :
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v ∈ M} is weakly relatively compact subset of L(D;R). Therefore, Lemma 3.3
guarantees that there exists δ > 0 such that the relation∣∣∣∣∫∫

E

`(v)(t, x)dtdx

∣∣∣∣ < ε

2
for v ∈M (3.3)

holds for every measurable set E ⊆ D satisfying mesE < max{b− a, d− c}δ.
On the other hand, for (t1, x1), (t2, x2) ∈ D and v ∈M , we have

|T (v)(t2, x2)− T (v)(t1, x1)| =

=

∣∣∣∣∫ t2

t0

∫ x2

x0

`(v)(s, η)dηds−
∫ t1

t0

∫ x1

x0

`(v)(s, η)dηds

∣∣∣∣ ≤
≤
∣∣∣∣∫∫

E1

`(v)(s, η)dsdη

∣∣∣∣+

∣∣∣∣∫∫
E2

`(v)(s, η)dsdη

∣∣∣∣ ,
where measurable sets E1, E2 ⊆ D are such that mesE1 ≤ (d − c)|t2 − t1| and
mesE2 ≤ (b− a)|x2 − x1|. Hence, by virtue of (3.3), we get

|T (v)(t2, x2)− T (v)(t1, x1)| < ε

for (t1, x1), (t2, x2) ∈ D, |t2 − t1|+ |x2 − x1| < δ, and v ∈M,

i.e., the set T (M) is equicontinuous in C(D;R). �

4. Fredholm Property

The main result of this section is the following statement on the Fredholmity of
the problem (1.1), (1.2).

Theorem 4.1. For the unique solvability of the problem (1.1), (1.2) it is sufficient
and necessary that the homogeneous problem

∂2u(t, x)

∂t ∂x
= `(u)(t, x), (1.10)

u(t, x0) = 0 for t ∈ [a, b], u(t0, x) = 0 for x ∈ [c, d], (1.20)

has only the trivial solution.

To prove the theorem we need a result stated in [22].

Lemma 4.1 ([22, Proposition 3.5]). Let f ∈ L(D;R) and

u(t, x) =

∫ t

a

∫ x

c

f(s, η)dηds for (t, x) ∈ D.

Then:

(i) there exists a set E ⊆ [a, b] such that mesE = b− a and

u′[1](t, x) =

∫ x

c

f(t, η)dη for t ∈ E and x ∈ [c, d];

(ii) there exists a set F ⊆ D such that mesF = (b− a)(d− c) and

u′′[12](t, x) = f(t, x) for (t, x) ∈ F.
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Proof of Theorem 4.1. Let u be a solution to the problem (1.1), (1.2). It is clear
that u is a solution to the equation

v = T (v) + f (4.1)

in the space C(D;R), where the operator T is given by the relation (3.1) and

f(t, x) = −ϕ(t0) + ϕ(t) + ψ(x) +

∫ t

t0

∫ x

x0

q(s, η)dηds for (t, x) ∈ D. (4.2)

Conversely, if v ∈ C(D;R) is a solution to the equation (4.1) with f given by (4.2)
then it is easy to verify that v ∈ C∗(D;R) (see Proposition 2.1) and, by virtue of
Lemma 4.1(ii), v is a solution to the problem (1.1), (1.2). Hence, the problem (1.1),
(1.2) and the equation (4.1) are equivalent in this sense.

Note also that u is a solution to the homogeneous problem (1.10), (1.20) if and
only if u is a solution to the homogeneous equation

v = T (v) (4.3)

in the space C(D;R).
According to Proposition 3.1, the operator T is completely continuous. It follows

from the Riesz-Schauder theory that the equation (4.1) is uniquely solvable for
every f ∈ C(D;R) if and only if the homogeneous equation (4.3) has only the
trivial solution. Therefore, the assertion of the theorem holds. �

Definition 4.1. Let the problem (1.10), (1.20) have only the trivial solution. An
operator Ω : L(D;R)→ C(D;R) which assigns to every q ∈ L(D;R) the solution u
of the problem (1.1), (1.20) is called the Darboux operator of the problem (1.10),
(1.20).

Remark 4.1. It is clear that the Darboux operator Ω is linear.

If the homogeneous problem (1.10), (1.20) has a nontrivial solution then, by
virtue of Theorem 4.1, there exist functions q, ϕ, and ψ such that the problem
(1.1), (1.2) has either no solution or infinitely many solutions. However, as it
follows from the proof of Theorem 4.1, a stronger assertion can be shown in this
case.

Proposition 4.1. Let the problem (1.10), (1.20) have a nontrivial solution. Then,

for arbitrary ϕ ∈ C̃([a, b],R) and ψ ∈ C̃([c, d],R) satisfying ϕ(t0) = ψ(x0), there
exists a function q ∈ L(D;R) such that the problem (1.1), (1.2) has no solution.

Proof. Let u0 be a nontrivial solution to the problem (1.10), (1.20), and let ϕ ∈
C̃([a, b],R) and ψ ∈ C̃([c, d],R) be such that ϕ(t0) = ψ(x0).

It follows from the proof of Theorem 4.1 that u0 is also a nontrivial solution
to the homogeneous equation (4.3), where the operator T is given by the relation
(3.1). Therefore, by the Riesz-Schauder theory, there exists f ∈ C(D;R) such that
the equation (4.1) has no solution.

Then the problem (1.1), (1.2) has no solution for q ≡ `(z), where

z(t, x) = f(t, x) + ϕ(t0)− ϕ(t)− ψ(x) for (t, x) ∈ D.

Indeed, if the problem indicated has a solution u then the function u+z is a solution
to the equation (4.1), which is a contradiction. �
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5. Existence and Uniqueness Theorems

In this section, we shall establish some efficient condition guaranteeing the unique
solvability of the problems (1.1), (1.2) and (1.1′), (1.2). We will prove, in particular,
that the problem (1.1), (1.2) has a unique solution provided that the operator `
is a (t0, x0)–Volterra one. We first formulate all the results, their proofs are given
later.

Introduce the following notation.

Notation 5.1. Let ` ∈ L(D). Define operators ϑk : C(D;R) → C(D;R), k =
0, 1, 2, . . . , by setting

ϑ0(v) = v, ϑk(v) = T
(
ϑk−1(v)

)
for v ∈ C(D;R), k ∈ N, (5.1)

where the operator T is given by (3.1).

Theorem 5.1. Let there exist m ∈ N and α ∈ [0, 1[ such that the inequality

‖ϑm(u)‖C ≤ α‖u‖C (5.2)

is satisfied for every solution u of the homogeneous problem (1.10), (1.20). Then
the problem (1.1), (1.2) is uniquely solvable.

Remark 5.1. The assumption α ∈ [0, 1[ in the previous theorem cannot be replaced
by the assumption α ∈ [0, 1] (see Example 7.1).

Corollary 5.1. Let there exist j ∈ N such that∫ t0

a

∫ x0

c

pj(s, η)dηds < 1,

∫ t0

a

∫ d

x0

pj(s, η)dηds < 1

∫ b

t0

∫ x0

c

pj(s, η)dηds < 1,

∫ b

t0

∫ d

x0

pj(s, η)dηds < 1

(5.3)

where p1 ≡ |p| and

pk+1(t, x) =

= |p(t, x)| sgn
(
(τ(t, x)− t0)(µ(t, x)− x0)

) ∫ τ(t,x)

t0

∫ µ(t,x)

x0

pk(s, η)dηds

for a. e. (t, x) ∈ D, k ∈ N. (5.4)

Then the problem (1.1′), (1.2) is uniquely solvable.

Remark 5.2. Example 7.1 shows that neither of the strict inequalities (5.3) in Corol-
lary 5.1 can be replaced by the nonstrict one.

Theorem 5.2. Let ` be a (t0, x0)–Volterra operator. Then the problem (1.1), (1.2)
has a unique solution.

Corollary 5.2. Let the conditions (2.2) and (2.3) hold. Then the problem (1.1′),
(1.2) has a unique solution.
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Proofs. Now we prove statements formulated above.

Proof of Theorem 5.1. According to Theorem 4.1, it is sufficient to show that the
homogeneous problem (1.10), (1.20) has only the trivial solution.

Let u be a solution to the problem (1.10), (1.20). Then it is clear that

u(t, x) =

∫ t

t0

∫ x

x0

`(u)(s, η)dηds = T (u)(t, x) = ϑ1(u)(t, x) for (t, x) ∈ D.

Using the last relation, we get

u(t, x) = T
(
ϑ1(u)

)
(t, x) = ϑ2(u)(t, x) for (t, x) ∈ D,

and thus u = ϑk(u) for every k ∈ N. Therefore, (5.2) implies

‖u‖C = ‖ϑm(u)‖C ≤ α‖u‖C ,
which guarantees u ≡ 0. �

Proof of Corollary 5.1. Let the operator ` be defined by the relation (2.1). It is
clear that∣∣ϑk(v)(t, x)

∣∣ ≤
≤ sgn

(
(t− t0)(x− x0)

) ∫ t

t0

∫ x

x0

∣∣p(s, η)ϑk−1(v)
(
τ(s, η), µ(s, η)

)∣∣dηds ≤

≤ ‖v‖C sgn
(
(t− t0)(x− x0)

) ∫ t

t0

∫ x

x0

pk(s, η)dηds

for (t, x) ∈ D, k ∈ N, v ∈ C(D;R).

Therefore, the assumptions of Theorem 5.1 are satisfied with m = j and

α = max

{
sgn

(
(t− t0)(x− x0)

) ∫ t

t0

∫ x

x0

pj(s, η)dηds : (t, x) ∈ D
}
.

�

To prove Theorem 5.2 we need the following lemma.

Lemma 5.1. Let ` ∈ L(D) be a (t0, x0)–Volterra operator. Then

lim
k→+∞

‖ϑk‖ = 0, (5.5)

where the operators ϑk are defined by the relations (5.1).

Proof. Let ε ∈ ]0, 1[ . According to Proposition 3.1, the operator ϑ1 is completely
continuous. Therefore, by virtue of Arzelà-Ascoli’s lemma, there exists δ > 0 such
that∣∣∣∣∫ y2

t0

∫ z2

x0

`(w)(s, η)dηds−
∫ y1

t0

∫ z1

x0

`(w)(s, η)dηds

∣∣∣∣ ≤ ε ‖w‖C
for (y1, z1), (y2, z2) ∈ D, |y2 − y1|+ |z2 − z1| < δ, w ∈ C(D;R). (5.6)

Let

n = max

{
Ent

(
2(t0 − a))

δ

)
,Ent

(
2(b− t0))

δ

)
,
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Ent

(
2(x0 − c))

δ

)
,Ent

(
2(d− x0))

δ

)}
+ 1.

Choose yn+1 ∈ [a, t0], yn+2 ∈ [t0, b] and zn+1 ∈ [c, x0], zn+2 ∈ [x0, d] such that
yn+2 − yn+1 < δ/2 and zn+2 − zn+1 < δ/2, and put

yk =

{
yn+1 − (n+ 1− k) yn+1−a

n for k = 1, 2, . . . , n,

yk = yn+2 + (k − n− 2) b−yn+2

n for k = n+ 3, n+ 4, . . . , 2n+ 2,

zk =

{
zn+1 − (n+ 1− k) zn+1−a

n for k = 1, 2, . . . , n,

zk = yn+2 + (k − n− 2) b−zn+2

n for k = n+ 3, n+ 4, . . . , 2n+ 2,

and

Dk = [yn+2−k, yn+1+k]× [zn+2−k, zn+1+k] for k = 1, 2, . . . , n+ 1.

It is clear that, for any j, r = 1, 2, . . . , 2n+ 1, we get

|t2 − t1|+ |x2 − x1| < δ for (t1, x1), (t2, x2) ∈ [yj , yj+1]× [zr, zr+1]. (5.7)

Having w ∈ C(D;R), we denote

‖w‖i = ‖w‖C(Di;R) for i = 1, 2, . . . , n+ 1.

Let v ∈ C(D;R) be arbitrary but fixed. We shall show that the relation

‖ϑk(v)‖i ≤ αi(k)εk‖v‖C for k ∈ N (5.8)

holds for every i = 1, 2, . . . , n+ 1, where

αi(k) = αik
i−1 for k ∈ N, i = 1, 2, . . . , n+ 1 (5.9)

and
α1 = 1, αi+1 = i+ 1 + iαi for i = 1, 2, . . . , n. (5.10)

By virtue of (5.6) and (5.7), it is easy to verify that, for any w ∈ C(D;R) and
i = 1, 2, . . . , n+ 1, we have∣∣∣∣∫ t

t0

∫ x

x0

`(w)(s, η)dηds

∣∣∣∣ ≤ i ε ‖w‖C for (t, x) ∈ Di . (5.11)

We first note that the previous relation immediately implies that

‖ϑ1(v)‖i ≤ i ε ‖v‖C for i = 1, 2, . . . , n+ 1. (5.12)

Furthermore, on account of (5.6), (5.7), and the fact that ` is a (t0, x0)–Volterra
operator, we obtain∣∣ϑk+1(v)(t, x)

∣∣ =

∣∣∣∣∫ t

t0

∫ x

x0

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣ ≤ ε ‖ϑk(v)‖1 for (t, x) ∈ D1, k ∈ N.

Hence, by virtue of (5.12), we get

‖ϑk(v)‖1 ≤ εk ‖v‖C for k ∈ N,
and thus the relation (5.8) is true for i = 1.

Now suppose that the relation (5.8) holds for some i ∈ {1, 2, . . . , n}. We shall
show that the relation indicated is also true for i + 1. With respect to (5.7), we
obtain

‖ϑk+1(v)‖i+1 = max

{∣∣∣∣∫ t

t0

∫ x

x0

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣ : (t, x) ∈ Di+1

}
=
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=

∣∣∣∣∣
∫ t∗k

t0

∫ x∗
k

x0

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ t̂k

t0

∫ x̂k

x0

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣∣+
+

∣∣∣∣∣
∫ t∗k

t0

∫ x∗
k

x0

`
(
ϑk(v)

)
(s, η)dηds−

∫ t̂k

t0

∫ x̂k

x0

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣∣ for k ∈ N,

where (t∗k, x
∗
k) ∈ Di+1, (t̂k, x̂k) ∈ Di, and |t∗k−t̂k|+|x∗k−x̂k| < δ for k ∈ N. Therefore,

on account of (5.6), (5.11), and the fact that ` is a [t0, h]–Volterra operator, we get

‖ϑk+1(v)‖i+1 ≤ ε ‖ϑk(v)‖i+1 + i ε ‖ϑk(v)‖i ≤ ε ‖ϑk(v)‖i+1 + i αi(k) εk+1 ‖v‖C

for k ∈ N. Consequently,

‖ϑk+1(v)‖i+1 ≤ ε
(
ε ‖ϑk−1(v)‖i+1 + i αi(k − 1) εk ‖v‖C

)
+

+ i αi(k) εk+1 ‖v‖C for k ∈ N.

Continuing this procedure, on account of (5.12), we obtain

‖ϑk+1(v)‖i+1 ≤
(
i+ 1 + i

(
αi(1) + · · ·+ αi(k)

))
εk+1 ‖v‖C for k ∈ N. (5.13)

Using (5.9) and (5.10), it is easy to verify that

i+ 1 + i
(
αi(1) + · · ·+ αi(k)

)
= i+ 1 + i αi

(
1i−1 + · · ·+ ki−1

)
≤

≤ i+ 1 + i αi k k
i−1 = i+ 1 + i αi k

i ≤
≤ (i+ 1 + i αi) k

i = αi+1 k
i ≤ αi+1 (k + 1).

Therefore, (5.12) and (5.13) imply

‖ϑk(v)‖i+1 ≤ αi+1(k) εk ‖v‖C for k ∈ N.

Hence, by induction, we have proved that the relation (5.8) is true for every i =
1, 2, . . . , n+ 1.

Now it is already clear that, for any k ∈ N, the estimate

‖ϑk(v)‖C = ‖ϑk(v)‖n+1 ≤ αn+1 k
n εk ‖v‖C for v ∈ C(D;R)

holds, and thus

‖ϑk‖ ≤ αn+1 k
n εk for k ∈ N.

Since we suppose ε ∈ ]0, 1[ , the last relation yields the validity of the condition
(5.5). �

Proof of Theorem 5.2. According to Lemma 5.1, there exists m0 ∈ N such that
‖ϑm0

‖ < 1. Moreover, it is clear that

‖ϑm0(v)‖C ≤ ‖ϑm0‖ ‖v‖C for v ∈ C(D;R),

because the operator ϑm0
is bounded. Therefore, the assumptions of Theorem 5.1

are satisfied with m = m0 and α = ‖ϑm0
‖. �

Proof of Corollary 5.2. The assumptions (2.2) and (2.3) guarantee that the opera-
tor ` given by the relation (2.1) is a (t0, x0)–Volterra one. Therefore, the validity
of the corollary follows immediately from Theorem 5.2. �
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6. Well-posedness

In this part, the well-posedness of the problems (1.1), (1.2) and (1.1′), (1.2) are
investigated. We first formulate all the results, their proofs are given later.

For any k ∈ N, along with the problem (1.1), (1.2) we consider the perturbed
problem

∂2u(t, x)

∂t ∂x
= `k(u)(t, x) + qk(t, x), (1.1k)

u(t, xk) = ϕk(t) for t ∈ [a, b], u(tk, x) = ψk(x) for x ∈ [c, d], (1.2k)

where `k ∈ L(D), qk ∈ L(D;R), tk ∈ [a, b], xk ∈ [c, d], and ϕk ∈ AC([a, b];R),
ψk ∈ AC([c, d];R) are such that ϕk(tk) = ψk(xk).

Introduce the following notation.

Notation 6.1. Let Λ ∈ L(D), t∗ ∈ [a, b], and x∗ ∈ [c, d]. Denote by M(Λ, t∗, x∗)
the set of all functions y ∈ C∗(D;R) admitting the representation

y(t, x) =

∫ t

t∗

∫ x

x∗
Λ(z)(s, η)dηds for (t, x) ∈ D,

where z ∈ C(D;R) and ‖z‖C = 1.

Theorem 6.1. Let the problem (1.1), (1.2) have a unique solution u and

lim
k→+∞

λk = 0, (6.1)

where

λk = sup
(t,x)∈D

y∈M(`k,tk,xk)

{∣∣∣∣∫ t

tk

∫ x

xk

`k(y)(s, η)dηds−
∫ t

t0

∫ x

x0

`(y)(s, η)dηds

∣∣∣∣} (6.2)

for k ∈ N. Let, moreover,

lim
k→+∞

%k

[∫ t

tk

∫ x

xk

`k(y)(s, η)dηds−
∫ t

t0

∫ x

x0

`(y)(s, η)dηds

]
= 0

uniformly on D for every y ∈ C∗(D;R), (6.3)

lim
k→+∞

%k

[∫ t

tk

∫ x

xk

qk(s, η)dηds−
∫ t

t0

∫ x

x0

q(s, η)dηds

]
= 0

uniformly on D, (6.4)

lim
k→+∞

%k‖ϕk − ϕ‖C = 0, lim
k→+∞

%k‖ψk − ψ‖C = 0, (6.5)

and

lim
k→+∞

%k
∣∣ϕk(tk)− ϕ(t0)

∣∣ = 0, (6.6)

where

%k = 1 + ‖`k‖ for k ∈ N. (6.7)

Then there exists k0 ∈ N such that, for every k > k0, the problem (1.1k), (1.2k) has
a unique solution uk and

lim
k→+∞

‖uk − u‖C = 0. (6.8)
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Remark 6.1. It is clear that the condition (6.6) is equivalent to the condition

lim
k→+∞

(
1 + ‖`k‖

)∣∣ψk(xk)− ψ(x0)
∣∣ = 0.

Note also that sequences {tk} and {xk} in Theorem 6.1 may not converge to t0
and x0, respectively. Indeed, let `k = ` = 02, qk ≡ q ≡ 0, a = c = 0, b = d = 1,
t0 = x0 = 1, tk = xk = 1/k, ϕk ≡ ϕ ≡ ψk ≡ ψ ≡ α, where α ∈ AC([0, 1];R) is
such that α(0) = α(1). Then the assumptions of Theorem 6.1 are satisfied whereas
tk → 0 and xk → 0 when k tends to +∞.

If we suppose that the operators `k are “uniformly bounded” in the sense of the
relation (6.9) then we obtain the following statement.

Corollary 6.1. Let the problem (1.1), (1.2) have a unique solution u, there exist
a function ω ∈ L(D;R+) such that

|`k(y)(t, x)| ≤ ω(t, x)‖y‖C
for a. e. (t, x) ∈ D and all y ∈ C(D;R), k ∈ N, (6.9)

and let

lim
k→+∞

∫ t

tk

∫ x

xk

`k(y)(s, η)dηds =

∫ t

t0

∫ x

x0

`(y)(s, η)dηds

uniformly on D for every y ∈ C∗(D;R). (6.10)

Let, moreover,

lim
k→+∞

∫ t

tk

∫ x

xk

qk(s, η)dηds =

∫ t

t0

∫ x

x0

q(s, η)dηds uniformly on D, (6.11)

lim
k→+∞

‖ϕk − ϕ‖C = 0, lim
k→+∞

‖ψk − ψ‖C = 0, (6.12)

and
lim

k→+∞
ϕ(tk) = ϕ(t0). (6.13)

Then the conclusion of Theorem 6.1 holds.

Remark 6.2. The condition (6.13) is satisfied if and only if

lim
k→+∞

ψ(xk) = ψ(x0).

Remark 6.3. The assumption (6.9) in the previous corollary is essential and cannot
be omitted (see Example 7.2).

Corollary 6.2. Let the problem (1.1), (1.2) have a unique solution u and there
exist a function ω ∈ L(D;R+) such that the relation (6.9) holds. Let, moreover,
the condition (6.12) be satisfied,

lim
k→+∞

∫ t

a

∫ x

c

[
`k(y)(s, η)− `(y)(s, η)

]
dηds = 0

uniformly on D for every y ∈ C∗(D;R), (6.14)

lim
k→+∞

∫ t

a

∫ x

c

[
qk(y)(s, η)− q(s, η)

]
dηds = 0 uniformly on D, (6.15)

2The symbol 0 stands here for the zero operator.
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and

lim
k→+∞

tk = t0, lim
k→+∞

xk = x0. (6.16)

Then the conclusion of Theorem 6.1 holds.

Corollary 6.2 immediately yields

Corollary 6.3. Let the homogeneous problem (1.10), (1.20) have only the trivial
solution. Then the Darboux operator3 of the problem (1.10), (1.20) is continuous.

Now we give a statement on the well-posedness of the problem (1.1′), (1.2). For
any k ∈ N, along with the equation (1.1′) we consider the perturbed equation

∂2u(t, x)

∂t ∂x
= pk(t, x)u

(
τk(t, x), µk(t, x)

)
+ qk(t, x), (1.1′k)

where pk, qk ∈ L(D;R) and τk : D → [a, b], µk : D → [c, d] are measurable functions.

Corollary 6.4. Let the problem (1.1′), (1.2) have a unique solution u, there exist
a function ω ∈ L(D;R+) such that

|pk(t, x)| ≤ ω(t, x) for a. e. (t, x) ∈ D, k ∈ N, (6.17)

and let

lim
k→+∞

∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
dsdη = 0 uniformly on D. (6.18)

Let, moreover, the conditions (6.12), (6.15), and (6.16) be satisfied, and

lim
k→+∞

ess sup
{∣∣τk(t, x)− τ(t, x)

∣∣ : (t, x) ∈ D
}

= 0, (6.19)

lim
k→+∞

ess sup
{∣∣µk(t, x)− µ(t, x)

∣∣ : (t, x) ∈ D
}

= 0. (6.20)

Then there exists k0 ∈ N such that, for every k > k0, the problem (1.1′k), (1.2k) has
a unique solution uk and the relation (6.8) holds.

Remark 6.4. The assumption (6.17) in the previous theorem is essential and cannot
be omitted (see Example 7.2).

Finally, we consider the hyperbolic equation without argument deviations

utx = p(t, x)u+ q(t, x) (6.21)

in which p, q ∈ L(D;R). For any k ∈ N, along with the equation indicated we
consider the perturbed equation

utx = pk(t, x)u+ qk(t, x) (6.21k)

where pk, qk ∈ L(D;R).
The following statement can be derived from Theorem 6.1.

Corollary 6.5. Let the conditions (6.4)–(6.6) be satisfied,

lim
k→+∞

%k

[∫ t

tk

∫ x

xk

pk(s, η)dηds−
∫ t

t0

∫ x

x0

p(s, η)dηds

]
= 0

uniformly on D, (6.22)

3The notion of the Cauchy operator is introduced in Definition 4.1.
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and

lim
k→+∞

%k

∫ tk

t0

∫ d

c

|p(s, η)|dηds = 0, lim
k→+∞

%k

∫ xk

x0

∫ b

a

|p(s, η)|dsdη = 0, (6.23)

where

%k = 1 + ‖pk‖L. (6.24)

Then the relation (6.8) holds, where u and uk are solutions to the problems (6.21),
(1.2) and (6.21k), (1.2k), respectively.

From Corollary 6.5 we get

Corollary 6.6. Let the conditions (6.12), (6.15), (6.16), and (6.18) be satisfied,
and

sup
{
‖pk‖L : k ∈ N

}
< +∞.

Then the conclusion of Corollary 6.5 holds.

Corollary 6.6 immediately yields

Corollary 6.7. Let the conditions (6.12) and (6.16) be satisfied,

lim
k→+∞

‖pk − p‖L = 0, (6.25)

and

lim
k→+∞

‖qk − q‖L = 0. (6.26)

Then the conclusion of Corollary 6.5 holds.

6.1. Proofs. In order to prove Theorem 6.1, we need the following lemma.

Lemma 6.1. Let the problem (1.10), (1.20) have only the trivial solution and let
the condition (6.1) hold, where the numbers λk are defined by the formula (6.2).
Then, for an arbitrary z ∈ C∗(D;R), there exist r0 > 0 and k0 ∈ N such that

‖y − z‖C ≤ r0(1 + ‖`k‖)
[
‖∆k(y)−∆0(z)‖C + ‖Γk(y, z)‖C

]
for k > k0, y ∈ C∗(D;R), (6.27)

where

∆k(v)(t, x) = −v(tk, xk) + v(t, xk) + v(tk, x)

for (t, x) ∈ D, v ∈ C∗(D;R), k ∈ N ∪ {0}, (6.28)

and

Γk(v, w)(t, x) =

∫ t

tk

∫ x

xk

[
v′′[12](s, η)− `k(v − w)(s, η)

]
dηds−

−
∫ t

t0

∫ x

x0

w′′[12](s, η)dηds for (t, x) ∈ D, v, w ∈ C∗(D;R), k ∈ N. (6.29)

Proof. Let the operators T, Tk : C(D;R) → C(D;R) be defined by the formulas
(3.1) and

Tk(v)(t, x) =

∫ t

tk

∫ x

xk

`k(v)(s, η)dηds for (t, x) ∈ D, v ∈ C(D;R), k ∈ N.
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Obviously,

‖Tk(y)‖C ≤ ‖`k(y)‖L ≤ ‖`k‖ ‖y‖C for y ∈ C(D;R), k ∈ N.
Therefore, the operators Tk (k ∈ N) are linear bounded ones, and the relation

‖Tk‖ ≤ ‖`k‖ for k ∈ N (6.30)

holds. Moreover, the condition (6.1) with λk given by (6.2) can be rewritten in the
form

sup
{
‖Tk(y)− T (y)‖C : y ∈M(`k, tk, xk)

}
→ 0 as k → +∞. (6.31)

Assume that, on the contrary, the assertion of the lemma is not true. Then
there exist z ∈ C∗(D;R), an increasing sequence {km}+∞m=1 of natural numbers, and
a sequence {ym}+∞m=1 of functions from C∗(D;R) such that, for every m ∈ N, the
relation

‖ym − z‖C > m(1 + ‖`km‖)
[
‖∆km(ym)−∆(z)‖C + ‖Γkm(ym, z)‖C

]
(6.32)

holds. For any m ∈ N and (t, x) ∈ D, we put

zm(t, x) =
ym(t, x)− z(t, x)

‖ym − z‖C
, (6.33)

vm(t, x) =
1

‖ym − z‖C

[
∆km(ym)(t, x)−∆(z)(t, x) + Γkm(ym, z)(t, x)

]
, (6.34)

z0,m(t, x) = zm(t, x)− vm(t, x), (6.35)

wm(t, x) = Tkm(z0,m)(t, x)− T (z0,m)(t, x) + Tkm(vm)(t, x). (6.36)

Obviously,
‖zm‖C = 1 for m ∈ N. (6.37)

Using (6.28)–(6.29) in the relation (6.34) and, by virtue of the conditions (a)–(c)
of Proposition 2.1, we get

z0,m(t, x) = Tkm(zm)(t, x) for (t, x) ∈ D, m ∈ N, (6.38)

and thus

z0,m(t, x) = T (z0,m)(t, x) + wm(t, x) for (t, x) ∈ D, m ∈ N. (6.39)

Moreover, it follows from (6.32) and (6.34) that

‖vm‖C ≤
‖∆km(ym)−∆(z)‖C + ‖Γkm(ym, z)‖C

‖ym − z‖C
<

1

m(1 + ‖`km‖)
(6.40)

for m ∈ N. Now the relations (6.30) and (6.40) yield

‖Tkm(vm)‖C ≤ ‖Tkm‖ ‖vm‖C ≤
‖`km‖

m(1 + ‖`km‖)
<

1

m
for m ∈ N. (6.41)

Note that the expression (6.38) and the condition (6.37) guarantee the validity of
the inclusion z0,m ∈ M(`km , tkm , xkm) for m ∈ N, and thus, in view of (6.31), we
obtain

lim
m→+∞

‖Tkm(z0,m)− T (z0,m)‖C = 0. (6.42)

According to (6.41) and (6.42), it follows from (6.36) that

lim
m→+∞

‖wm‖C = 0, (6.43)
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and, by virtue of (6.37) and (6.40), the equality (6.35) implies ‖z0,m‖C < 2 for
m ∈ N. Since the sequence {‖z0,m‖C}+∞m=1 is bounded and the operator T is com-
pletely continuous (see Proposition 3.1), there exists a subsequence of {T (z0,m)}+∞m=1

which is convergent. We can assume without loss of generality that the sequence
{T (z0,m)}+∞m=1 is convergent, i. e., there exists z0 ∈ C(D;R) such that

lim
m→+∞

‖T (z0,m)− z0‖C = 0.

Then it is clear that

lim
m→+∞

‖z0,m − z0‖C = 0, (6.44)

because the functions z0,m admit the representation (6.39) and the relation (6.43)
holds. However, the estimate (6.40) is true for vm and thus, the equality (6.35)
yields

lim
m→+∞

‖zm − z0‖C = 0,

which, together with (6.37), guarantees ‖z0‖C = 1. Since the operator T is con-
tinuous and the conditions (6.43) and (6.44) are fulfilled, the relation (6.39) yields
z0 = T (z0). Consequently, it is easy to verify that z0 ∈ C∗(D;R) (see Proposi-
tion 2.1) and, by virtue of Lemma 4.1(ii), z0 is a nontrivial solution to the homo-
geneous problem (1.10), (1.20), which is a contradiction. �

Proof of Theorem 6.1. Since the problem (1.1), (1.2) has a unique solution, the
homogeneous problem (1.10), (1.20) has only the trivial solution. Therefore, the
assumptions of Lemma 6.1 are satisfied, and thus there exist r0 > 0 and k0 ∈ N
such that

‖y‖C ≤ r0(1 + ‖`k‖)
[
‖∆k(y)‖C + ‖Γk(y, 0)‖C

]
for k > k0, y ∈ C∗(D;R) (6.45)

and

‖y − u‖C ≤ r0(1 + ‖`k‖)
[
‖∆k(y)−∆0(u)‖C + ‖Γk(y, u)‖C

]
for k > k0, y ∈ C∗(D;R), (6.46)

where the operators ∆k and Γk are given by the formulas (6.28) and (6.29), respec-
tively.

If, for some k ∈ N, u0 is a solution to the problem

∂2u(t, x)

∂t ∂x
= `k(u)(t, x),

u(t, xk) = 0 for t ∈ [a, b], u(tk, x) = 0 for x ∈ [c, d]

(6.47)

then ∆k(u0) ≡ 0 and Γk(u0, 0) ≡ 0. Therefore, the relation (6.45) guarantees that,
for every k > k0, the homogeneous problem (6.47) has only the trivial solution.
Hence, for every k > k0, the problem (1.1k), (1.2k) has a unique solution uk (see
Theorem 4.1). Then we get

∆k(uk)(t, x) = −ϕk(tk) + ϕk(t) + ψk(x) for (t, x) ∈ D, k > k0,

∆0(u)(t, x) = −ϕ(t0) + ϕ(t) + ψ(x) for (t, x) ∈ D,
and

Γk(u, uk)(t, x) =

∫ t

tk

∫ x

xk

`k(u)(s, η)dηds−
∫ t

t0

∫ x

x0

`(u)(s, η)dηds+
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+

∫ t

tk

∫ x

xk

qk(s, η)dηds−
∫ t

t0

∫ x

x0

q(s, η)dηds for (t, x) ∈ D, k > k0.

Using the relations (6.3)–(6.6), we get

lim
k→+∞

(1 + ‖`k‖)
[
‖∆k(uk)−∆(u)‖C + ‖Γk(uk, u)‖C

]
= 0. (6.48)

On the other hand, it follows from the inequality (6.46) that

‖uk − u‖C ≤ r0(1 + ‖`k‖)
[
‖∆k(uk)−∆(u)‖C + ‖Γk(uk, u)‖C

]
for k > k0 (6.49)

and thus, by virtue of the relation (6.48), the condition (6.8) holds. �

Proof of Corollary 6.1. We shall show that the assumptions of Theorem 6.1 are
satisfied. Indeed, the relation (6.9) yields ‖`k‖ ≤ ‖ω‖L for k ∈ N. Therefore, it is
clear that, by virtue of the relations (6.10)–(6.13), the assumptions (6.3)–(6.6) of
Theorem 6.1 are fulfilled. It remains to show that the condition (6.1) holds, where
the numbers λk are given by the formula (6.2).

Assume that, on the contrary, the condition (6.1) does not hold. Then there
exist ε0 > 0, an increasing sequence {km}+∞m=1 of natural numbers, and a sequence
{ym}+∞m=1 such that

ym ∈M
(
`km , tkm , xkm

)
for m ∈ N (6.50)

and

max
(t,x)∈D

{∣∣∣∣∣
∫ t

tkm

∫ x

xkm

`km(ym)(s, η)dηds−
∫ t

t0

∫ x

t0

`(ym)(s, η)dηds

∣∣∣∣∣
}
≥ ε0

for m ∈ N.

(6.51)

In view of (6.50) and Notation 6.1, we get

ym(t, x) =

∫ t

tkm

∫ x

xkm

`km(zm)(s, η)dηds for (t, x) ∈ D, m ∈ N,

where zm ∈ C(D;R) and ‖zm‖C = 1 form ∈ N. Since we suppose that the operators
`k are uniformly bounded in the sense of condition (6.9), we obtain ‖ym‖C ≤ ‖ω‖L
for m ∈ N, and thus the sequence {ym}+∞m=1 is bounded in the space C(D;R). We
will show that the sequence indicated is also equicontinuous. Let ε > 0 be arbitrary
but fixed. Since the function ω is integrable on D, there exists δ > 0 such that the
relation ∫∫

E

ω(t, x)dtdx <
ε

2
(6.52)

holds for every measurable set E ⊆ D satisfying mesE < max{b−a, d− c}δ. Using
the condition (6.9), for any (t1, x1), (t2, x2) ∈ D and m ∈ N, we get∣∣∣∣∣
∫ t2

tkm

∫ x2

xkm

`km(zm)(s, η)dηds−
∫ t1

tkm

∫ x1

xkm

`km(zm)(s, η)dηds

∣∣∣∣∣ ≤
≤

2∑
k=1

∫∫
Ek

ω(s, η)dsdη,

where the measurable sets E1, E2 ⊆ D are such that mesE1 = (d− c)|t2 − t1| and
mesE2 = (b− a)|x2 − x1|. Therefore, by virtue of (6.52), we have
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|ym(t2, x2)− ym(t1, x1)| < ε

for (t1, x1), (t2, x2) ∈ D, |t2 − t1|+ |x2 − x1| < δ, m ∈ N.

Consequently, the sequence {ym}+∞m=1 is equicontinuous in the space C(D;R). There-
fore, according to the Arzelà-Ascoli lemma, we can assume without loss of generality
that the sequence indicated is convergent. Hence, there exists p0 ∈ N such that

‖ym − yp0‖C <
ε0

2(‖ω‖L + ‖`‖+ 1)
for m ≥ p0. (6.53)

Since yp0 ∈ C∗(D;R) and the relation (6.10) holds, there exists p1 ∈ N such that

max
(t,x)∈D

{∣∣∣∣∫ t

tk

∫ x

xk

`k(yp0)(s, η)dηds−
∫ t

t0

∫ x

x0

`(yp0)(s, η)dηds

∣∣∣∣} <
ε0

2

for k ≥ p1.

(6.54)

Now we choose a number M ∈ N satisfying M ≥ p0 and kM ≥ p1. It is clear that∣∣∣∣∣
∫ t

tkM

∫ x

xkM

`kM (yM )(s, η)dηds−
∫ t

t0

∫ x

x0

`(yM )(s, η)dηds

∣∣∣∣∣ ≤
≤

∣∣∣∣∣
∫ t

tkM

∫ x

xkM

`kM (yM − yp0)(s, η)dηds

∣∣∣∣∣+

∣∣∣∣∫ t

t0

∫ x

x0

`(yp0 − yM )(s, η)dηds

∣∣∣∣+
+

∣∣∣∣∣
∫ t

tkM

∫ x

xkM

`kM (yp0)(s, η)dηds−
∫ t

t0

∫ x

x0

`(yp0)(s, η)dηds

∣∣∣∣∣ for (t, x) ∈ D.

Therefore, by virtue of the conditions (6.9), (6.53), and (6.54), the last relation
yields

max
(t,x)∈D

{∣∣∣∣∣
∫ t

tkM

∫ x

xkM

`kM (yM )(s, η)dηds−
∫ t

t0

∫ x

x0

`(yM )(s, η)dηds

∣∣∣∣∣
}
≤

≤ ‖ω‖L‖yM − yp0‖C +
ε0

2
+ ‖`‖‖yp0 − yM‖C < ε0, (6.55)

which contradicts the condition (6.51).
The contradiction obtained proves the validity of the condition (6.1), and thus

all the assumptions of Theorem 6.1 are satisfied. �

To prove Corollary 6.2 we need the following lemma.

Lemma 6.2. Let the condition (6.16) and {σk}+∞k=1 be a sequence of functions from
L(D;R) such that

lim
k→+∞

∫ t

a

∫ x

c

[
σk(s, η)− σ(s, η)

]
dηds = 0 uniformly on D, (6.56)

where σ ∈ L(D;R). Then

lim
k→+∞

∫ t

tk

∫ x

xk

σk(s, η)dηds =

∫ t

t0

∫ x

x0

σ(s, η)dηds uniformly on D. (6.57)

Proof. It is easy to verify that∫ t

tk

∫ x

xk

σk(s, η)dηds−
∫ t

t0

∫ x

x0

σ(s, η)dηds =



DARBOUX PROBLEM FOR HYPERBOLIC EQUATIONS 19

=

∫ tk

a

∫ xk

c

[
σk(s, η)− σ(s, η)

]
dηds+

∫ t

a

∫ x

c

[
σk(s, η)− σ(s, η)

]
dηds+

+

(∫ tk

a

∫ xk

c

σ(s, η)dηds−
∫ t0

a

∫ x0

c

σ(s, η)dηds

)
+

∫ t0

tk

∫ x

c

σ(s, η)dηds−

−
∫ tk

a

∫ x

c

[
σk(s, η)− σ(s, η)

]
dηds+

∫ t

a

∫ x0

xk

σ(s, η)dηds−

−
∫ t

a

∫ xk

c

[
σk(s, η)− σ(s, η)

]
dηds for (t, x) ∈ D.

Therefore, using the assumptions (6.16) and (6.56), we get the validity of the con-
dition (6.57). �

Proof of Corollary 6.2. We shall show that the assumptions of Corollary 6.1 are
satisfied. Indeed, according to Lemma 6.2, the assumptions (6.14)–(6.16) guar-
antee the validity of the conditions (6.10) and (6.11). On the other hand, the
condition (6.13) is obviously satisfied, because the function ϕ is continuous and
tk → t0 when k tends to +∞. �

To prove Corollary 6.4 we need the following statement, which is a two-dimensional
analogy of the well-known Krasnoselskii-Krein’s lemma.

Lemma 6.3. Let p, pk ∈ L(D;R) and let α, αk : D → R be measurable and essen-
tially bounded functions for (k ∈ N). Assume that the relations (6.17) and (6.18)
are satisfied, and

lim
k→+∞

ess sup
{
|αk(t, x)− α(t, x)| : (t, x) ∈ D

}
= 0. (6.58)

Then

lim
k→+∞

∫ t

a

∫ x

c

[
pk(s, η)αk(s, η)− p(s, η)α(s, η)

]
dηds = 0

uniformly on D. (6.59)

Proof. Without loss of generality we can assume that

|p(t, x)| ≤ ω(t, x) for a. e. (t, x) ∈ D. (6.60)

Let ε > 0 be arbitrary but fixed. According to (6.58), there exists k0 ∈ N such that∫∫
D
ω(t, x)|αk(t, x)− α(t, x)|dtdx < ε

4
for k ≥ k0. (6.61)

Since the function α is measurable and essentially bounded, there exists a function
w ∈ C(D;R), which has continuous derivatives up to the second order and such
that ∫∫

D
ω(t, x)|α(t, x)− w(t, x)|dtdx < ε

4
. (6.62)

For any k ∈ N, we put

fk(t, x) =

∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
dηds for (t, x) ∈ D.

Clearly, the condition (6.18) can be rewritten in the form

lim
k→+∞

‖fk‖C = 0. (6.63)
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It can be verified by direct computation that∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
w(s, η)dηds = fk(t, x)w(t, x)−

−
∫ t

a

fk(s, x)w′[1](s, x)ds−
∫ x

c

fk(t, η)w′[2](t, η)dη+

+

∫ t

a

∫ x

c

fk(s, η)w′′[12](s, η)dηds for (t, x) ∈ D, k ∈ N.

Consequently, using (6.63), we get

lim
k→+∞

∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
w(s, η)dηds = 0 uniformly on D.

Hence, there exists k1 ≥ k0 such that∣∣∣∣∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
w(s, η)dηds

∣∣∣∣ < ε

4
for (t, x) ∈ D, k ≥ k1. (6.64)

On the other hand, it is clear that, for any (t, x) ∈ D and k ∈ N,∫ t

a

∫ x

c

[
pk(s, η)αk(s, η)− p(s, η)α(s, η)

]
dηds =

=

∫ t

a

∫ x

c

pk(s, η)
[
αk(s, η)− α(s, η)

]
dηds+

+

∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
w(s, η)dηds+

+

∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

][
α(s, η)− w(s, η)

]
dηds.

Therefore, in view of (6.17), (6.60)–(6.62), and (6.64), we get∣∣∣∣∫ t

a

∫ x

c

[
pk(s, η)αk(s, η)− p(s, η)α(s, η)

]
dηds

∣∣∣∣ ≤
≤
∫∫
D
ω(s, η)|αk(s, η)− α(s, η)|dsdη+

+

∣∣∣∣∫ t

a

∫ x

c

[
pk(s, η)− p(s, η)

]
w(s, η)dηds

∣∣∣∣+
+ 2

∫∫
D
ω(s, η)|α(s, η)− w(s, η)|dsdη <

<
ε

4
+
ε

4
+ 2

ε

4
= ε for (t, x) ∈ D, k ≥ k1 ,

that is, the relation (6.59) is true. �

Proof of Corollary 6.4. Let the operator ` be defined by the formula (2.1). Put

`k(v)(t, x) = pk(t, x)v
(
τk(t, x), µk(t, x)

)
for a. e. (t, x) ∈ D and all v ∈ C(D;R), k ∈ N. (6.65)
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We will show that the condition (6.14) is satisfied. Indeed, let y ∈ C∗(D;R) be
arbitrary but fixed. It is clear that the conditions (6.19) and (6.20) guarantee the
validity of the relation (6.58), where

αk(t, x) = y
(
τk(t, x), µk(t, x)

)
, α(t, x) = y

(
τ(t, x), µ(t, x)

)
for a. e. (t, x) ∈ D and all k ∈ N. Therefore, it follows from Lemma 6.3 that the
condition (6.59) holds, i. e., the condition (6.14) is fulfilled. Moreover, by virtue of
the relation (6.17), the condition (6.9) is satisfied.

Consequently, the assertion of the corollary follows from Corollary 6.2. �

Proof of Corollary 6.5. Notice that, according to Corollary 5.2, the problems (6.21)–
(1.2) and (6.21k)– (1.2k) have unique solutions u and uk, respectively.

Let the operators ` and `k be defined by the formulas

`(v)(t, x) = p(t, x)v(t, x) for a. e. (t, x) ∈ D and all v ∈ C(D;R), (6.66)

and

`k(v)(t, x) = pk(t, x)v(t, x) for a. e. (t, x) ∈ D, all v ∈ C(D;R), k ∈ N, (6.67)

respectively. Obviously,

‖`k‖ = ‖pk‖L for k ∈ N. (6.68)

Therefore, it is clear that the assumptions (6.4)–(6.6) of Theorem 6.1 are satisfied.
In order to apply Theorem 6.1, it remains to show that the condition (6.1) and
(6.3) are fulfilled.

It is easy to see that∣∣∣∣∫ t

tk

∫ x

xk

[
pk(s, η)− p(s, η)

]
dηds

∣∣∣∣ ≤
≤
∣∣∣∣∫ t

tk

∫ x

xk

pk(s, η)dηds−
∫ t

t0

∫ x

x0

p(s, η)dηds

∣∣∣∣+
+

∣∣∣∣∣
∫ tk

t0

∫ d

c

|p(s, η)|dηds

∣∣∣∣∣+

∣∣∣∣∣
∫ xk

x0

∫ b

a

|p(s, η)|dsdη

∣∣∣∣∣ for (t, x) ∈ D, k ∈ N.

Therefore, the conditions (6.22) and (6.23) guarantee that

lim
k→+∞

%k‖fk‖C = 0, (6.69)

where

fk(t, x) =

∫ t

tk

∫ x

xk

[
pk(s, η)− p(s, η)

]
dηds for (t, x) ∈ D, k ∈ N. (6.70)

We first note that, for an arbitrary y ∈ C(D;R), we have∣∣∣∣∣
∫ t

tk

∫ x

xk

`k(y)(s, η)dηds−
∫ t

t0

∫ x

x0

`(y)(s, η)dηds

∣∣∣∣∣ ≤
≤
∣∣∣∣∫ t

tk

∫ x

xk

[
pk(s, η)− p(s, η)

]
y(s, η)dηds

∣∣∣∣+
+

∣∣∣∣∣
∫ tk

t0

∫ d

c

|p(s, η)y(s, η)|dηds

∣∣∣∣∣+
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+

∣∣∣∣∣
∫ xk

x0

∫ b

a

|p(s, η)y(s, η)|dsdη

∣∣∣∣∣ for (t, x) ∈ D, k ∈ N. (6.71)

Moreover, for an arbitrary y ∈ C∗(D;R), we can verify by direct computation that∫ t

tk

∫ x

xk

[
pk(s, η)− p(s, η)

]
y(s, η)dηds = fk(t, x)y(t, x)−

−
∫ t

tk

fk(s, x)y′[1](s, x)ds−
∫ x

xk

fk(t, η)y′[2](t, η)dη+

+

∫ t

tk

∫ x

xk

fk(s, η)y′′[12](s, η)dηds for (t, x) ∈ D, k ∈ N. (6.72)

Let k ∈ N and y ∈ M(`k, tk, xk) be arbitrary but fixed. Then, by virtue of
Notation 6.1 and Lemma 4.1, we get

|y(t, x)| =
∣∣∣∣∫ t

tk

∫ x

xk

pk(s, η)z(s, η)dηds

∣∣∣∣ ≤ %k for (t, x) ∈ D, (6.73)

|y′[1](t, x)| =
∣∣∣∣∫ x

xk

pk(t, η)z(t, η)dη

∣∣∣∣ ≤ ∫ d

c

|pk(t, η)|dη

for a. e. t ∈ [a, b] and all x ∈ [c, d], (6.74)

|y′[2](t, x)| =
∣∣∣∣∫ t

tk

pk(s, x)z(s, x)ds

∣∣∣∣ ≤ ∫ b

a

|pk(s, x)|ds

for all t ∈ [a, b] and a. e. x ∈ [c, d], (6.75)

and

|y′′[12](t, x)| = |pk(t, x)z(t, x)| ≤ |pk(t, x)| for a. e. (t, x) ∈ D. (6.76)

Using relations (6.73)–(6.76), it follows from the inequalities (6.71) and (6.72) that∣∣∣∣∫ t

tk

∫ x

xk

`k(y)(s, η)dηds−
∫ t

t0

∫ x

x0

`(y)(s, η)dηds

∣∣∣∣ ≤
≤ 4%k‖fk‖C + %k

∣∣∣∣∣
∫ tk

t0

∫ d

c

|p(s, η)|dηds

∣∣∣∣∣+
+ %k

∣∣∣∣∣
∫ xk

x0

∫ b

a

|p(s, η)|dsdη

∣∣∣∣∣ for (t, x) ∈ D, k ∈ N.

Therefore, according to the relations (6.23) and (6.69), the condition (6.1) holds,
where the numbers λk are given by the formula (6.2).

Now let y ∈ C∗(D;R) be arbitrary but fixed. Put

%0 = ‖y‖C + max

{∫ b

a

|y′[1](s, x)|ds : x ∈ [c, d]

}
+

+ max

{∫ d

c

|y′[2](t, η)|dη : t ∈ [a, b]

}
+ ‖y′′[12]‖L. (6.77)
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Then the inequalities (6.71) and (6.72) imply that∣∣∣∣∫ t

tk

∫ x

xk

`k(y)(s, η)dηds−
∫ t

t0

∫ x

x0

`(y)(s, η)dηds

∣∣∣∣ ≤
≤ %0

(
‖fk‖C +

∣∣∣∣∣
∫ tk

t0

∫ d

c

|p(s, η)|dηds

∣∣∣∣∣+
+

∣∣∣∣∣
∫ xk

x0

∫ b

a

|p(s, η)|dsdη

∣∣∣∣∣
)

for (t, x) ∈ D, k ∈ N.

According to the relations (6.23) and (6.69), the last inequality yields the validity
of the condition (6.3).

Consequently, the assertion of the corollary follows from Theorem 6.1. �

Proof of Corollary 6.6. We will show that all the assumptions of Corollary 6.5 are
satisfied. Indeed, in view of the relations (6.12) and (6.16), the assumptions (6.5),
(6.6), and (6.23) are satisfied. Moreover, by virtue of the relations (6.15), (6.16),
and (6.18), Lemma 6.2 guarantees the validity of the conditions (6.4) and (6.22). �

7. Counter-examples

Example 7.1. Let p ∈ L(D;R+) be such that∫ b

t0

∫ d

x0

p(s, η)dηds = 1

and let the operator ` be defined by the relation

`(v)(t, x) = p(t, x)v(b, d) for a. e. (t, x) ∈ D and all v ∈ C(D;R).

Then the condition (5.2) with α = 1 is satisfied for every m ∈ N and v ∈ C(D;R).
Moreover, ∫ b

t0

∫ d

x0

pj(s, η)dηds = 1 for every j ∈ N,

where the function pj is given by the formula (5.4).
On the other hand, the problem (1.10), (1.20) has a nontrivial solution

u(t, x) =

∫ t

a

∫ x

c

p(s, η)dηds for (t, x) ∈ D.

This example shows that the assumption α ∈ [0, 1[ in Theorem 5.1 cannot be
replaced by the assumption α ∈ [0, 1], and the strict inequality∫ b

t0

∫ d

x0

pj(s, η)dηds < 1

in Corollary 5.1 cannot be replaced by the nonstrict one. The optimality of the
other strict inequalities in (5.3) can be justified analogously.

Example 7.2. Let

gk(t) = k cos(k2t), hk(t) = k sin(k2t) for t ≥ 0, k ∈ N, (7.1)
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and

yk(t) = −k
∫ t

0

exp

(
sin(k2t)

k
− sin(k2s)

k

)
sin(k2s)ds for t ≥ 0, k ∈ N. (7.2)

It is not difficult to verify that, for every k ∈ N,

y′k(t) = gk(t)yk(t) + hk(t) for t ≥ 0 (7.3)

and
|yk(t)| ≤ 1 + e+ te2 for t ≥ 0, (7.4)

because

yk(t) =
1

k
cos(k2t)− 1

k
exp

(
sin(k2t)

k

)
+

+
1

2

∫ t

0

exp

(
sin(k2t)

k
− sin(k2s)

k

)
ds+

+
1

2

∫ t

0

exp

(
sin(k2t)

k
− sin(k2s)

k

)
cos(2k2s)ds for t ≥ 0.

Moreover,

lim
k→+∞

yk(t) =
t

2
for t ≥ 0. (7.5)

Now, let p ≡ 0, q ≡ 0, t0 = a, x0 = c, ϕ ≡ 0, ψ ≡ 0, and

τ(t, x) = t, µ(t, x) = x for (t, x) ∈ D.
For any k ∈ N, we put tk = a, xk = c, ϕk ≡ 0, ψk ≡ 0,

pk(t, x) = gk(t− a)gk(x− c) for (t, x) ∈ D,

qk(t, x) = hk(t− a)y′k(x− c) + y′k(t− a)hk(x− c)−

− hk(t− a)hk(x− c) for (t, x) ∈ D,
and

τk(t, x) = t, µk(t, x) = x for (t, x) ∈ D.
According to (7.1), (7.3), and (7.4), it is clear that the assumptions of Theo-

rem 6.1 are satisfied except of (6.9). Let `, `k ∈ L(D) be operators defined by (2.1)
and (6.65), respectively. Then, it is not difficult to verify that the assumptions of
Corollary 6.1 are fulfilled except of (6.17).

On the other hand,
u(t, x) = 0 for (t, x) ∈ D

and
uk(t, x) = yk(t− a)yk(x− c) for (t, x) ∈ D, k ∈ N

are solutions to the problems (1.1′), (1.2) and (1.1′k), (1.2k), respectively, as well as
the problems (1.1), (1.2) and (1.1k), (1.2k), respectively. However, in view of (7.5),
we get

lim
k→+∞

(
uk(t, x)− u(t, x)

)
= lim
k→+∞

yk(t− a)yk(x− c) =

=
(t− a)(x− c)

4
for (t, x) ∈ D,

that is, the relation (6.8) is not true.
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This example shows that the assumption (6.17) in Corollary 6.1 and the assump-
tion (6.9) in Theorem 6.1 are essential and they cannot be omitted.
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[22] J. Šremr: Absolutely continuous functions of two variables in the sense of Carathéodory.
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[23] J. Šremr: On the characteristic initial value problem for linear partial functional-differential
equations of hyperbolic type. Proc. Edinb. Math. Soc. (2) 52 (2009), 241-262. Zbl 1171.35069

[24] G. P. Tolstov: On the mixed second derivative. Mat. Sb. 24 (66) (1949), 27–51, in Russian.

Zbl 0041.38209



26 JIŘÍ ŠREMR
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