Introduction to Mass Spectrometry

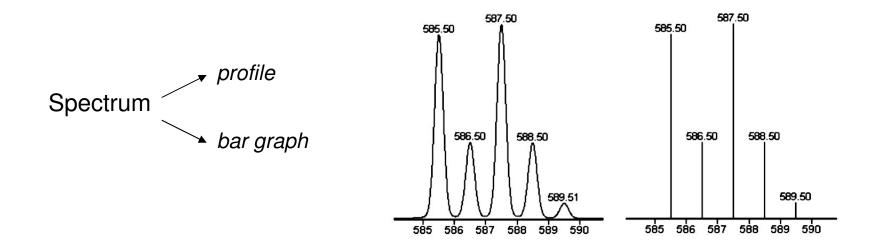
Josef Cvačka

Mass spectrometry

Mass spectrometry is a physico-chemical method, which uses electric and magnetic fields to separate charged particles with the aim to determine their weights (the m/z ratio)

Qualitative MS:

>characterization (identification) of organic compounds based on molecular weight of ions, adducts and fragments

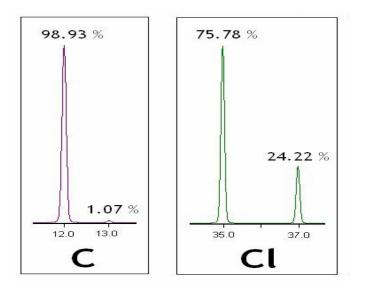

>studying the reactions of ions in the gas phase

Quantitative MS:

>quantification of organic compounds in the samples based on the intensity of the detector response for the selected ion or group of ions

Mass spectrum

Mass spectrum: A 2D graphical representation of signal intensity versus m/z values (the intensity scale is usually normalized 0-100%).



<u>Profile (continuum)</u>: record of MS detector, allows determination of peak width (resolution)


<u>Bar graph (centroides)</u>: transformed spectrum for easier reading (position = peak center of gravity, intensity = peak height or area)

<u>Isotopes</u>

Isotopes: atoms of chemical element that have the same number of protons but different numbers of neutrons (different weights)

<u>Natural mixtures of isotopes</u>: Relative proportions of isotopes in the elements is constant.

The isotopic composition of a polyatomic ion is given by combination of the isotopes in the individual atoms that form it.

Units of mass

Base unit of mass: kilogram kg

Kilogram is equal to the mass of the *International Prototype Kilogram* (IPK) stored in a vault at the International Bureau of Weights and Measures in Sèvres, France.

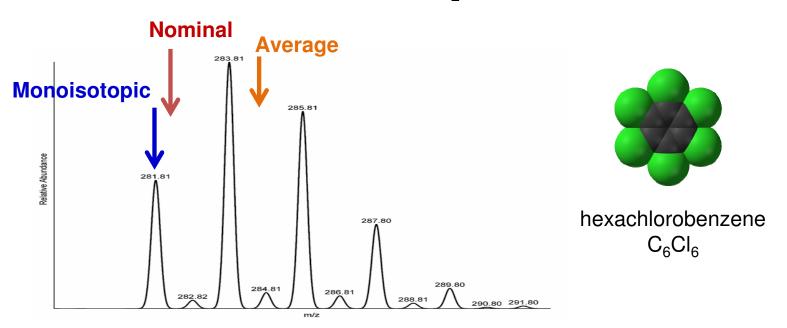
Non-SI unit: atomic mass unit u

It is defined as 1/12 of the rest mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state. It has a value of $1.660538921 \times 10^{-27}$ kg.

Non-SI unit: dalton Da

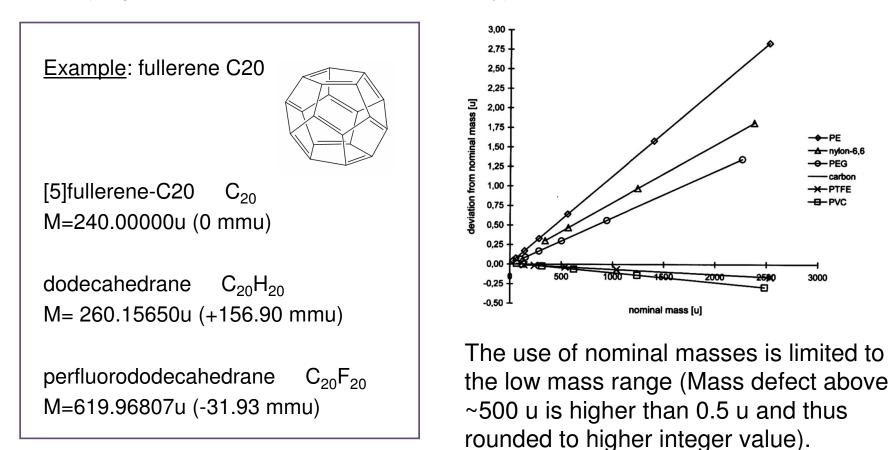
Dalton is used instead of atomic mass units in biological MS for higher weight. It is not an SI unit.

<u>quantity:</u> m/z

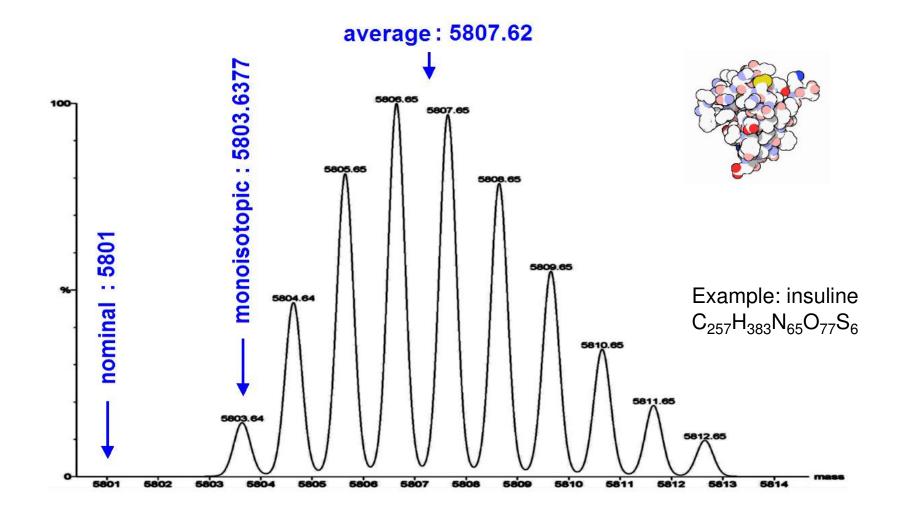

m/z is a dimensionless quantity used to describe ions in the spectrum. The unit **thomson (Th)** is sometimes used.

Masses in MS

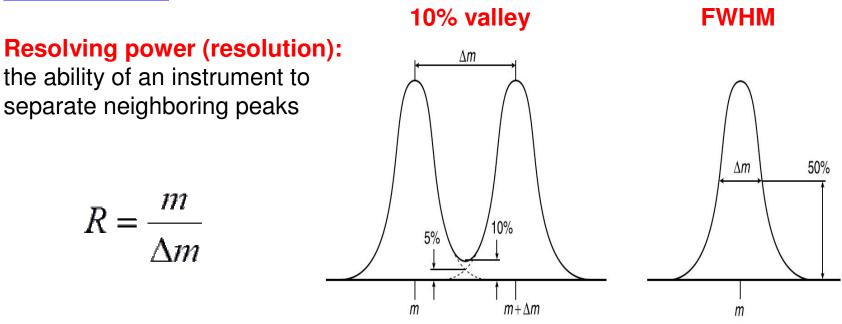
Nominal Mass: mass calculated from integer masses of the most abundant naturally occurring isotopes (e.g., CO_2 : $12u + 2 \times 16u = 44 \text{ u}$)


Monoisotopic Mass: mass calculated from exact masses of the most abundant naturally occurring isotopes (e.g., CO_2 : 12.0000 + 2 x 15.9949 = 43.9898)

Average Mass: mass calculated from weighted average masses of the isotopes based on their natural abundances (e.g., CO_2 : 12.01 + 2 x 16.00 = 44.01)

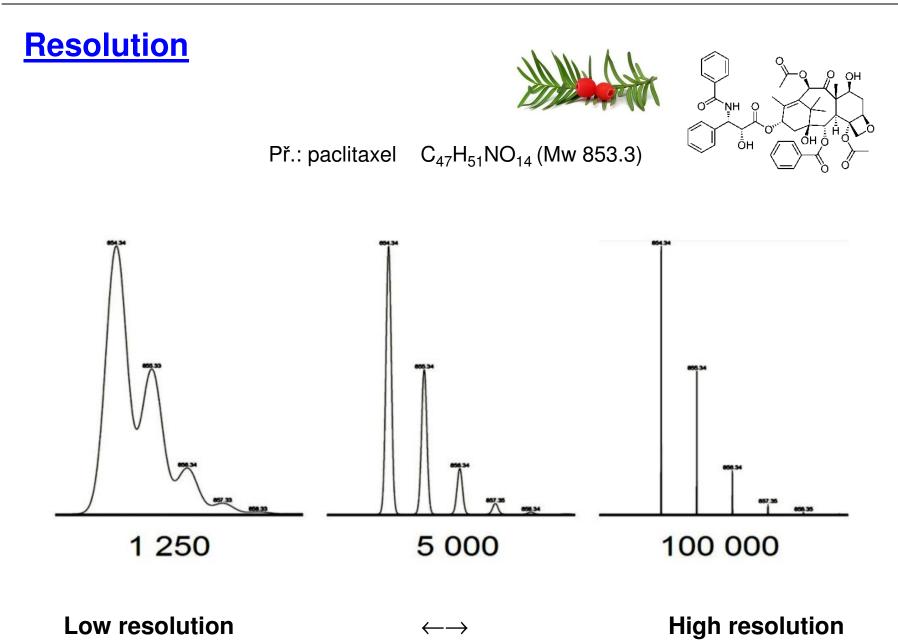


Deviations from nominal mass – Mass defect


The exact masses differ from the nominal masses. Depending on the elements present the masses are either higher (positive mass defect, mass sufficiency) or lower (negative mass defect, mass deficiency).

Deviations from nominal mass – Mass defect

Resolution


Two definitions of resolution:

Resolution – 10% valley:

the ratio of an ion mass and the mass difference between equally high peaks when the valley separating their maxima is at 10 % of their intensity. Used for sector instruments (constant resolution in the entire mass range).

Resolution – FWHM (Full width at half maximum):

The ratio of an ion mass and its peak width at half height. It is used for quadrupole, ion trap and TOF analyzers (constant peak width).

Resolving power of mass analyzers

Maximum resolving power of various mass analyzers

Time of flight analyzer (oaTOF): **R = 60 000** FWHM (Maxis 4G, Bruker)

Sector double focusing analyzer:

R = 80 000 10% valley (AutoSpec Premier, Waters)

High-Field Orbitrap **R = 240 000** FWHM (m/z 400, Orbitrap Elite, Thermo)

Ion cyclotron resonance (FT-ICR) **R = 600 000** FWHM (calculation for m/z 400 a 1s scan, Solarix 18T, Bruker)

Mass accuracy

Mass accuracy – is an error, i.e., the difference between the measured mass and calculated correct value in absolute (mmu) or relative (ppm) mass units

$$E_{mmu} = 10^{3} (M_{measured} - M_{calculated}) \qquad E_{ppm} = 10^{6} \frac{(M_{measured} - M_{calculated})}{M_{calculated}}$$

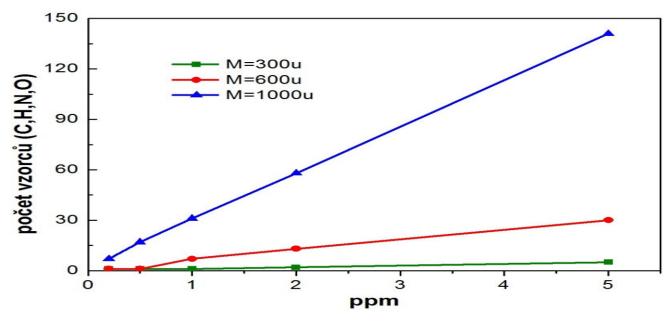
Calculation of the correct ion mass:

Correct isotope masses

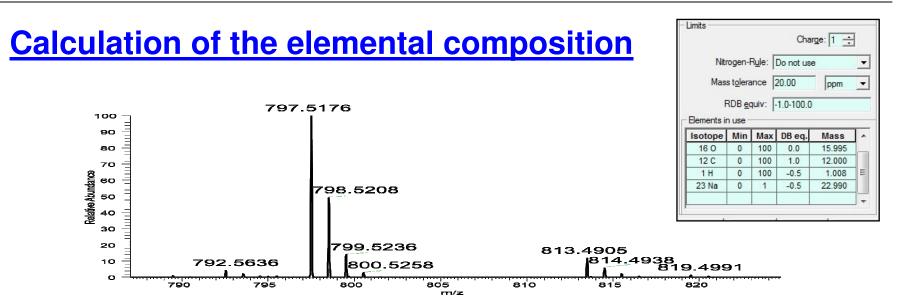
G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337-676, 2003

Correct charge

Mass of electron (0.5486 mmu) is important !


Example: naphthalene

 $M ([C_{10}H_8]^{-\bullet}) = 128.063149 (+4.3 \text{ ppm})$ $M (C_{10}H_8) = 128.0626$ $M ([C_{10}H_8]^{+\bullet}) = 128.062052 (-4.3 \text{ ppm})$


Calculation of the elemental composition

Each elemental composition has a unique mass. At infinitely high mass accuracy we get only the correct composition.

Lower mass accuracy = more possible formulas Higher weight at the same mass accuracy = more possible formulas

C: 0-100 H: 0-100 N: 0-100 O: 0-100

tolerance 5 ppm (3 composition)

Elemental	compositi	on search	on mas:	s 797.52
m/z = 792.				
m/z	Theo.	Delta	RDB	Composition
	Mass	(ppm)	equiv.	
797.5176	797.5174	0.20	8.5	C45 H74 O10 Na
	797.5198	-2.81	11.5	C47H73O10
	797.5140	4.55	20.5	C 54 H 69 O 5

tolerance 20 ppm (13 compositions)

m/z= 792.52-802.52							
m/z	Theo.	Delta	RDB	Composition			
	Mass	(mmu)	equiv.				
797.52	797.52	0.16	8.5	C45 H74 O10 Na			
	797.52	-2.24	11.5	C47 H73 O10			
	797.51	3.63	20.5	С 54 Н 69 О 5			
	797.52	-5.71	-0.5	C ₃₈ H ₇₈ O ₁₅ Na			
	797.51	6.03	17.5	C ₅₂ H ₇₀ O ₅ Na			
	797.53	-8.12	2.5	C40 H77 O15			
	797.53	-9.22	21.5	C 56 H 70 O 2 Na			
	797.51	9.50	29.5	С 61 Н 65			
	797.53	-11.63	24.5	C 58 H 69 O 2			
	797.51	11.91	26.5	C 59 H 66 Na			
	797.50	13.01	7.5	C43H73O13			
	797.53	-15.10	12.5	C49H74O7Na			
	797.50	15.42	4.5	C41 H74 O13 Na			

Mass scale calibration

Mass scale of each mass spectrometer must be calibrated to obtain correct results.

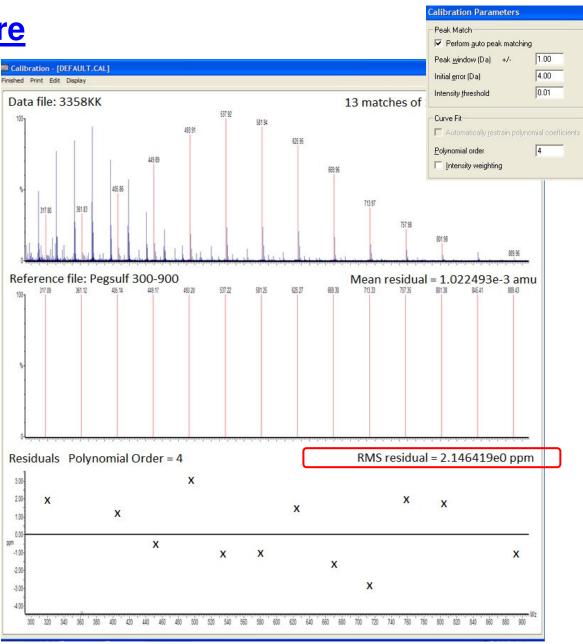
Calibration is performed by measuring spectrum of a calibration substance (mixture) and subsequent correlation of the measured and calculated (i.e. correct) m/z values

Types of calibrations :

External calibration

Calibration is carried out before measurement of the sample. Measurements of the calibrant and sample spectra are <u>carried out separately</u>.

Internal calibration


Calibration is carried out from a spectrum containing peaks of both sample and calibrant. Measurements of the calibrant and sample spectra are <u>carried out</u> <u>simultaneously</u>. Internal calibration provides more accurate results.

Calibration procedure

Recorded spectrum

Calibration spectrum (calculated correct *m/z* values)

Mass error for individual peaks

3. Miniškola hmotnostní spektrometrie, November 14-15, 2011

Thank you for your attention !