

AB SCIEX TripleTOF[™] 5600 Selected applications in proteomics

Tomáš Korba, AB SCIEX, Praha

Agenda

- Y The AB SCIEX TripleTOF[™] 5600
 - introduction to the reasoning and technology
- Y Qualitative & Quantitative Workflows
 - Protein identification
 - Relative quantitation label and labelfree workflows
 - Absolute quantitation

The AB SCIEX TripleTOF[™] 5600 System

- Y Highest Sensitivity
 - In MS and MS/MS mode
- Y SmartSpeed[™] 100 Hz Acquisition
 - 10 ms accumulation times
- Y High Resolution
 - ~30 000 at all speeds
- Y EasyMass[™] Accuracy
 - ~1 ppm RMS
- Y Linear Dynamic Range
 - ~ 4 orders
- Ÿ Reliability
 - 3-year standard warranty

High Resolution at the Highest Speed SmartSpeed[™] Acquisition - Bovine Insulin, 6+ Charge State

High Resolution at the Highest Speed MS/MS of Clomipramine using Different Accumulation Times

9

High Resolution at Low m/z 10x More Data Points Across a Peak than 4 GHz ADC

Mass Accuracy and Stability

EasyMass[™] Accuracy with External Calibration

Y Novel calibration methodology maintains calibration without recalibration or internal calibration – easy to use

High Sensitivity and Wide Linear Range Quantitation of Fenoterol in Whole Blood using TOF-MS/MS

Actual Concentration	Num. Values	Mean	Standard Deviation	% CV	Accuracy	
0.1	3 of 3	9.93E-02	9.42E-03	9.48	99.3	
0.25	3 of 3	2.42E-01	1.44E-02	5.95	96.76	
0.5	3 of 3	5.28E-01	6.83E-03	1.29	105.66	
1	3 of 3	1.10E+00	4.48E-02	4.07	110.23	
2	3 of 3	1.96E+00	7.56E-02	3.87	97.79	
5	3 of 3	5.00E+00	3.06E-01	6.12	100.04	
10	3 of 3	9.59E+00	3.29E-01	3.43	95.92	
50	3 of 3	5.09E+01	1.65E+00	3.24	101.73	
100	3 of 3	9.26E+01	3.76E+00	4.06	92.57	

High Sensitivity = High Speed Acquisition

- Y Combined high mass accuracy and resolution with high sensitivity allows for very high acquisition speed with good S/N
 - More MS/MS per unit time
 - Up to 100 scans per second
 - 20,000 resolution (high sensitivity mode)
 - 30,000 resolution (high resolution mode)
 - 50 ms TOF MS/MS accumulation time on 100 amol with excellent S/N

Ÿ

Powerful Workflows Enable Qualitative and Quantitative Data Acquisition

Agenda

Ÿ

Y Qualitative & Quantitative Workflows

- Protein identification

EXPLORE Workflow for Protein ID

- Y The TripleTOF[™] 5600 System has high sensitivity and speed for in depth exploration of complex samples
- Y Up to 50 precursors in a second can be selected and high resolution, accurate-mass MS/MS is acquired

EXPLORE Workflow for Protein ID

- Y IDA Workflow
- Y Object is to spend as much time in MS/MS mode as possible
 - Cycle time is fixed
 - User specifies the maximum number of precursors and minimum accumulation time
 - Accumulation time will be dynamically distributed across available precursors
- Methods are turnkey protein ID template methods provided with the software
 - Prot simple IDA
 - Prot complex IDA

High Resolution MS and MS/MS Spectra PeakView™ Software

Protein and Peptide Identifications Yeast Cell Lysate

AB SCIEX

- Single injections of yeast were run using varied gradient lengths and varied loading amounts
- Y As sample amount is increased and gradient is shortened, the system acquires more MS/MS data in order to keep up with sample complexity

Fast Acquisition of MS/MS Spectra

- Y TIC of Experiment 4 (2000 ng sample with 30 min gradient) shows how peptide rich the chromatogram is
- Y The number of MS/MS obtained in each cycle is computed across the gradient
- In this experimental case, the average number of MS/MS is 34 spectra per sec with some cycles hitting the maximum of 50 MS/MS per sec

High Mass Accuracy at High Acquisition Rates

- Yeast whole cell lysate run with a 60 min gradient, 2000 ng on column
- Processed with ProteinPilot™ Software 4.0
- Y RMS error is 1.7 ppm across all the peptides detected, including the low abundant species

Mass Error Summary Statistics Table

Std.	Deviation	RMS	Average Error
Delta m/z error	0.00126	0.00126	0.00001
Delta ppm error	1.72	1.72	-0.03
Delta Sqrt m/z error	2.49E-05	2.49E-05	2.62E-08

Agenda

Ÿ

Y Qualitative & Quantitative Workflows

- Relative quantitation – label and labelfree workflows

Protein Quantitation in Arabidopsis Leaf Extracts Quantify the Proteomics Effects of a Gene Mutation Study in Plants

- Y 10 SCX peptide fractions were collected then subjected to online RP-nanoLC-MS/MS
- Y ~ 200 500 ng total protein/injection for each nanoLC-MS/MS acquisition

*Collaboration with Chen et al, University of Florida

iTRAQ Workflow

3**22**

+TOF Product (677.4): Experiment 2, 42.951 min from 6P_51101_Enh.wiff

Protein Quantitation in Arabidopsis Leaf Extracts

Quantify the Proteomics Effects of a Gene Mutation Study in Plants

samples]

 $\frac{1}{34}$ 60 min nanoLC seperation

High Resolution TOF MS & MS/MS Data

High Resolution MS/MS Data for Quant Amine Labeling Reagents for Protein Expression Analysis

- Y 40 GHz Multichannel TDC detector collects ion counts at 25 ps binsizes delivering enough points across the reporter ions peaks for good resolution
- Y Benefiting from high resolution at low mass, the reporter ions are well resolved from fragments close in mass

High Speed Acquistion of MS/MS For Greatest Depth of Coverage

Single Table Summary of All Results

Data Level	FDR Type	FDR	ID Yield
		1%	2259
	Local	5%	2389
D		10%	2448
Protein		1%	2546
	Global	5%	2763
		10%	2973
		1%	20571
	Local	5%	24597
		10%	26269
Distinct peptide	Global	1%	26467
		5%	31571
		10%	35487
		1%	119283
	Local	5%	140095
Curatural		10%	150329
Spectral		1%	151533
	Global	5%	184299
		10%	201843

- 15 MS/MS per second
- Integrated FDR report

More MS/MS and powerful search engine yields deep proteome coverage

High Confidence in Quantitation

- Y High labeling efficiency
 - 96.6% on N-term sites
 - 99.2% on Lys residues
- Y High sensitivity in low mass region for good ion statistics
- Y Over 90% of confidently identified peptides have valid & quantifiable ratios

/lost Frequent	Single	Features
----------------	--------	----------

Rank	Feature	Exact Delta	#	Fraction of Sequence Signal
1	iTRAQ8plex@N-term	304.2054	3013	0.966
2	iTRAQ8plex(K)	304.2054	2374	0 .9 92
3	Oxidation(M)	15.9949	927	0.488
4	iTRAQ8plex(Y)	304.2054	597	0.385
5	Deamidated(N)	0.9840	160	0.124
6	Methylthio(C)	45.9877	158	0.949

Label	Median Signal			
113	859			
114	833			
115	1033			
116	945			
117	1151			
118	847			
119	983			
121	688			

Ratio Pair	Percent with Ratios
114:113	92.8%
115:113	93.8%
116:113	93.6%
117:113	94.9%
118:113	92.9%
119:113	94.3%
121:113	90.9%

WZUIW AD SUIEA

Dynamic Ranges of Isobaric-Tagging Quantitation Extending Measurable Differences Between Reporter Ions

- Expanded view of reporter ions for peptide VHSGNK from serine carboxypeptidase
- Here shown is a 30 x difference in reporter ion measurement

High Analytical Reproducibility Quantitation of LOX2 Protein

Ÿ 32 peptides quantified for LOX2 Ŷ Intra-sample 15.6 % CV between top 20 N 2 \mathbf{c} \mathbf{c} Gene mutation ene mutation Gene mutation ene mutation Gene mutation ene mutation peptides cntrl Ŏ () Ŏ Protein Representative log log log log log log log Species Name 114:113 115:113 116:113 117:113 118:113 119:113 121:113 Ν Accession 24 gi|18407921 bidopsis thaliaLOX2 (LIPOXYGENASE 2) [Arabidopsis thaliana -0.028 -0.656 -0.7240.220 0.256 0.420 0.304 15.4% CV 23.6% CV 14.3% CV 11.6% CV Mutant 1 Mutant 2 Mutant 3 cntrl

Phosphopeptide Identification & Quantitation

Protein Kinase Phosphopeptide Characterization using SILAC

A'B SCIEX

Agenda

Ÿ

Y Qualitative & Quantitative Workflows

- Relative quantitation – label and labelfree workflows

Profile Workflow

- In "Profiling" mode the AB SCIEX TripleTOF[™] 5600 System delivers highresolution MS quantification of virtually every compound in the sample, especially when fast chromatography is used
- Because choosing Quant **OR** Qual is a thing of the past, high-resolution, accurate-mass MS/MS data confirms the identity of the compounds
- Y The data can be mined retrospectively to continue to yield information way into the future

EXPLORE / PROFILE Workflows

Ÿ **IDA** Workflow

.

Cycle time is fixed

- User specifies the maximum number of precursors and minimum accumulation time
- Accumulation time will be dynamically distributed across available precursors

High Resolution MS Quantitation Accurate Mass and High Resolution XIC Increase Specificity

Protein/Peptide Profiling in PeakView™ Software

Label-free Approach to Peptide Quantitation and MS/MS Sequencing

© 2010 AB SCIEX

AB SCIEX

TOF-MS Quantitation of Grb2 PeakView[™] Software

XIC's for all Grb2 Peptides with High Quality MS/MS Identifications

XIC's for all Grb2 Peptides with High Quality MS/MS Identifications

Analytical Replicates

Principle Component Analysis; What are the Ds

Direct Imports into MarkerView[™] Software

Standard Protein Description sPRG 2009 Sample

- Y ABRF sPRG2009 proteomic standard mixture contains 5 target and a set of heavy labeled peptide analogues in medium complexity matrix
- Y Developed to assess quantitative reproducibility across multiple instruments and labs.

Protein	Accession #	Amount of Protein Analyzed (fmol)	Light/Heavy Ratio
Ubiquitin - UBIQ	P62988.1	10	10
HistidyI-tRNA synthetase - SYHC	P12081.2	5	3
Albumin - ALBU	P02768.2	1	1
Ribosyldihydronicotinamide dehydrogenase - NQO2	P16083.4	1	1
Peroxiredoxin 1 - PRDX1	P06830.1	0.1	0.1

Qualitative Analysis of Standard Protein Sample

- The MS/MS data from the TripleTOF[™] 5600 system was searched using the ProteinPilot[™] Software
- 32 proteins and 501 unique peptides were identified at a 1% global false discovery rate
- High sequence coverage was obtained for the protein targets

ProteinPilot™	
© 2019 A& SCHI	AB SCIEX

Protein	Sequence Coverage at > 50% Confidence
Ubiquitin - UBIQ	87%
HistidyI-tRNA synthetase - SYHC	74%
Albumin - ALBU	68%
Ribosyldihydronicotinamide dehydrogenase - NQO2	77%
Peroxiredoxin 1 - PRDX1	53%

Comparing Quantitative Quality

Y A comparison between the quantitation obtained from extracted ion chromatograms (XICs) from TOF MS on the TripleTOF[™] System and the best MRM transition acquired on the **QTRAP[®] 5500** System for the light (blue trace) and heavy (pink trace) labeled peptide set for each target protein.

TripleTOF™ 5600 System

Comparing Quantitative Quality

Y A comparison between the quantitation obtained from extracted ion chromatograms (XICs) from TOF MS on the TripleTOF™ System and the best MRM transition acquired on the **QTRAP[®] 5500** System for the light (blue trace) and heavy (pink trace) labeled peptide set for each target protein.

Comparing Quantitative Quality

A comparison between the quantitation obtained from extracted ion chromatograms (XICs) from TOF MS on the TripleTOF™ System and the best MRM transition acquired on the **QTRAP[®] 5500** System for the light (blue trace) and heavy (pink trace) labeled peptide set for each target protein.

Assessing Quantitative Accuracy TripleTOF™ 5600 System and QTRAP[®] 5500 System

- Y Measured light / heavy protein ratios for each protein agreed very well with the expected ratio
- Y Relative % experimental error from expected as below 12.5% for all measurements with an average of 7%

		TripleTOF™ 5600 System			QT	RAP® 5500 Syst	tem
		Average L/H	Average L/H	% Error from	Average L/H	Average L/H	%Error from
Protein	Peptide	XIC Ratio	Protein Ratio	Expected	MRM Ratio	Protein Ratio	Expected
Ubiquitin	TITLEVEPSDTIENVK	8.254			8.350		
	TLSDYNIQK	7.558	9.16 ± 0.50	9.19	8.884	9.36 ± 0.59	6.84
	ESTLHLVLR	11.665			10.844		
SHYC	AALEELVK	3.559			3.678		
	DQGGELLSLR	3.629	2 42 + 0 52	12.50	3.907	2.06 + 0.26	13.50
	GLAPEVADR	3.074	3.43 ± 0.02	12.00	3.900	3.00 ± 0.20	
	IFSIVEQR	3.461			4.390		
Albumin	LVNEVTEFAK	1.042			0.929		
	SLHTLFGDK	0.989	0.98 ± 0.09	2.00	1.220	1.03 ± 0.12	2.48
	AEFAEVSK	0.909			1.025		
NQO2	NVAVDELSR	0.980	0.98	2.00	1.006	1.01	0.57
PRDX1	DISLSDYK	0.105			0.107		
	ADEGISFR	0.117	0.11 + 0.07 0.01		0.108	0.11 + 0.01	9.01
	GLFIIDDK	0.106	0.11 ± 0.07	0.11±0.07 9.01		0.11 ± 0.01	
	LVQAFQFTDK	0.102			0.120		

Agenda

Ÿ

Y Qualitative & Quantitative Workflows

- Absolute and relative quantitation in high resolution MS/MS

QUANTIFY Workflow

- Y High-resolution MRM-like quantification using the TripleTOF™ 5600 system
- Y LOQ's and dynamic range equivalent to high performance QQQ
- Y Cycle times as fast as 10 milliseconds compatible with fast separations
- Minimal method development required

QUANTIFY Workflow

Looped TOF MS/MS Post Acquisition Data Extraction

- Y Looped full scan MS/MS is acquired across the LC peak at high resolution, >15,000 or >30,000
- High resolution XIC are generated post-acquisition, single or multiple
- Quantitation processing then is similar to MRM
- Y Fast acquisition ensures sufficient points across the peak

Getting So Much More From MRM^{HR}

High Sensitivity Peptide Quantitation

Looped Full Scan TOF MS/MS for Peptide Quant High Resolution MRM-like Quantitation - MRM^{HR}

- Looped full scan MS/MS is acquired across the LC peak at high resolution, >15000
- High resolution XIC are generated postacquisition in <u>5 mDa</u> windows
- Y Multiple fragment ions can be chosen and/or summed

Quantitative Standard Protein Mix sPRG 2009 Sample Description

- Y ABRF sPRG2009 proteomic standard mixture contains 5 target and a set of heavy labeled peptide analogues in medium complexity matrix
- Y Developed to assess quantitative reproducibility across multiple instruments and labs.

Protein	Accession #	Amount of Protein Analyzed (fmol)	Light/Heavy Ratio
Ubiquitin - UBIQ	P62988.1	10	10
HistidyI-tRNA synthetase - SYHC	P12081.2	5	3
Albumin - ALBU	P02768.2	1	1
Ribosyldihydronicotinamide dehydrogenase - NQO2	P16083.4	1	1
Peroxiredoxin 1 - PRDX1	P06830.1	0.1	0.1

Peptide Quantitation at HPLC Flow Sensitivity & Selectivity using the MRM^{HR} Approach

 Accurate Peptide Quantitation with 4000 QTRAP-level sensitivity at high flow chromatography [200 μL/min]

Two Modes of High Resolution Peptide Quant High Res TOF MS vs MRM^{HR} Quantitation

Two Modes of High Resolution Peptide Quant High Res TOF MS vs MRM^{HR} Quantitation of DQGGELLSLR light|heavy

TripleTOF[™] 5600 System

QTRAP[®] 5500 System

4000 QTRAP[®] System

MS vs. MS/MS based quantitation

Summary

TripleTOF 5600 High resolution, speed, sensitivity at the same time

Protein ID Explore workflow Protein Quant Relative (Discovery) from MS/MS iTRAQ Explore Workfow Relative (Discovery) from MS SILAC, label free Profile Workfow Targeted (Verification) Quantify Workflow (MRM^{HR})

Protein and Biomarker Research Pipeline

Thank you for your attention

Tomas.Korba@absciex.com

