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Phase synchronization is an important phenomenon of nonlinear dynamics and has recently re-
ceived much scientific attention. In this work a method for identifying phase synchronization epochs
is described which focuses on estimating the gradient of segments of the generalized phase differences
between phase slips in an experimental time series. In phase synchronized systems, there should be
a zero gradient of the generalized phase differences even if the systems are contaminated by noise. A
method which tests if the gradient of the generalized phase difference is statistically different from
zero is reported. The method has been validated by numerical studies on model systems and by
comparing the results to those published previously. The method is applied to cardiorespiratory
time series from a human volunteer measured in clinical settings and compared to synchrogram
analysis for the same data. Potential problems with synchrogram analysis of experimental data are
discussed.
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A range of synchronization phenomena has

been identified in different types of coupled com-

plex dynamical systems. Phase synchronization

is a type of synchronization reflecting mutual ad-

justment of rhythms of self-sustained oscillatory

systems. Typically when trying to identify phase

synchronization in practice, the activity of partic-

ipating systems is encoded as a multivariate time

series. The focus of this work is on the devel-

opment of a method for detecting phase synchro-

nized epochs in experimentally obtained bivariate

time series. The criterion for identifying phase

synchronized epochs is the existence of a zero gra-

dient in the generalized phase difference of the

investigated time series between phase slips. The

method can be applied to phase synchronization

analysis of systems studied in diverse areas of sci-

ence and engineering.

I. INTRODUCTION

Synchronization, a phenomenon of cooperative behav-
ior occurring due to interactions between complex sys-
tems, has attracted considerable interest from theoreti-
cians as well as experimentalists (see e.g. the monograph
[1]) in the last two decades. Synchronization and re-
lated phenomena have been observed in systems stud-
ied not only in physics, but also in natural and social
sciences, medicine and technology. Examples include
cardio-respiratory interaction [2–4], synchronization of
neural signals [5–8] or episodes of synchronization be-
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tween meteorological variables reflecting changes in cli-
mate [9, 10].

The strongest definition of synchronization requires
that the difference between states of synchronized sys-
tems asymptotically vanishes. This definition is called
identical synchronization [11], while the notion of gen-

eralized synchronization requires that states of coupled
systems are (asymptotically) related by some function
[12, 13]. In the case of coupled self-sustained oscillatory
systems, phase synchronization, given by a relation of
the instantaneous phases, can occur. Even a very weak
coupling can result in phase synchronization while the
amplitudes remain uncorrelated [14].

Some publications focusing on detecting phase syn-
chronization in experimental data use rather qualitative
methods such as the analysis of synchrograms [15]. Some
authors have applied the synchrogram method to car-
diorespiratory data [4, 15–17] and to brain signals [18].
Synchrogram analysis has been applied to intrinsic mode
functions [17] resulting from an empirical mode decom-
position [19]. The works employ visual examination of
the synchrograms as a final means to decide whether the
investigated systems are phase synchronized. Results
based on visual examination may be difficult to repro-
duce and some authors have proposed numerical criteria
to define “phase synchronization epochs” [16].

Other approaches advocate the use of phase synchro-
nization indices [7, 20–22] which compute the amount of
interdependence inherent in the data. Sometimes these
indices are accompanied by recommendations for signif-
icance tests using surrogate data. These methods focus
on detecting the existence of coupling between systems
and thus identify phase synchronization in a wider sense:
the test results are positive when the systems exhibit a
coupling strong enough to be detected. It is however not
necessary that the phases or frequencies lock for such
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tests to report positive results.
In this work a new approach to detecting phase syn-

chronization is proposed which focuses on the behavior
of coupled systems between “phase slips”. The null hy-
pothesis of the proposed method is that the two systems
are phase synchronized and a statistical procedure is em-
ployed to test it. This is a conceptually correct construc-
tion because the alternate hypothesis is that the systems
are either independent or dependent but not phase syn-
chronized. The use of a strict null hypothesis allows for
the construction of a statistical test to determine whether
the data allows one to reject it at a given significance
level. The performance of the method is demonstrated
with numerical studies, by reproducing previously pub-
lished results and on an experimental example. In prac-
tice it may be difficult to obtain segments without any
phase slips for analysis and a robust regression method
has been used that allows a phase slip to be present at
the edge of an epoch without negatively impacting the
results.

The rest of the paper is organized as follows: the
next section considers phase synchronization in detail, in
Sec. III the method of identifying phase synchronization
epochs is introduced and Sec. IV details the numerical
studies that shows the performance of the newly pro-
posed approach. The method is applied to cardiorespi-
ratory data measured in a clinical setting in Sec. V. The
paper closes with a discussion (Sec. VI) and conclusion
(Sec. VII).

II. PHASE SYNCHRONIZATION

In theory [1, 23], mathematical definitions exist to de-
scribe synchronized systems and the effect of synchro-
nization on their phases. On the other hand in time
series analysis synchronization is often interpreted as a
statistical phenomenon, leading to the quantification of
a “degree of synchronization”. In the following para-
graphs mathematical definitions of phase synchronization
are briefly recounted.

The criteria of synchronization make use of the defini-
tion of the generalized phase difference

ψmn = nφ1 −mφ2, (1)

where φ1,2 are the instantaneous phases describing the
motion of the two systems, ψmn is the generalized phase
difference and m:n is the locking ratio. In the above
case, m periods of the first system (represented by φ1)
correspond to n periods of the second system. Where
appropriate, the subscripts m, n are dropped to simplify
the notation. In the rest of this paper, the term phase
difference will be interchangeably used with the term gen-
eralized phase difference as m:n phase synchronization is
explicitely considered in this work.

The condition for phase synchronization is usually
given in the form [1]

|ψmn| < const. (2)

This condition is applicable to series of infinite length and
would be difficult to test in practice as any finite time-
series will exhibit some maximum difference whether the
two systems synchronize or not. A statistical test of the
absolute phase difference or a related quantity would be
necessary as attempted in [24]. Another definition given
in [1] is termed frequency locking. The condition can be
stated as

n〈φ̇1〉 = m〈φ̇2〉, (3)

where 〈·〉 denotes the time average. The same condition
can also be written as

〈ψ̇mn〉 = 0. (4)

In the case of deterministic dynamics the above cri-
teria of phase synchronization are equivalent. However
when the systems are disturbed by noise the situation
becomes complicated. If the intensity of the noise is not
high enough to perturb the two systems so that they slip
against each other then the effect is only of increasing the
fluctuations of the phase difference while preserving both
properties (2) and (3). Of course, the bounding constant
in (2) may become larger. If the intensity of the noise is
higher than this threshold then it is possible that phase
slips occur and the systems slip against each other by 2π
radians or a multiple thereof. If the coupling between
the systems is strong then the phase difference rapidly
changes — “jumps”. The increase may be somewhat
slower if the coupling is weak. In this regime, the phase
difference is essentially unbounded and the criterion (2)
cannot be fulfilled. However the mean frequencies should
still be equal in this regime even though the phase differ-
ence may exhibit a random walk type behavior because
of the phase slips. More importantly, if the systems are
phase synchronized, then there should be no systematic
drift of the phase difference between the phase slips.

It may seem that the situation of deterministic cou-
pled systems close to the phase synchronization region is
the same as that of coupled phase synchronized systems
perturbed by noise. This is however not the case: in
the case of deterministic sub-threshold coupled (unsyn-
chronized) systems the generalized phase difference is not
constant but drifts in one direction. This is evident from
the fact that the phase difference between the two sys-
tems must progress to a point where a phase slip occurs
and shifts the phase difference between the systems to
a new starting point for the slow drift and the situation
repeats itself.

The presence of external disturbances and noise
sources in many real systems makes it difficult to ex-
perimentally observe perfect phase or frequency lock-
ing (3). More frequent is the observation of imperfect

phase synchronization [25–27], where phase synchroniza-
tion epochs are intermingled with phase slips. Systems
with broadband spectra and especially those with un-
bounded return times, such as the Lorenz system, can
also slip against a driving force or against the system
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to which they are coupled when they visit a particular
region in their state space [25, 26]. Their phase lock-
ing behavior is described by a multi-well potential and
sufficiently strong perturbations can cause the system to
move from one potential well to another one [23, 28].
Even in this case the situation can be described in terms
of regions between phase slips: for sub-threshold coupled
systems, the phase difference between phase slips is not
constant but systematically drifts.

III. PHASE SYNCHRONIZATION ANALYSIS

BY GRADIENT ESTIMATION

In this section an approach to detecting phase syn-
chronized epochs based on the above considerations is
described. Following our previous line of thought a test
must be constructed to determine if the gradient of the
phase differences of the analyzed segment is statistically
different from zero. If the phase difference time series
constructed using (1) does not contain phase slips then
a suitably long segment can be used according to results
from numerical studies and the analysis can be split into
multiple epochs as needed.

There are some important practical issues: one is that
of fluctuations. Some fluctuations can be so large that
they can obscure a small trend in the evolution of the
phase differences. This may happen if there are very
large fluctuations or if the trend is almost negligible (on
the border of the synchronization region). The second
issue is the selection of segments not containing phase
slips: in practice it may be difficult to select analysis
segments so that they do not contain any phase slips.
The proposed gradient estimation method can cope with
a phase slip near the edge of an analysis epoch by using
a robust estimation method.

The hypothesis test that will be constructed assumes
that the gradient is zero the phase difference time series
and tries to use the evidence in the time series to reject
it. The problem is that the statistical distribution of the
gradient is unknown and the test must be devised so that
its significance can be tested using another method.

To estimate the gradient in the data we use least
squares linear regression

ψ(i) = at(i) + b+ δ(i), (5)

where ψ is the generalized phase difference and a, b are
chosen to minimize χ2 =

∑

δ(i)2 [29, 30]. As a corollary
to this we have that mean δ(i) is zero. Subtracting the
equations for ψ(i) from the equation for ψ(i + 1) and
rearranging gives

ψ(i+ 1) − ψ(i)

t(i+ 1) − t(i)
= a+

δ(i+ 1) − δ(i)

t(i+ 1) − t(i)
. (6)

Averaging over all samples and taking the limit t(i+1)−
t(i) → 0 gives

〈ψ̇〉 = a. (7)

Independently of the actual (complicated) evolution of
the phase difference a linear trend will be present if the
phase difference drifts systematically. In experimentally
obtained time series, noise and fluctuations will invari-
ably cause the value of a to be slightly different from
zero. The question remains whether the gradient a is
significantly different from zero.

The key difficulty with this approach is that the statis-
tical properties of the time series are not known. Phase
synchronization detection methods are often applied to
complex systems whose physics are poorly understood.
Often the only statistical information available is that
contained within the time series themselves. This leads
us to the following idea: a horizontal line is fitted to the
time series using the same approach as previously and
errors of the two fits are compared. The equation for a
horizontal line is simply

ψ(i) = c+ η(i), (8)

where η(i) are the fit errors. The least squares fit is just
the arithmetic average c = 〈ψ(i)〉. Using a least squares
fit ensures that 〈η(i)〉 = 0. We stress that it is not crit-
ical that ordinary least squares regression is used. The
estimator is only required to guarantee that the residu-
als {δ(i)} and {η(i)} will have zero means, otherwise the
gradient estimate will be biased.

If the two systems are phase synchronized then there
is no real gradient and the value of a extracted from
the linear fit is just a random fluctuation about 0. This
means that the residuals {δ(i)} and {η(i)} are drawn
from the same distribution and, because of the non-zero
value of a, one of the datasets is slightly perturbed. On
the other hand, if there is a significant gradient in the
{ψ(i)} then the datasets {δ(i)} and {η(i)} will belong to
different distributions.

There is a standard test to verify if two datasets
have been drawn from the same distribution — the
Kolmogorov-Smirnov test [29, 31]. The test computes
the probability that the maximum difference in the cu-
mulative distribution functions estimated from two sam-
ples will be observed, assuming that they are drawn from
the same probability distribution [29]. The test makes
no assumptions about the nature of the underlying dis-
tribution and is invariant under a re-parameterization of
the data. In this work we characterize a time series as
unsynchronized if the Kolmogorov-Smirnov test gives a
probability of less than 5% that the residuals {δ(i)} and
{η(i)} are taken from the same probability distribution.

Long-term correlations in the phase difference time se-
ries can cause spurious rejections of the null hypothesis
as sometimes they are detected as a trend. In applica-
tions to experimental data, it is likely that measurement
error will be a further source of fluctuations. Our ap-
proach to reduce the problem is to sort the time indices
by the associated phase differences. The input to the
transformation is a set of pairs (ψ(i))N

i=1. A sequence of
indices J = j1, ..., jN is computed such that the sequence
(ψ(ji))

N
i=1 is sorted in ascending order. Now the the in-
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dices ji define a new order on the data points so that ψ(i)
will be at the ji-th position. Many software libraries con-
tain the function argsort which can be used to obtain J
as J = argsort((ψ(i))N

i=1). If the phase difference series
contains a trend, the sort will entail “local” mixing only
and the autocorrelation function of the phase difference
time series is not appreciably changed [41]. If, on the
other hand, there is no long-term trend then the series
is “globally” mixed thereby significantly attenuating the
magnitude and cyclicity of the autocorrelation function.
This is exactly what is required to reduce the influence
of the correlations on the quality of the least squares fit.
This procedure causes slightly higher false positives when
series with a high noise content are analyzed. Excessive
noise may obscure the trend in the phase difference time
series which then becomes difficult to detect. Neverthe-
less, the amount of data required for accurate detection
is dramatically reduced and the method becomes highly
effective. The above procedure improves the effectiveness
of the method considerably and that is the only reason
of its inclusion in the method.

In numerical experiments the above approach is very
effective. Experimentally obtained data is frequently par-
tially contaminated by outliers (such as phase slips or
measurement errors) and noise. These may adversely af-
fect the estimation of the generalized phase difference
gradient. Thus in practice a more robust approach to
fitting the straight line (5) of the generalized phase dif-
ferences is in order. Least trimmed squares (LTS) re-
gression [32] is particularly suited to this task as the es-
timator starts out with the hypothesis that a subset of
the data are outliers. The LTS approach proceeds by as-
suming that at least h data points out of the total of N
analyzed are leverage points (useful data) and the rest
are outlier points. Given this assumption an algorithm
such as FAST-LTS [33] can be applied to find this subset
and estimate the fit parameters. In the numerical exam-
ples the dependence of the sensitivity and specificity on
the parameter h is examined. The minimum value for
h is N/2 + 1 which yields an estimator with the highest
possible breakdown point, a measure of the robustness
of the fit. Related approaches such as Least median of
squares are not suitable as the mean of the errors is not
guaranteed to be zero which is required by the analysis
above. When LTS is applied the mean (8) is calculated
from the set of points selected as leverage points by the
LTS method when fitting the straight line (5) so that
the distributions of the errors come from the same set of
points and are comparable.

The method above is one way of statistically testing
the gradient of the phase difference time series against
a null hypothesis of zero gradient. It takes into account
the fact that the statistical properties of the gradient
estimate are unknown and that a subset of the time series
may not represent useful information. This happens if a
phase slip is at one of the edges of the analyzed segment.
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FIG. 1: Evolution of the phase differences for different
strengths of coupling C from a pair of symmetrically coupled
Rössler oscillators (9).

IV. NUMERICAL STUDIES

Detailed numerical experiments have been performed
on the paradigmatic pair of symmetrically coupled
Rössler systems to investigate the behavior of the pro-
posed method. The equations of a symmetrically coupled
Rössler oscillator pair can be written as

ẋ1,2 = −ω1,2y1,2 − z1,2 + C(x2,1 − x1,2)
ẏ1,2 = ω1,2x1,2 + 0.15y1,2

ż1,2 = 0.2 + z1,2(x1,2 − 10),
(9)

where ω1,2 controls the frequency of the oscillators and
C represents the strength of coupling. The behavior of
symmetrically coupled Rössler oscillators has been thor-
oughly investigated [1, 14, 28, 34, 35] and is well under-
stood. The evolution of phase differences with respect to
coupling strength is emphasized and shown in Fig 1. It
is clear from the figure that an almost linear evolution of
phase differences persists until approximately C = 0.027
where “plateaus” appear interspersed with phase slips.
However these “plateaus” are not segments with zero
phase difference gradient, they only appear so because
the growth of the phase difference is small. At the tran-
sition to synchronization there is a relationship between
the frequency of phase slips and the difference between a
given coupling strength and the synchronization thresh-
old [35, 36]

Ns ∼ exp |C − Ct|
−1/2, (10)

where Ct = 0.03 is the synchronization threshold, C is
the strength of symmetrical coupling in (9) and Ns is the
number of slips per unit of time. When the synchroniza-
tion threshold is reached, the systems synchronize and
the phase difference remains within tight bounds. For
reference the phase difference evolution for the uncou-
pled systems is also shown (top curve in Fig. 1): clearly
the systems are unsynchronized for C ≤ 0.024 and their
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relative phase velocity is more than half of the relative
phase velocity of the uncoupled systems.

A Runge-Kutta 4th order scheme was used to integrate
the oscillators with a step of 0.01 s, the resulting time se-
ries was sub-sampled by a factor of 10 to yield a time se-
ries with approximately 60 points per period. The phase
extraction procedure is similar to the one used in [34]:
projecting the attractor into a plane spanned by two se-
lected coordinates and using the angle of the line from
the origin to the current position of the system state in
this plane as the instantaneous phase. The period of the
oscillator was first estimated by detecting the number of
positive-going zero crossings and relating it to the length
of the time series. This is a coarse detection of the ap-
proximate number of samples per period and corresponds
to marked events phase extraction [35, 37]. Using this es-
timate a two-dimensional time delay embedding [38, 39]
is constructed using two samples of the same time series
one quarter of the estimated period apart. This sepa-
ration would give an optimal projection for a harmonic
oscillator. The instantaneous phase is estimated as

φ(i) = arctan

(

x (i)

x (i− ⌊T/4⌋)

)

, (11)

where T is the estimated number of samples per period.
This is a realistic procedure and can be applied to exper-
imental time series if it does not contain excessive noise
and if the period of oscillation is relatively stable.

Fig. 2 (top) shows how the proposed method detects
synchronized states in a time series originating from a
pair of coupled Rössler systems for different system pa-
rameters. The plot shows the detection rates for each pa-
rameter combination: the frequency mismatch ∆ω and
the coupling strength C. The frequencies of the Rössler
oscillators were derived from the frequency mismatch as
ω1,2 = 1 ± ∆ω. The number of samples used as input to
the detection method is 1024, which represents approxi-
mately 18 periods. The image can be directly compared
to Fig. 2 (bottom) which appeared in the work of Rosen-
blum et al. [14]. The figure shows the computed mean

frequency mismatch ∆Ω = |〈φ̇1〉 − 〈φ̇2〉| for the same pa-
rameter range. The systems are considered synchronized
if ∆Ω is negligible. The results of the proposed detection
algorithm are clearly in agreement with previously pub-
lished results. The detection rates are close to 0 in the
unsynchronized region and close to 1 in the synchronized
region.

In Fig. 3 the results for a pair of symmetrically coupled
Rössler systems with ω1,2 = 1±0.015 are shown. The ex-
periment was run for all coupling strengths C ∈ 〈0, 0.04〉
with a step of 0.002. Only relevant parts of the results are
shown as for C < 0.024 the detection rates are negligible
and for C > 0.34 they are close to 1. The plot shows
how the parameter h indicating the assumed number of
leverage points inside the dataset affects the detection
statistics. For h = N/2 + 1 it is clear that some sensi-
tivity is lost and for h = 3

4
N the results are very close

to those for h = N . In this numerical example there
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FIG. 2: Detection rates for the proposed method using Least
trimmed squares (h = 3

4
N) from short time series of ≈ 18 peri-

ods (a) and difference of mean frequencies for a symmetrically
coupled Rössler system pair (b) from [14], used with permis-
sion. C represents the coupling strength, ∆ω represents the
nominal frequency mismatch and ∆Ω is the actual frequency
difference computed from the time series. The systems are
considered synchronized when the computed frequency differ-
ence ∆Ω is negligible. In this region, the detection rates are
close to 1 almost everywhere.

are no outliers, so setting h = N is optimal and makes
use of all the data. However using three-quarters of the
available points has not diminished the performance of
the detector significantly (cf. Fig. 3, compare center and
right plot). This is the value of h that will be used in
the analysis of cardio-respiratory synchronization in the
next section. This will allow the existence of phase slips
at the edge of the analyzed segments.

There are some positive detections for the coupling
C < 0.028 for shorter windows. This is because the
amount of variability (although deterministic in the
model systems) is too high for the very small gradient
to be detected in short time series. In the numerical ex-
periments such false positive classifications happen more
often in short time series (cf. Fig. 3) and only just before
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the phase synchronization threshold. This corresponds to
previous considerations in Sec. III on high noise content
obscuring a small gradient.
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FIG. 3: Results of the proposed method for symmetrically
coupled Rössler oscillators: detection rates for Least trimmed
squares estimation with h = N/2 + 1 (left), h = 3

4
N (center)

and ordinary least squares estimation, h = N (right). Epoch
lengths: 34 periods (pluses), 68 periods (crosses), 136 periods
(circles) and 273 periods (squares).

V. APPLICATION TO CARDIO-RESPIRATORY

DATA

The analyzed ECG (electrocardiogram) and respira-
tory effort time series have been acquired in the context
of the EC FP6 BRACCIA project. Measurements were
carried out in the waking state and under general anes-
thesia for spontaneous or controlled respiration depend-
ing on the choice of anesthetic for the subject. The aim
was to obtain a record of about 20–30 minutes of the ac-
tivity of the heart and lungs in each state. In this first
study only subjects with no neurological or degenerative
diseases and with no cardiovascular complications were
included. Subjects that have agreed to provide data to
the project were lying still while the recording in the
waking state took place. For the analyzed subject gen-
eral anesthesia was induced with Sevoflurane (an inhala-
tory anesthetic) and the neuromuscular blocking agent
Cis-atracurium (also known as Curare) was administered.
The subject had to be provided with a breathing appa-
ratus, which provided forced periodic drive to the respi-
ratory system.

The observed time series were preprocessed to extract
peaks and obtain a linearly interpolated phase time se-
ries. The ECG time series was filtered with a high-pass
filter to remove baseline fluctuations, R-peaks were de-
tected using an ad-hoc approach and the results were
visually checked. The respiratory time series was band-
pass filtered to smooth the waveform and remove various
artefacts and low-frequency baseline fluctuations. Then
the time instances of local maxima were extracted. In

both cases the peak times tk were used to construct an
interpolated phase time series

φ(t) = 2π
t− tk

tk+1 − tk
,

for tk ≤ t < tk+1. The phase time series was subsampled
to 60Hz from the original 1200Hz sampling frequency and
the analysis was performed by a moving window strat-
egy with windows of 8192 points (≈ 136 seconds) with no
overlap. The main concern here is that in one window,
there should be as many data points as possible but only
one segment between phase slips should be analyzed. If
the window contains two different segments separated by
a phase slip in the middle, then the method will not be
able to compute the gradient of either segment: the re-
turned value will an estimate of the gradient of the larger
segment perturbed by the data points from the smaller
segment. Such a result is not meaningful for our pur-
poses. Using 8192 points we have been able to fullfill
this requirement of having a dominant segment in each
window. Otherwise a more sophisticated approach with
manual selection of segments between phase slips would
have to be employed.

The proposed method was configured to be used with
interpolated phase time series from peak detection meth-
ods. Of crucial importance is an estimate of the number
of independent data points. Numerical experiments have
shown that for phase time series derived from the sim-
ple embedding approach it is sufficient to take the num-
ber of data points as the number of independent samples
although this is clearly not the case. For interpolated
phase time series the number of independent measure-
ments is bounded from above by the number of periods.
In numerical experiments not reported in this work it was
sufficient to use the number of periods as the number of
independent measurements in the Kolmogorov-Smirnov
test. The same has been used here: for each analyzed
epoch, the number of periods was found for both time se-
ries and passed into the Kolmogorov-Smirnov two sample
test (cf. Sec. III).

The detection of phase synchronized epochs was based
on two steps. The first was the estimation of the rational
frequency ratios of the two systems. The mean frequency
ratio was computed in each epoch and matched with the
closest ratio of integers where the number of respiratory
periods was fixed at 1, 2, or 3 per N heartbeats. The
choice was thus constrained to m:n with m ∈ {1, 2, 3}
and n an integer. For the closest ratio (e.g. 3:14, 2:15
or 1:4) in each epoch, the proposed method for identi-
fying phase synchronization was applied to the general-
ized phase difference. The best fitting integer ratio is by
itself important and was also used (a-posteriori) in the
construction of appropriate synchrograms and phase dif-
ference plots for the awake state and anesthetized state.
It was found that the simple estimator of the frequency
ratio

f =
〈∆φcard(t)〉

〈∆φresp(t)〉
, (12)
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FIG. 4: Generalized phase difference 1:4 for the cardiorespira-
tory system of the subject in the awake state, resting. Thick
horizontal line indicates epochs detected as phase synchro-
nized. The markers show window edges and the number of
respiratory periods in each epoch is given.

was misled by any phase slips or acquisition errors in the
analyzed epoch. Therefore the more robust LTS estimate
of the mean frequencies was applied to yield

fLTS =
〈∆φcard(t)〉LTS

〈∆φresp(t)〉LTS

, (13)

where h = N/2 + 1 points were used to compute the
robust estimate of the mean. The effect of phase slips
was thus excluded from the estimate of the frequency
ratio.

In the awake state, strong cardio-respiratory phase
locking was found at a ratio of 1:4. Here both of the par-
ticipating systems can be considered autonomous oscilla-
tors and the interaction can be analyzed in the framework
of phase synchronization. The strength of the mutual
locking is apparent from the generalized phase difference
plot in Fig. 4 where the phase difference

ψ1:4(t) = 4φresp(t) − φcard(t)

is constrained within a 20 rad region for more than 9
minutes. However even close examination of the syn-
chrogram in Fig. 5 does not seem to reflect this. The
phase synchronization detector clearly indicates the cor-
rect epochs of synchronization indicated by a thick hori-
zontal line in Fig. 4. Phase locking has been found in the
subject in the awake state which is not visible on the syn-
chrogram but is detected by the proposed method. The
reason why the phase locking episode is not visible in the
synchrogram is analyzed in detail in the Appendix.

In the anesthetized state the subject was mechanically
respirated using an external device generating a periodic
breathing pattern. The mechanical respirator acted as a
non-autonomous external force which through its action
on the respiratory system influenced the cardiac rhythm.
The heart, an autonomous oscillatory system, was cou-
pled to an external periodic force and the framework of
phase dynamics could be applied. The cardiac rhythm

100 200 300 400 500 600 700 800
time [s]

0.2

0.4

0.6

0.8

1
:n

FIG. 5: Synchrogram (1:n) of the cardiorespiratory activity
of the subject in the awake state.
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FIG. 6: Generalized phase difference (m=3, n=16) for the
cardiorespiratory system of the subject in the anesthetized
state. The markers show window edges and the number of
respiratory periods in each epoch is given. Inset shows detail
of segment 700s–1300s.

phase-locked to the periodic forcing strongly during the
second half of the recording at a ratio of 3 respiratory pe-
riods to 16 heartbeats. The evolution of the generalized
phase difference

ψ3:16(t) = 16φresp(t) − 3φcard(t)

is shown in Fig. 6. The plateau from about 700s to 1300s
is clearly visible and a detailed view is in the inset of
Fig. 6. This synchronization can be seen also in the syn-
chrogram in the same time frame (Fig. 7). In the seg-
ment where the phase difference plateau is located the
proposed method has correctly identified coupling in all
epochs. Synchrogram analysis and the proposed phase
synchronization identification method agree well in this
instance.

VI. DISCUSSION

Theoretically, synchronization is a process, not a state
[1]. The only way to reliably detect whether synchroniza-
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FIG. 7: Synchrogram (3:n) for the cardiorespiratory system
of the subject in the anesthetized state.

tion is taking place is to perform an active experiment,
i.e. to introduce a disturbance into the coupled system
and observe whether a phase locked state is reasserted
once the transient effects disappear. In principle, it is
not possible to detect with certainty whether two systems
are synchronized purely from their time series recorded
in a passive experiment. It is however possible to statis-
tically test whether the time series reflect a synchronized

state as per the definitions (2) and (3). Of course a state
satisfying these mathematical conditions can come about
due to other effects than synchronization and this would
result in a false positive detection. Assumptions about
the detector and the time series must be carefully re-
viewed and only if they are satisfied can the result of the
detection be considered valid.

VII. CONCLUSION

A new approach to the problem of detection of phase-
synchronized states has been proposed. The method is
based on the analysis of the phase differences gradient.
A zero gradient indicates a phase synchronized epoch of
the coupled systems. This is a principled way to detect
phase synchronization even in the presence of noise. A
test which detects if the gradient of the phase differences
is statistically different from zero has been constructed.
The test ensures that only phase synchronized states are
identified as such, while states where the coupling is not
strong enough to ensure locking of frequencies and phases
are excluded. The test uses robust statistics so that an-
alyzed segments may contain phase slips at their edges
without negatively impacting the results of the estima-
tion.

The proposed method has been shown to be effective
in detecting phase synchronization in the paradigmatic
Rössler oscillators. Furthermore, our tests show that
the method is capable of distinguishing between synchro-
nized and unsynchronized states using a relatively small
sample of data.

The method has been applied to cardio-respiratory
data acquired in a clinical setting. Data from a sub-
ject exhibiting strong cardio-respiratory synchronization
in the awake state and cardiac phase locking onto a peri-
odic force in the anesthetized state was analyzed. The re-
sults of the method have been compared with generalized
phase difference plots and with synchrogram analysis. It
was shown that the proposed method detects synchro-
nization epochs in the data even when a synchrogram
might not indicate phase synchronized segments. Some
caveats when using synchrograms and simple safeguards
against these were described in the appendix.

VIII. ACKNOWLEDGMENTS

This work was supported in part by the European
Commission 6th Framework Programme project BRAC-
CIA (Contract No 517133 NEST) and by the Insti-
tutional Research Plan AV0Z10300504. Some of the
computations were performed using supercomputing re-
sources in the Edinburgh Parallel Computing Center
within the framework HPC-EUROPA (RII3-CT-2003-
506079). We gratefully acknowledge the work of Tomas
Draegni, Per Kvandal, Svein Landsverk and Johan
Raeder in acquiring the data within the scope of the
BRACCIA project.



9

Appendix: Synchrogram analysis

We analyze in detail why the synchrogram in Fig. 5
does not clearly indicate phase synchronization although
a genuine phase difference restraint is evident in Fig. 4.
To illustrate the issue, we will visualize additional infor-
mation pertaining to the synchrogram plot.

If two deterministic systems are phase synchronized in
an m:n regime, we expect that n periods of one system
correspond to m periods of the other system. As a con-
vention m ≤ n and we will assume this here without loss
of generality. If the systems are perturbed by noise, the
situation is more complicated and the number n of peri-
ods of the faster system in m periods of the slower system
fluctuate as sometimes the systems evolve apart slightly
but must return back if the generalized phase difference
is genuinely restrained. Let us concentrate on the faster
system: if it’s activity is transiently faster, then there
will be in m periods of the slower system n∗ > n periods
of the faster system and vice-versa. On average the rela-
tionship of n periods of the faster system (heartbeats in
our case) to m periods of the slower system (respiratory
cycles) should hold. If and only if the faster system con-
sistently has n∗ > n periods or consistently has n∗ < n
periods per m periods of the slower system can there
be any systematic increase or decrease of the generalized
phase difference (for a detection method based on similar
considerations cf. Quiroga et al. [40]). We will exploit
this fact in the following considerations.

In Fig. 8 the number of heartbeats inside each respira-
tory period of the awake patient fluctuates around 4 (cor-
responding to the 1:4 synchronization) and the average
for the whole segment is exactly 4. The situation for the
anesthetized patient in Fig. 9 clearly changes at about
730s into the recording. In the first part, the number
of heartbeats n per 3 respiratory periods is consistently
either 16 or lower than 16. This means that there can-
not be a 3:16 synchronization and the generalized phase
difference ψ3:16 in Fig. 6 consistently increases. In the
second part of the recording the number of heartbeats
clearly fluctuates around 16 and is often exactly 16.

We now draw a parallel between the situation in the
right half of Fig. 9 and in the whole of Fig. 8. On a macro-
scopic level (in terms of entire respiratory periods), there
is no evident systematic increase or decrease and thus
the results reflect the tendency of the generalized phase
differences in Figs. 4 and 6 (synchronized region only)
showing the generalized phase differences which fluctuate
(strongly in the awake case, weakly in the anesthetized
case) but does not systematically deviate in either direc-
tion.

Turning our attention back to the synchrograms, we
will now explain why in the awake case the phase syn-
chronization is not evident while in the anesthetized case
it is. To do this, we will track what happens to every
n-th heartbeat in the recording. Our reasoning is the
following: if the systems are not synchronized and the
generalized phase difference is systematically increasing
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FIG. 8: Plot of number of heartbeats in each single respiratory
period for the awake patient (corresponds to synchrogram in
Fig.5).
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FIG. 9: Plot of number of heartbeats in each respiratory pe-
riod for the asleep patient (corresponds to synchrogram in
Fig.7).

or decreasing, we will see a consistent vertical drift across
the synchrogram of the sequence of every n-th heartbeat.
If the systems were perfectly synchronized the n-th heart-
beat would show up at approximately the same position
all the time. The synchrograms depicting a phase syn-
chronized regime can be influenced by mild fluctuation
as in Fig. 7 or by strong fluctuation as in Fig. 5.

We will now assume that a synchrogram depicts a
phase synchronized pair of systems. In the case of small
fluctuations which permit the “rows” of points to be
clearly separated, phase synchronization can be identified
by means of a synchrogram visually. If the fluctuations
are strong so that these rows overlap or even the order of
heartbeats in each period is changed, then the standard
synchrogram cannot be used to identify the synchroniza-
tion. This is exactly what has occurred in the case of the
patient in the awake state.

The synchronization is 1:4 in the awake case and we
will thus connect every 4th heartbeat with a line and
show the result compared with a standard synchrogram
view. Our detailed analysis will require that the bound-
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FIG. 10: Plot of the evolution of the sequences of every 16th
heartbeat of the anesthetized patient in the same coordinates
as a standard synchrogram plot (synchrogram is an excerpt
from synchronized segment, cf. Fig.7). The fluctuations are
very small and there is no apparent drift of the sequences.
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FIG. 11: Plot of the evolution of the sequences of every 16th
heartbeat of the anesthetized patient in the same coordinates
as a standard synchrogram plot (synchrogram is an excerpt
from non-synchronized segment cf. Fig.7). The fluctuations
are very small and a drift toward the top of the synchrogram
can be seen.

aries of every m respiratory periods are also indicated in
the synchrogram. The two synchrograms (for the syn-
chronized and unsynchronized region) for the awake pa-
tient are shown in Figs. 10 and 11 and the same for the
anesthetized patient is shown in Figs. 12 and 13.

In Fig. 10 showing the structure of the synchrogram
for the anesthetized state, the lines connecting every 16th
heartbeat do not overlap: the fluctuations are small. On
the other hand in the awake state, the fluctuations are
much stronger as is clear from Fig. 12 but note that
the final state of the selected segment is identical to the
starting point. This subsegment has been deliberately
selected for illustration purposes but from the computa-
tions above (indicating an average of exactly 4 heartbeats
per respiratory period) we know that this is the case for
the entire phase synchronized segment of the awake pa-
tient which is too long to show in detail. The rows overlap
and even the order of the n-th heartbeat sequences inside
each respiratory period is changed on occasion. How-
ever note that the order is then changed back after some
time and there is no systematic drift. As a control, the
same detailed view is also shown in Fig. 11 for the epoch
not exhibiting 3:16 synchronization in the anesthetized
patient. Here the synchrogram resembles the synchro-
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FIG. 12: Plot of the evolution of sequences of every 4th
heartbeat of the awake patient in the same coordinates as
a standard synchrogram plot (synchrogram is excerpt from
synchronized region in Fig.5). There is no apparent drift of
the sequences but large fluctuations can be seen.
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FIG. 13: Plot of the evolution of sequences of every 4th heart-
beat of the awake patient in the same coordinates as a stan-
dard synchrogram plot (synchrogram is an excerpt from non-
synchronized segment cf. Fig.5). The sequences clearly drift
towards the top, even though the fluctuations are large.

gram for the phase synchronized region in Fig. 10 but
this is because of the proportions of the figures. A di-
rect comparison between the two regions can be made
in Fig. 7. The “enriched” view of the synchrogram is
however markedly different: the rows are now not hori-
zontal but they drift toward the top of the synchrogram
in Fig. 11. We stress that the above analysis is possible
because we have a-priori selected a particular synchro-
nization ratio (3:16 or 1:4) and thus have been able to
assign special meaning to every n-th (16th, 4th) heart-
beat and add new information to the synchrogram in the
form of boundaries between every m respiratory periods
and connections between n-th heartbeats.

Putting all of the ideas and results in the previ-
ous paragraphs together, it should now be clear why
phase synchronization (which is genuine according to
Figs. 8 and 4) in the awake state is not visible in the
synchrogram. The phase differences fluctuate too much
to be visually detected in the synchrogram: this is made
clear by the more detailed synchrogram in Fig. 12. The
standard synchrogram view of the unsynchronized seg-
ment of the awake patient in Fig. 13 is very similar but
connecting every 4th heartbeat and showing their pro-
gression in different colors clearly shows the difference
in the information presented in the synchrogram. In the
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synchrogram corresponding to the anesthetized patient in
Fig. 10 the phase synchronization is clear because there
is less fluctuation in the generalized phase differences.
Note that this is consistent with the result that heart
rate variability and respiratory rate variability are lower
under general anesthesia than in the awake state. For the
analyzed patient, the interval between heartbeats in the
awake state was 1.06±0.14s and in the anesthetized state
0.95± 0.05s. The respiratory interval was 4.22± 0.54s in
the awake state and 4.99±0.15s in the anesthetized state.
The variability was thus about three times smaller in the
anesthetized state with the heartbeat slightly faster and

the respiration slower.

In the appendix we have tried to clarify potential pit-
falls when using a synchrogram as a means of identifying
phase synchronization. We have extracted additional in-
formation from the data available when creating the syn-
chrogram and have shown that it is possible that a phase
synchronization epoch is not visible in a synchrogram if
strong fluctuations are present. It is not difficult to com-
pute and plot this additional information and we suggest
that this new information is added to synchrograms as a
matter of routine.
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