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I. INTRODUCTION

Cooperative behavior of coupled complex systems has
recently attracted considerable interest from theoreti-
cians as well as experimentalists (see e.g. the monograph
[1]), since synchronization and related phenomena have
been observed not only in physical, but also in many
biological systems. Examples include cardio-respiratory
interactions [2–5] and synchronization of neural signals
[6–10]. In such systems it is not only important to detect
synchronized states, but also to identify drive-response
relationships between the systems studied. This problem
is a special case of the general question of causality or
causal relations between systems, processes or phenom-
ena. The mathematical formulation of causality in mea-
surable terms of predictability was given by Wiener [11].
Granger [12] introduced a specific notion of causality into
time series analysis by evaluation of predictability in bi-
variate autoregressive models. This linear framework for
measuring and testing causality has been widely applied
in economy and finance (see Geweke [13] for a comprehen-
sive survey of the literature), but also in different sciences
such as climatology (see [14] and references therein) or
neurophysiology, where specific problems of multichan-
nel electroencephalogram recordings were solved by gen-
eralizing the Granger causality concept to multivariate
cases [15, 16]. Nevertheless, the limitation of the Granger
causality concept to linear relations required further gen-
eralizations which emerged especially in the intensively
developing field of synchronization of complex systems.
Considering the task of identification of drive-response
relationships, a number of asymmetric dependence mea-
sures have been proposed [6, 7, 9, 10, 17–22] and ap-
plied in diverse scientific areas such as laser physics [23],
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climatology [24, 25], cardiovascular physiology [22, 24],
neurophysiology [6, 7, 9, 10, 26–28], or finance [29]. In
spite of these wide-spread applications of various cou-
pling asymmetry measures, the task of correct inference
of coupling asymmetry, i.e., the identification of the driv-
ing and driven systems from experimental time series is
far from resolved. In this paper we identify some prob-
lems encountered in this task and give some practical
advices how to avoid false detections of coupling asym-
metry or causality. We will consider two interacting sys-
tems, possibly one of them driving the other. Then the
coupling asymmetry, or, as it is called, the directional-
ity of coupling, also identifies causality, or causal rela-
tions between the studied systems. The problem of dis-
tinguishing the true causality from indirect influences in
interactions of three or more systems is beyond the scope
of this paper and will be addressed elsewhere.

In Section II we introduce three examples of unidirec-
tionally coupled chaotic systems and analyze their cou-
pling using three already published measures. In this
way we demonstrate the importance of choice of an ap-
propriate measure with known properties and a solid
mathematical background. In Section III we review basic
measures defined in information theory and specify ap-
plications of conditional mutual information (CMI) for
detection of causality. Section IV introduces multidi-
mensional conditional mutual information applicable to
amplitudes of dynamical systems or stochastic processes
and a version of CMI for evaluation of coupling asym-
metry using instantaneous phases of coupled oscillatory
systems. Then, in Sec. V we study bias and variance
of CMI estimates and discuss statistical evaluation of
the estimated CMI in order to assure correct inference
of causality/coupling asymmetry from experimental time
series. Further factors influencing the bias in the CMI
estimates are discussed in Sec. VI, where also an exam-
ple of assessing direction of coupling in cardio-respiratory
interaction is presented. The discussed topics are sum-
marized and conclusions given in Sec. VII. Finally, Ap-
pendix A proves the equivalence of the conditional mu-
tual information and the transfer entropy introduced by
Schreiber [18].
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II. ASYMMETRY IN COUPLING: SYSTEMS
AND MEASURES

As the first example, let us consider the unidirection-
ally coupled Rössler and Lorenz systems, also studied in
Refs. [7, 9, 19], described by the equations

ẋ1 = −α{x2 + x3}
ẋ2 = α{x1 + 0.2 x2} (1)
ẋ3 = α{0.2 + x3(x1 − 5.7)}

for the autonomous Rössler system, and

ẏ1 = 10(−y1 + y2)

ẏ2 = 28 y1 − y2 − y1 y3 + ε xβ
2 (2)

ẏ3 = y1 y2 − 8
3
y3

for the driven Lorenz system in which the equation for
ẏ2 is augmented by a driving term involving x2. We will
analyze the case with α = 6 and β = 2.

For the second example we will use the unidirectionally
coupled Henon maps, also studied in Refs. [6, 9, 19], with
equations

x′1 = 1.4− x2
1 + b1 x2

x′2 = x1 (3)

for the driving system {X}, and

y′1 = 1.4− (ε x1y1 + (1− ε) y2
1) + b2 y2

y′2 = y1 (4)

for the response system {Y }. Here we will study identical
systems with b1 = b2 = 0.3.

Our third example will be the unidirectionally coupled
Rössler systems given by the equations

ẋ1 = −ω1x2 − x3

ẋ2 = ω1x1 + a1 x2 (5)
ẋ3 = b1 + x3(x1 − c1)

for the autonomous system, and

ẏ1 = −ω2y2 − y3 + ε(x1 − y1)
ẏ2 = ω2y1 + a2 y2 (6)
ẏ3 = b2 + y3(y1 − c2)

for the response system. In this Section we will use pa-
rameters a1 = a2 = 0.15, b1 = b2 = 0.2, c1 = c2 = 10.0,
and frequencies ω1 = 1.015 and ω2 = 0.985.

The data from continuous nonlinear dynamical sys-
tems were generated by numerical integration based on
the adaptive Bulirsch-Stoer method [30] using the sam-
pling interval 0.02617 for the systems (1),(2), and 0.1256
for the systems (5),(6). In the latter case this gives 17
– 21 samples per one period. When the Rössler systems
with different frequencies were used, the sampling was

updated in order to keep 19–20 samples per period of
the faster system (Sec. V, VI).

In all the cases we denote the driving, autonomous
system by {X}, and the driven, response system by {Y }.
For each of the above three examples we define a set
of coupling strength parameter ε increasing from ε = 0
to an ε-value before the synchronization threshold. As
Paluš et al. [9] explain, the direction of coupling can be
inferred from experimental data only when the underly-
ing systems are coupled, but not yet synchronized. In
the numerical examples, the synchronization threshold
can be determined using the plot of Lyapunov exponents
(LE) of the coupled systems as the function of the cou-
pling strength ε. With increasing ε the positive Lya-
punov exponent of the response system (also known as
the conditional Lyapunov exponent [31]) decreases and
it becomes negative just with the ε-value giving the syn-
chronization threshold. The plots of the Lyapunov expo-
nents for the Rössler-Lorenz systems (1),(2) can be found
in Refs. [9, 19], the LE plots for the coupled Henon sys-
tems (3),(4) in Refs. [6, 9, 19], while further study of the
coupled Rössler systems (5),(6), including their LE plot,
can be found in Sec. IV.

For each value of ε from the predefined range we nu-
merically generate time series {xi} and {yi} as outputs
of the systems {X} and {Y }, obtained by recording the
components x1 and y1, respectively, and analyze them
by using the following three methods.

Two different methods exploit the approach suggested
by Rulkov et al. [32] based on the assumption of the
existence of a smooth map between the trajectories of
{X} and {Y }. If such a smooth map exists then closeness
of points in the state space X of the system {X} implies
a closeness of points in the state space Y of the system
{Y }.

One of the methods due to Le Van Quyen et al. [7]
is based on cross-prediction using the well known idea
of mutual neighbors. A known or reconstructed state
space (e.g., using a time-delay embedding [33] Xn =
[xn, xn−τ , xn−2τ , . . . ]) must be available. However, in-
stead of using k nearest neighbors, a neighborhood size
δ is pre-selected. Considering a map from X to Y , a
prediction is made for the value of yn+1 one step ahead
using the following formula

ŷn+1 =
1

|Vδ(Xn)|
∑

j:Xj∈Vδ(Xn)

yj+1. (7)

The volume Vδ(Xn) = {Xn′ : |Xn′ − Xn| < δ} is δ-
neighborhood of Xn and |Vδ(Xn)| denotes the number
of points contained in the neighborhood. Using data
rescaled to the zero mean and the unit variance, the au-
thors define a crosspredictability index by subtracting the
root-mean-square prediction error from one

P (X → Y ) = 1−

√√√√ 1
N

N∑
n=1

(ŷn+1 − yn+1)2, (8)
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which should measure how the system {X} influences the
evolution of the system {Y }. The crosspredictability in-
dex P (Y → X) in the opposite direction, characterizing
the ability of the system {Y } to influence the evolution
of the system {X} is defined in full analogy.

The second approach, proposed by Arnhold et al. [17]
and analysed by Quian Quiroga et al. [19], uses mean
square distances instead of the cross-predictions in order
to quantify the closeness of points in both spaces. We use
the implementation according to Ref. [19, 34] in which a
time-delay embedding [33] is first constructed in order
to obtain state space vectors X and Y for both time
series {xi} and {yi}, respectively, then the mean squared
distance to k nearest neighbors is defined for each X as

R(k)
n (X) =

1
k

k∑

j=1

|Xn −Xrn,j
|2, (9)

where rn,j denotes the index of the j − th nearest neigh-
bor of Xn. The Y-conditioned squared mean distance is
defined by replacing the nearest neighbors of Xn by the
equal time partners of the nearest neighbors of Yn as

R(k)
n (X|Y) =

1
k

k∑

j=1

|Xn −Xsn,j |2, (10)

where sn,j denotes the index of the j−th nearest neighbor
of Yn. Then the asymmetric measure

S(k)(X|Y) =
1
N

N∑
n=1

R
(k)
n (X)

R
(k)
n (X|Y)

(11)

should reflect interdependence in the sense that close-
ness of the points in Y implies closeness of their equal
time partners in X and the values of S(k)(X|Y) ap-
proach to one, while, in the case of X independent of
Y , S(k)(X|Y) ¿ 1. The quantity S(k)(Y|X) measuring
the influence of {X} on {Y } is defined in full analogy.

The third measure, used in this Section, coarse-grained
transinformation rate i(X → Y ) is the average rate of the
net amount of information “transferred” from the process
{X} to the process {Y }, or, in other words, the average
rate of the net information flow by which the process {X}
influences the process {Y }. The coarse-grained transin-
formation rate (CTIR), introduced by Paluš et al. [9], is
based on the conditional mutual information and will be
briefly reviewed in Sec. III.

The above three measures as functions of the coupling
strength ε for the Rössler system (1) driving the Lorenz
system (2) are plotted in Fig. 1. With the exemption
of the weakest coupling (ε ≤ 0.6) the cross-predictability
of the system {Y } by the system {X} (the solid line
in Fig. 1a) is greater than the cross-predictability of
the system {X} by the system {Y } (the dashed line
in Fig. 1a). Our result in Fig. 1a agrees with that
of Le Van Quyen et al. [7] who interpret the relation
P (X → Y ) > P (Y → X) by the fact, that the au-
tonomous Rössler system {X} drives the response Lorenz
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FIG. 1: (a) Cross-predictability P (X → Y ) (solid line) and
P (Y → X) (dashed line), (b) relative average distance of

the mutual nearest neighbours S(k)(Y|X) (solid line) and

S(k)(X|Y) (dashed line), and (c) coarse-grained transinfor-
mation rate i(X → Y ) (solid line) and i(Y → X) (dashed
line) for the Rössler system (1) driving the Lorenz system
(2), as functions of the coupling strength ε.

system {Y } and therefore the prediction of {Y } from {X}
is better than the prediction in the opposite direction.

In a similar way, with a few exemptions, the rela-
tive average distance of the mutual nearest neighbours
S(k)(Y|X) > S(k)(X|Y) (Fig. 1b) agrees with the re-
sults in [19], suggesting that the state of the response
system {Y } depends more on the state of the driver sys-
tem {X} than vice versa, as also claimed by Arnhold et
al. [17]. (Note that the conditioning X|Y reflects the in-
fluence Y → X and vice versa.) The same conclusion
about {X} driving {Y } can be drawn from the CTIR
i(X → Y ) > i(Y → X) (Fig. 1c). The latter inequal-
ity holds for all positive values of ε but the ε-values ap-
proaching the synchronization threshold which emerges
for ε slightly above 2 [9, 19].

The same analyses as in Fig. 1, but for the unidi-
rectionally coupled Henon system (3),(4), are presented
in Fig. 2. One can immediately see that in this case
P (X → Y ) < P (Y → X) (Fig. 2a). This result agrees
with that of Ref. [6]. Shiff et al. [6] offer an interpreta-
tion based on the Takens embedding theorem [33]: From
the time series {xi} only the system {X} can be recon-
structed, while from the time series {yi} the whole system
consisting of the coupled systems {X} and {Y } can be
reconstructed and therefore one can predict the driving
system from the response system and not vice versa [6].
Also, the relation of the second interdependence mea-
sure reverses: In this case the inequality S(k)(Y|X) <
S(k)(X|Y) holds. (Fig. 2b). Again, our result agrees
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FIG. 2: (a) Cross-predictability P (X → Y ) (solid line) and
P (Y → X) (dashed line), (b) relative average distance of

the mutual nearest neighbours S(k)(Y|X) (solid line) and

S(k)(X|Y) (dashed line), and (c) coarse-grained transinfor-
mation rate i(X → Y ) (solid line) and i(Y → X) (dashed
line) for the unidirectionally coupled Henon system (3),(4),
as functions of the coupling strength ε.

with that of Ref. [19]. Quian Quiroga et al. [19] ex-
plain that the higher-dimensional system (obtained by
the reconstruction from the time series {yi} which bears
information about both the coupled systems) is “more
active” than the lower-dimensional (autonomous, driv-
ing) system. Only the CTIR gives the same relation as
in the previous case: i(X → Y ) > i(Y → X) (Fig. 2c)
suggesting the fact that {X} influences {Y }, while {X}
evolves autonomously.

Figure 3 presents the analysis of the unidirectionally
coupled Rössler systems (5),(6). We can see that the
results are qualitatively the same as in the case of the
coupled Henon systems (Fig. 2), although these sys-
tems are more similar to the first example of the cou-
pled Rössler-Lorenz systems. We can se that neither the
cross-predictability, nor the mutual nearest neighbours
statistics give consistent results when using three differ-
ent examples of unidirectionally coupled systems. Only
the coarse-grained transinformation rate correctly iden-
tifies the direction of the causal influence in the above
three examples as well as in many other systems of dif-
ferent origins tested by the authors.

In the above examples of unidirectionally coupled sys-
tems we could see that the used measures are generally
non-zero in both directions even before the systems be-
come synchronized and comparison of the values of such
measures does not always reflect the true causality given
by the unidirectional coupling of the studied systems.
The intuitively understandable implication lower predic-
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FIG. 3: (a) Cross-predictability P (X → Y ) (solid line) and
P (Y → X) (dashed line), (b) relative average distance of

the mutual nearest neighbours S(k)(Y|X) (solid line) and

S(k)(X|Y) (dashed line), and (c) coarse-grained transinfor-
mation rate i(X → Y ) (solid line) and i(Y → X) (dashed
line) for the unidirectionally coupled Rössler systems (5),(6),
as functions of the coupling strength ε.

tion error (better predictability) => stronger dependence
cannot generally be applied for nonlinear systems. When
the coupling of the systems is weaker than that neces-
sary for the emergence of synchronization, as used in the
above examples, any smooth deterministic function be-
tween the states of the systems does not exist yet. How-
ever, there is already some statistical relation valid on
the coarse-grained description level. Although the deter-
ministic quantities are based on the existence of a smooth
functional relation, when estimated with finite precision
they usually give nonzero values influenced not only by
the existing statistical dependence but also by proper-
ties of the systems other then the coupling. It is there-
fore necessary to use quantities proposed for measur-
ing statistical dependence such as information-theoretic
measures which have solid mathematical background and
their properties have thoroughly been studied since their
introduction in 1948 [35].

III. DEPENDENCE MEASURES FROM
INFORMATION THEORY

In this Section we review basic measures from informa-
tion theory which we will need in further considerations.
More details can be found, e.g., in Refs. [35, 36]. Then
we will describe how these measures can help in inference
of causal relations or directionality of coupling.

Consider discrete random variables X and Y with sets
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of values Ξ and Υ, respectively, and probability distribu-
tion functions (PDF) p(x), p(y) and joint PDF p(x, y).
The entropy H(X) of a single variable, say X, is defined
as

H(X) = −
∑

x∈Ξ

p(x) log p(x), (12)

and the joint entropy H(X, Y ) of X and Y is

H(X,Y ) = −
∑

x∈Ξ

∑

y∈Υ

p(x, y) log p(x, y). (13)

The conditional entropy H(Y |X) of Y given X is

H(Y |X) = −
∑

x∈Ξ

∑

y∈Υ

p(x, y) log p(y|x). (14)

The average amount of common information, contained
in the variables X and Y , is quantified by the mutual
information I(X; Y ), defined as

I(X; Y ) = H(X) + H(Y )−H(X, Y ). (15)

The mutual information normalized as

ι(X; Y ) =
I(X; Y )

max(H(X),H(Y ))
(16)

attains values between 0 and 1, and can be used to define
a distance measure d(X, Y ) as

d(X, Y ) = 1− ι(X; Y ), (17)

which has all mathematical properties of a distance in
the space of random variables [37]. Thus d(., .) define a
metric based on the strength of dependence. Independent
variables have the maximum distance (d(., .) = 1), the
functionally related variables have a zero distance.

The conditional mutual information I(X; Y |Z) of the
variables X, Y given the variable Z is given as

I(X; Y |Z) = H(X|Z) + H(Y |Z)−H(X, Y |Z). (18)

For Z independent of X and Y we have

I(X; Y |Z) = I(X; Y ). (19)

By a simple manipulation we obtain

I(X; Y |Z) = I(X; Y ; Z)− I(X; Z)− I(Y ; Z). (20)

Thus the conditional mutual information I(X; Y |Z)
characterizes the “net” dependence between X and Y
without the possible influence of another variable, Z.

The entropy and information are usually measured in
bits if the base of the logarithms in their definitions is 2,
here we use the natural logarithm and therefore the units
are called nats.

Let {x(t)} and {y(t)} be time series considered as re-
alizations of stationary and ergodic stochastic processes

{X(t)} and {Y (t)}, respectively, t = 1, 2, 3, . . . . In the
following we will mark x(t) as x and x(t + τ) as xτ , and
the same notation holds for the series {y(t)}.

The mutual information I(y; xτ ) measures the aver-
age amount of information contained in the process {Y }
about the process {X} in its future τ time units ahead
(τ -future thereafter). This measure, however, could also
contain an information about the τ -future of the process
{X} contained in this process itself if the processes {X}
and {Y } are not independent, i.e., if I(x; y) > 0. In or-
der to obtain the “net” information about the τ -future
of the process {X} contained in the process {Y } we need
the conditional mutual information I(y; xτ |x). Using the
latter measure Paluš et al. [9] defined the coarse-grained
transinformation rate (CTIR) as

i(Y → X) =
1

τmax

τmax∑
τ=1

I(y; xτ |x)− 1
2τmax

τmax;τ 6=0∑
τ=−τmax

I(y; xτ ).

(21)
In practical evaluation we do not use I(y;xτ |x) for a par-
ticular time lag τ , but an average over a range of time
lags. Theoretical reasons for this averaging are explained
in detail in Ref. [38] and briefly reviewed in Ref. [9]. Here
we stress only the practical point of view: Evaluation of
I(y; xτ |x) as an average over a number of time lags de-
creases the variance of the estimate. In the following,
all results of various forms of the conditional mutual in-
formation will be obtained by averaging over time lags
τ = 1, . . . , 50 samples.

In the original definition of the CTIR [9], also used in
our examples in Sec. II, a symmetric dependence term
is subtracted from the asymmetric conditional mutual
information. Note that this subtraction does not change
the relation between i(Y → X) and i(X → Y ) since

τmax;τ 6=0∑
τ=−τmax

I(y; xτ ) =
τmax;τ 6=0∑
τ=−τmax

I(x; yτ ).

IV. AMPLITUDES, PHASES AND THE
COURSE OF DIMENSIONALITY

In the standard statistical language we considered the
time series {x(t)} and {y(t)} as realizations of stochastic
processes {X(t)} and {Y (t)}. If the processes {X(t)} and
{Y (t)} are substituted by dynamical systems evolving in
measurable spaces of dimensions m and n, respectively,
the variables x and y in I(y; xτ |x) and I(x; yτ |y) should
be considered as n− and m−dimensional vectors. In ex-
perimental practice, however, usually only one observable
is recorded for each system. Then, instead of the original
components of the vectors ~X(t) and ~Y (t), the time de-
lay embedding vectors according to Takens [33] are used.
Then, back in time-series representation, we have
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FIG. 4: (a) The two largest Lyapunov exponents of the drive
{X} (constant lines) and the response {Y } (decreasing lines),
(b) averaged conditional mutual information I(x; yτ |y) (solid
line) and I(y; xτ |x) (dashed line), and (c) averaged CMI

I(x; yτ |~Y ) (solid line) and I(y; xτ | ~X) (dashed line), where

the vectors ~X and ~Y are the original components of the inte-
grated systems, for the unidirectionally coupled Rössler sys-
tems (5),(6), as functions of the coupling strength ε. The
Lyapunov exponents are measured in nats per a time unit;
the conditional mutual information in all figures is measured
in units of nats.

where η and ρ are time lags used for the embedding of
trajectories ~X(t) and ~Y (t), respectively. For simplicity,
only information about one component x(t + τ) in the
τ -future of the system {X} is used. The opposite CMI
I
(

~X(t); ~Y (t+ τ)|~Y (t)
)

is defined in full analogy. Exactly
the same formulation can be used for Markov processes
of finite orders m and n. Based on the idea of finite-order
Markov processes, Schreiber [18] has proposed a “transfer
entropy” which is in fact an equivalent expression for the
conditional mutual information (22) – see Appendix A.

Let us return to the unidirectionally coupled Rössler
systems (5),(6). The dependence of their Lyapunov ex-
ponents (all but the two which are negative in the uncou-
pled case) on the coupling strength ε is plotted in Fig. 4a.
The change of the positive LE of the response system {Y }
to negative values slightly under ε = 0.12 gives the syn-
chronization threshold for these systems. If we evaluate
the simple CMI I(y;xτ |x) and I(x; yτ |y), without sub-
tracting the symmetric term in (21), the CMI’s in both

direction are positive and increasing with the increasing
coupling strength (Fig. 4b). Before the synchronization
threshold, the inequality I(x; yτ |y) > I(y; xτ |x) indicates
the correct direction of coupling, however, as we will see
in the next Section, for reliable inference in general it
is desirable to obtain a zero value in the uncoupled di-
rection Y → X. This can be attained by a proper con-
ditioning – the conditioning variable should contain full
information about future values of the system or pro-
cess generating this variable in the uncoupled case. So it
should be three-dimensional vector ~X or ~Y for the stud-
ied Rössler systems. On the other hand, it is sufficient
to have just one component of each vector variable for
establishing the presence of coupling, i.e., the appropri-
ate measures for inference of coupling directions are the
CMI’s I(x; yτ |~Y ) and I(y; xτ | ~X). Evaluation of the lat-
ter quantities brings a five-dimensional estimation prob-
lem which might be hard to solve with limited amount
of available data, not to speak about the seven or nine
dimensions if the formal definition (22) is used.

The CMI’s I(x; yτ |~Y ) and I(y; xτ | ~X) where for the
conditioning vectors ~X and ~Y the original components
x1(t), x2(t), x3(t) and y1(t), y2(t), y3(t), respectively,
were used, are displayed in Fig. 4c. We can see that
I(y; xτ | ~X) in the uncoupled direction stays at the zero
value up to ε close to the synchronization threshold, while
I(x; yτ |~Y ) is distinctly positive (Fig. 4c). The CMI’s
I(x; yτ |~Y ) and I(y; xτ | ~X) with the conditioning vectors
~X and ~Y obtained as time-delay embedding [33] from the
components x1(t) and y1(t), respectively, are displayed in
Fig. 5a. We can see a quite good agreement of the results
in Fig. 4c and in Fig. 5a.

Many interesting processes in physics and biology can
be modelled by weakly coupled oscillators and their in-
teractions can be inferred by analyzing the dynamics of
their instantaneous phases [1, 20, 21]. The instantaneous
phase of a signal s(t) can be determined by using the an-
alytic signal concept of Gabor [39], recently introduced
into the field of nonlinear dynamics within the context of
phase synchronization [40, 41]. The analytic signal ψ(t)
is a complex function of time defined as

ψ(t) = s(t) + jŝ(t) = A(t)ejφ(t). (23)

Usually, the imaginary part ŝ(t) of the analytic signal
ψ(t) can be obtained by using the Hilbert transform of
s(t)

ŝ(t) =
1
π

P.V.

∫ ∞

−∞

s(τ)
t− τ

dτ. (24)

(P.V. means that the integral is taken in the sense of
the Cauchy principal value.) A(t) is the instantaneous
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FIG. 5: (a) Averaged conditional mutual information

I(x; yτ |~Y ) (solid line) and I(y; xτ | ~X) (dashed line), using the

time-delay embedding vectors ~X = [x1(t), x1(t−η), x1(t−2η)]

and analogously for ~Y , (b) averaged CMI I(φ1(t); φ2(t +
τ)|φ2(t)) (solid line) and I(φ2(t); φ1(t + τ)|φ1(t)) (dashed
line), and (c) averaged CMI I(φ1;∆τφ2|φ2) (solid line) and
I(φ2;∆τφ1|φ1) (dashed line), for the unidirectionally cou-
pled Rössler systems (5),(6), as functions of the coupling
strength ε.

amplitude and the instantaneous phase φ(t) of the signal
s(t) is

φ(t) = arctan
ŝ(t)
s(t)

. (25)

Since in this paper we are not interested in the the in-
stantaneous amplitude A(t), we reserve the word “ampli-
tude” for the “raw” signal (time series) s(t), as opposed
to the instantaneous phase φ(t).

Paluš & Stefanovska [22] have shown that the con-
ditional mutual information can be applied also in in-
ference of coupling of systems from their instantaneous
phases, confined in interval [0, 2π) or [−π, π) (so-called
wrapped phases). Thus we can come back to the time
series {x(t)} and {y(t)} generated by the unidirection-
ally coupled Rössler systems (5),(6) and compute their
instantaneous phases φ1(t) and φ2(t), respectively, ac-
cording to Eqs. (24) and (25). Then we evaluate the con-
ditional mutual information I(φ1(t); φ2(t + τ)|φ2(t)) and
I(φ2(t); φ1(t + τ)|φ1(t)) and plot the results in Fig. 5b.
We can see that CMI evaluated from the phases again
distinguishes the driving from the driven system. More-
over, the application of the phase dynamics decreases the
dimensionality of the problem – already I(φ2(t); φ1(t +
τ)|φ1(t)) with the one-dimensional condition is zero in
the uncoupled direction. Even better distinction (Fig. 5c)

can be obtained when we study dependence between the
phase of one system and the phase increment

∆τφ1,2(t) = φ1,2(t + τ)− φ1,2(t), (26)

of the second system instead of the dependence be-
tween φ1,2(t) and φ2,1(t + τ). So that we evaluate the
conditional mutual information I(φ1(t);∆τφ2(t)|φ2(t))
and I(φ2(t); ∆τφ1(t)|φ1(t)), in a shorter notation
I(φ1;∆τφ2|φ2) and I(φ2;∆τφ1|φ1), respectively. A dif-
ferent approach to detection of coupling direction from
the instantaneous phase has been introduced by Rosen-
blum et al. [20, 21]. The two approaches are compared
in Refs. [22, 42].

V. ESTIMATION FROM DATA: BIAS,
VARIANCE AND INFERENCE

Every quantity, descriptive of the state of a system
or process under study, suffers from bias and variance
when estimated from noisy, nonstationary experimental
data. Using limited, relatively short time series, esti-
mates of complicated quantities such as the conditional
mutual information can have non-negligible bias and vari-
ance even if evaluated from noise-free, stationary model
data. It is necessary to know the behaviour of the used
estimator of any measure before it is applied in analy-
sis of real data. In order to study the bias and vari-
ance of the CMI estimates, we choose a particular cou-
pling strength (ε = 0.05) and evaluate I(φ1;∆τφ2|φ2)
and I(φ2;∆τφ1|φ1) from 1000 realizations of the unidi-
rectionally coupled Rössler systems (5),(6) starting in dif-
ferent initial conditions, for various time series length.

In this study we evaluate the CMI using a simple box-
counting algorithm based on marginal equiquantization
[38, 43, 44], i.e., a partition is generated adaptively in
one dimension (for each variable) so that the marginal
bins become equiprobable. It means that the marginal
boxes are not defined equidistantly but so that there is
approximately the same number of data points in each
marginal bin. The only parameter of this method is the
number Q of the marginal bins. Paluš [43] proposed that
computing mutual information of n variables, the number
of marginal bins should not exceed the n+1-st root of the
number of the data samples, i.e. Q ≤ n+1

√
N . Cellucci et

al. [45], who use the same binning procedure, determine
the number of bins using the minimum description length
criterion. In this paper we use a simple pragmatic choice
Q = 8 in all computations.

The equiquantization method effectively transforms
each variable into a uniform distribution, i.e. the in-
dividual (marginal) entropies are maximized. This type
of mutual information estimate, even its coarse-grained
version, is invariant against any monotonous (possibly
nonlinear) transformation of data [38].

Histograms obtained from the 1000 CMI estimates, us-
ing the series length N = 1024 samples, are plotted in
Fig. 6a. We can see the relatively large variance of the
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FIG. 6: Histograms of estimates of I(φ1;∆τφ2|φ2) (solid
lines) and I(φ2;∆τφ1|φ1) (dashed lines) from 1000 realiza-
tions of (a) the unidirectionally coupled Rössler systems
(5),(6), the coupling strength ε = 0.05 and the number of
samples N = 1024, (b) FFT surrogate data for the data used
in (a), N = 1024; (c) the same as in (a), but the number of
samples N = 512, and (d) FFT surrogate data for the data
used in (c), N = 512.

estimates and the clear bias of I(φ2;∆τφ1|φ1) in the un-
coupled direction, however, the distinction between the
coupled and the uncoupled direction is still clear. When
we use the time series length N = 512 samples (Fig. 6c),
not only the variance increases, but the bias in the uncou-
pled direction rises so that the values of I(φ1;∆τφ2|φ2)
(solid lines) and I(φ2;∆τφ1|φ1) (dashed lines) partially
overlap. It is clear that we need some statistical ap-
proach to establish critical values of the CMI estimates
from which we could infer that the CMI is nonzero due
to a coupling and not due to the estimator bias. In other
words, we need to find out what bias and variance we
can expect from our data, if there is no coupling. For
this purpose we use so-called surrogate data [43, 46], i.e.
artificially generated data that preserve statistical prop-
erties of the original data but are randomized so that
any possible coupling is removed. Since we evaluate the
CMI from the instantaneous phases, derivation of which
gives instantaneous frequencies, as the surrogate data we
construct time series with the same frequency distribu-
tion as the series under study. The surrogate data with
the same sample spectrum as the tested time series can
be constructed using the fast Fourier transform (FFT).
The FFT of the series is computed, the magnitudes of
the (complex) Fourier coefficients are kept unchanged,
but their phases are randomized. The surrogate series is
then obtained by computing the inverse transform into
the time domain. Different realizations of the process

are obtained using different sets of the random Fourier
phases. In this study we obtained perfectly consistent
results when we either constructed one surrogate real-
ization for each of the 1000 realizations of the coupled
Rössler series, or we constructed 1000 surrogate realiza-
tions using just one realization of the coupled Rössler
series.

The FFT surrogates have originally been proposed for
testing nonlinearity and in addition to preserving the
spectrum also the preservation of histogram is usually
solved [43, 46]. As noted above, our CMI estimator is in-
variant against invertible nonlinear transformations, in-
cluding histogram transformations. Therefore, we use
the simple FFT surrogates without any amplitude ad-
justment. The two time series {x(t)} and {y(t)} are ran-
domized independently.

Histograms of estimates of I(φ1;∆τφ2|φ2) (solid lines)
and I(φ2;∆τφ1|φ1) (dashed lines) from the FFT surro-
gate data using series lengths N = 1024 and N = 512
samples are plotted in Fig. 6b and Fig. 6d, respec-
tively. We can see that the average bias of the CMI
I(φ2;∆τφ1|φ1) in the direction Y → X in the surrogate
data is even larger than in the original data (cf. Fig. 6a
and Fig. 6b). This fact helps us to avoid false detections
of causality (positive information flow) in the uncoupled
direction: Even though I(φ2;∆τφ1|φ1) from the data
gains positive values, these values are not greater than
the values from the (uncoupled) surrogates and thus such
positive CMI values cannot be considered as the evidence
for causality, nor for a directional interaction. In order to
translate these considerations into a statistical test, we
integrate the histogram of the surrogate CMI values into
a cumulative histogram and find the CMI value (known
as the critical value) giving 95% of the CMI distribu-
tion, counting from the left side. If a CMI value from
the tested data is greater than this critical value, we say
that this result is significant at the level α = 0.05. The
meaning of the statistical significance is that the positive
value of CMI was obtained by chance (due to other rea-
sons than the true causality) with probability p < 0.05.
Of course, one can use more strict test by setting the
nominal level to e.g. α = 0.01.

Using the cumulative histograms obtained from the
1000 surrogate realizations and having set the nominal
value for the significance, α = 0.05, leading to a critical
value for each test, we can use the 1000 realizations of the
data from the Rössler systems (5),(6) for the evaluation
of the performance of our test. Comparing the values
of I(φ2; ∆τφ1|φ1) in the uncoupled direction with their
critical values we obtain the rate of false positive results,
while using I(φ1;∆τφ2|φ2) in the coupled, causal direc-
tion we count the rate of the correctly positive results,
so that we evaluate the sensitivity of the test. The dis-
tribution of I(φ1;∆τφ2|φ2) from the surrogate data with
N = 1024 (Fig. 6b, solid line) allows 100% sensitivity,
i.e. values of I(φ1;∆τφ2|φ2) from all 1000 realizations of
the original Rössler time series were correctly detected
as significant, reflecting truly nonzero causal information
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FIG. 7: Histograms of estimates of I(φ1;∆τφ2|φ2) (solid
lines) and I(φ2;∆τφ1|φ1) (dashed lines) from 1000 realiza-
tions of (a) the unidirectionally coupled Rössler systems
(5),(6) with the frequency ratio 1:5, the coupling strength
ε = 0.1 and the number of samples N = 1024, (b) FFT sur-
rogate data for the data used in (a), N = 1024; (c) the un-
coupled Rössler systems (5),(6) with the frequency ratio 1:5,
ε = 0, N = 1024; (d) the uncoupled Rössler systems (5),(6)
with the frequency ratio 1.015:0.985, N = 1024. In all the
cases a1 = a2 = 0.15.

flow from {X} to {Y }. In the opposite direction (cf. the
histograms plotted by the dashed lines in Fig. 6a and
Fig. 6b) we have got eight false detections from 1000 re-
alization, i.e. the false detection rate is 0.008, still well
under the nominal α = 0.05. Using N = 512 samples
the sensitivity is worse, giving the value 0.866, i.e. 134
realizations from 1000 were not recognized by the test.
The false detection rate, however, was 0.001. With in-
sufficient amount of data the sensitivity of the test could
be lowered, however, the surrogate test prevents false de-
tections very well.

Even though there is no coupling in our surrogate data,
we can see in Fig. 6b that the CMI in the opposite di-
rections, estimated from 1024 samples, have different bi-
ases. The only difference between the original Rössler
systems (5),(6) is the small mismatch in their frequen-
cies ω1 = 1.015, ω2 = 0.985. Now, let us study the same
systems, but with ω1 = 0.5 and ω2 = 2.515, i.e., with the
approximate frequency ratio 1:5. Such frequency ratios
are typical in studies of cardio-respiratory interactions.
We find that in such case the problem of the correct in-
ference of causality is tougher: With the series length
N = 1024 the CMI estimates in the opposite directions
overlap (Fig. 7a) and neither the surrogate data (Fig. 7b)
can help to distinguish the coupled from the uncoupled
direction. The surrogate data, however, prevent the false

detection of causality (cf. Fig. 7a and Fig. 7b). In order
to demonstrate the “pure” bias, we integrate the systems
with the frequency ratio 1:5 without coupling, i.e., set-
ting ε = 0. We can see that the bias is larger in the
direction from the system with ω2 = 2.515 to the system
with ω1 = 0.5 (Fig. 7c). The surrogate data obtained
from the uncoupled systems give results similar to the
surrogate data for the coupled case (Fig. 7b) and again
they prevent the false detection of causality in both di-
rections. It seems that the bias is larger in the direction
from the faster system (ω2 = 2.515) to the slower system
(ω1 = 0.5). Is this a general rule? Let us return to the
previous example of the systems with the approximate
frequency ratio 1:1 and analyze them in the uncoupled
case (ε = 0). Here we obtain a larger bias in the di-
rection from the system with ω2 = 0.985 to the system
with ω1 = 1.015 (Fig. 7d), i.e., from the slightly slower
to the slightly faster system. Let us return to Fig. 4a
and notice, that the system with ω2 = 0.985 in the un-
coupled case (ε = 0) is not chaotic (its largest Lyapunov
exponent λ1 ≈ 0) and only due to a weak coupling with
the chaotic system with ω1 = 1.015 the former system
becomes chaotic. Then, with the increasing coupling, its
largest Lyapunov exponent λ1 decreases to negative val-
ues at the synchronization threshold. The behaviour of
the Rössler systems with ω1 = 0.5 and ω2 = 2.515 is quite
similar. The autonomous system with ω = 0.5 is chaotic,
while the autonomous system with ω2 = 2.515 is again
quasiperiodic. From these examples we can conclude that
the larger bias in the CMI estimates can be observed in
the direction from less complex (periodic, quasiperiodic)
systems to systems with more complex dynamics.

VI. VARIABILITY OF BIAS, INFLUENCE OF
NOISE AND INFERENCE IN REAL DATA

We attributed the positive departures of the CMI val-
ues from zero, in the cases when no information flow ex-
isted, to the bias due to insufficient amounts of data. In
order to support this statement and to demonstrate that
in the uncoupled direction the CMI asymptotically van-
ishes, we plot the mean CMI estimate (the mean from
the 1000 realizations of either the Rössler series or the
surrogate data) as a function of the time series length in
Fig. 8. In Figure 8a we can see that the convergence to
zero of the I(φ2;∆τφ1|φ1) estimates in the uncoupled di-
rection of the unidirectionally coupled systems (the thick
dotted line for the case of the frequency ratio 1:5, and
the thick solid line for the case 5:1) is quite similar to
that of the uncoupled systems (thin solid and dashed
lines) in the same direction, considering the frequencies
ω1 and ω2 of the systems. Specifically, the bias is larger
and the convergence to zero slower in the direction from
the system with ω = 2.515 to the system with ω = 0.5.
The latter behavior is preserved in the surrogate data
(Fig. 8b): the (overlapping) dashed and dotted lines show
the slower convergence to zero of I(φ2;∆τφ1|φ1) in the
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direction from the faster to the slower system, in compar-
ison with I(φ1;∆τφ2|φ2) in the opposite direction (solid
lines). Above we have noted that in these cases the prop-
erty leading to different biases is not the frequency, but
the complexity of dynamics of the two systems. In or-
der to study possible influence of different frequencies in
the case of systems with comparable complexity, we have
found that for ω = 2.515 the autonomous Rössler system
has a suitable chaotic solution (λ1 = 0.12) when the pa-
rameter a is set to a = 0.72. The autonomous Rössler
system with ω = 0.5 and the “standard” a = 0.15 gives
λ1 = 0.10. Using these two systems with comparable
“chaoticity” we repeated the same convergence studies
as presented in Figs. 8a,b and, using the same line codes
we present the results in Figs. 8c,d. We can see that when
the two systems have comparable complexity of dynam-
ics, the bias is determined by the main system frequency
and, typically, the bias is larger and the convergence to
zero in the uncoupled direction is slower in the direction
from the slower to the faster system. We have observed
this phenomenon also in studies of noisy periodic oscilla-
tors or simple noisy phase oscillators (such as Eq. (3) in
[22]) with different frequencies.

Do the different biases influence the performance of the
tests for the inference of the causal direction? The sensi-
tivity of the tests, based on evaluation of I(φ1;∆τφ2|φ2),
as the function of the time series length N is illustrated in
Fig. 9. As already mentioned above, the rate of the detec-
tion of the causal direction for the data from the Rössler
systems (5),(6) with the frequency ratio 1:1 was 0.87 for
the series length N = 512. For shorter time series the
test completely losses its sensitivity, while for N = 1024
and more the test has 100% sensitivity (Fig. 9a, dash-
and-dotted line partially overlaping with the solid line),
while the false detection rate is in the range from 0.001
to 0.008, well under the nominal α = 0.05. Analyzing the
data from the Rössler systems (5),(6) with the frequency
ratio 1:5 and a1 = a2 = 0.15, the sensitivity is still close
to zero for N = 1024, and rises to 100% from N = 2048
(Fig. 9a, dashed line), while the rate of false positives
ranges from 0.001 to 0.05. Setting the frequency ratio to
5:1, the sensitivity (Fig. 9a, solid line) behaves similarly
to that of the system with the frequency ratio 1:1, while
the rate of false positives is always zero. In the case 5:1
the bias is in the same direction as the true causality,
so the test has slightly better performance than in the
case 1:1, while in the case 1:5 the bias is directed in the
opposite direction than the true causality and the test
requires more data for the reliable detection of the true
causality.

Estimation of the test critical values from the empir-
ical cumulative histograms, as we have done above, is
a generally correct approach, independent of the actual
distribution of the CMI (or other quantity) values. This
approach, however, requires a large number (1000 in this
study) of the surrogate realizations. In many published
applications of surrogate tests, authors evaluate their test
statistics from a small number of surrogate realizations
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FIG. 8: (a) Convergence with the time series length of
mean CMI estimates for I(φ1; ∆τφ2|φ2) (thin solid line) and
I(φ2;∆τφ1|φ1) (thin dashed line) for the uncoupled Rössler
systems (5),(6) with the frequency ratio 1:5, a2 = 0.15;
I(φ2;∆τφ1|φ1) (thick dotted line) for the same systems with
the frequency ratio 1:5 and the coupling strength ε = 0.1 and
I(φ2;∆τφ1|φ1) (thick solid line) for the systems with the fre-
quency ratio 5:1, a1 = 0.15 and ε = 0.1. (b) Convergence of
the CMI means for the FFT surrogate data of the Rössler sys-
tems (5),(6) with the frequency ratio 1:5, a2 = 0.15 and the
coupled (ε = 0.1, thick lines) and the uncoupled (ε = 0, thin
lines) cases, I(φ1;∆τφ2|φ2) (solid lines), and I(φ2;∆τφ1|φ1)
(dashed or dotted lines). (c) Convergence with the time se-
ries length of mean CMI estimates for I(φ1;∆τφ2|φ2) (thin
solid line) and I(φ2; ∆τφ1|φ1) (thin dashed line) for the un-
coupled Rössler systems (5),(6) with the frequency ratio 1:5,
a2 = 0.72; I(φ2;∆τφ1|φ1) (thick dotted line) for the same sys-
tems with the frequency ratio 1:5 and the coupling strength
ε = 0.11 and I(φ2;∆τφ1|φ1) (thick solid line) for the systems
with the frequency ratio 5:1, a1 = 0.72 and ε = 0.11. (d)
Convergence of the CMI means for the FFT surrogate data
of the Rössler systems (5),(6) with the frequency ratio 1:5,
a2 = 0.72 and the coupled (ε = 0.11, thick lines) and the un-
coupled (ε = 0, thin lines) cases, I(φ1;∆τφ2|φ2) (solid lines),
and I(φ2;∆τφ1|φ1) (dashed or dotted lines).

and express the difference between the tested values and
the surrogate mean in the number of standard deviations
of the surrogates. Then, for assessing significance of the
result, they use the critical values theoretically derived
from the normal distribution. As we have seen in the
above Figs. 6 and 7, the surrogate distribution may be
quite different from normal one. Comparing both the ap-
proaches we have found that once we had enough data
to obtain 100% sensitivity of the test (N ≥ 1024 for the
cases 1:1 and 5:1) both the approaches gave equivalent
results even using so few as thirty surrogate realizations
in the test based on the normal distribution. The differ-
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FIG. 9: (a) Sensitivity as function of time series length N
for the tests using the coupled Rössler systems (5),(6) with
the frequency ratio 1:1 (dash-and-dotted line), 5:1 (solid line)
and 1:5 (dashed line) for a1 = a2 = 0.15. The Hilbert phases
were used. (b) Sensitivity of the tests for the coupled Rössler
systems (5),(6) with the frequency ratio 5:1 (solid line) and
1:5 (dashed line) for a1 = a2 = 0.15, as the function of the
series length N . The marked events phases were used. (c)
Sensitivity as function of time series length N for the tests
using the coupled Rössler systems (5),(6) with the frequency
ratio 5:1, a1 = 0.72, a2 = 0.15 (solid line) and 1:5, a1 = 0.15,
a2 = 0.72 (dashed line). The Hilbert phases were used. (d)
The same as in (c), but the marked events phases were used.

ence is important when the test is done “on the edge”
of its sensitivity, i.e. with N = 512 in this case. Then
we had the sensitivity 0.86 using the histogram approach
and 1000 surrogate realizations. The normal distribution
approach gives the sensitivity 0.48 using all 1000 surro-
gate realizations and only 0.29, when thirty surrogate
realizations were used for estimating the surrogate mean
and standard deviation. One must keep in mind that
this “edge” amount of data increases when the studied
systems have different dynamics or the analyzed data are
contaminated by noise, as it is demonstrated below.

The above used “Hilbert” phases (25), i.e., the instan-
taneous phases obtained by using the Hilbert transform
(24) from continuous signals are not always available in
experimental practice. In studies of cardiorespiratory in-
teractions usually the instantaneous phases of the cardiac
and respiratory oscillations are computed by so-called
marked events method: Let tk and tk+1 be the times
of two consecutive events, here peaks in the signal (ECG
or the respiratory signal). The instantaneous phases are
then linearly interpolated as [5]:

φ(t) = 2π
t− tk

tk+1 − tk
, tk ≤ t < tk+1. (27)

Using such phases in the CMI estimation, especially con-
sidering the distribution of the phase increments (26),
could certainly influence the performance of the above
causality tests. Therefore we integrated the above stud-
ied Rössler systems (5),(6) with ten-times higher sam-
pling and defined the marked events as times when the
coordinate x1 or y1 passed the Poincare section given
by x1 = 0 or y1 = 0, respectively. Then we generated
the marked events phases (27) and subsampled them in
order to have the same sampling as using the Hilbert
phases. In the marked events phases the only informa-
tion about the underlying dynamics are the durations of
individual cycles, while the intra-cycle dynamics is lost.
This information reduction leads to a decrease of the CMI
values in the coupled direction and, consequently, to de-
creased sensitivity of the causality tests. In other words,
for the test with the sensitivity of 100% we need more
data when we use the marked event phases than using the
Hilbert phases (cf. Figs. 9a and 9b). The same conclusion
can be drawn for the case when both the systems were
chaotic, i.e. having the frequency ratio 5:1 and a1 = 0.72,
a2 = 0.15 (the solid line); and 1:5, a1 = 0.15, a2 = 0.72
(the dashed line in Figs. 9c for the Hilbert phases and
Figs. 9d for the marked events phases). Especially in the
latter case (Fig. 9d) there is a difference in sensitivities
caused by different biases due to different system main
frequencies. In the systems with comparable complexity
(chaoticity) the bias is larger in the direction from the
slower to the faster system. Therefore, in the case 5:1,
the bias is oriented against the true causality in the direc-
tion from the faster to the slower system and the test in
this direction requires at least N = 16384 data samples
in order to gain the 100% sensitivity (Fig. 9d, the solid
line).

In applications of the marked events phases, the only
available data are the event times . . . , tk, tk+1, . . . , or the
inter-event intervals . . . , tk+1 − tk, . . . . Then a simple
way, how to construct surrogate data, is random per-
mutation of the inter-event intervals before the surro-
gate marked events phases are computed according to
(27). This type of the surrogate data were used with the
marked events phases for the above Rössler systems, as
well as in the real data example presented at the end of
this section.

Considering applications to real data, influence of noise
on the presented test should also be evaluated. Gaussian
noise has been added to the raw data from the coupled
Rössler systems (5),(6) with the frequency ratio 1:1 (ex-
actly 1.015:0.985). The amount of added noise is charac-
terized by the noise standard deviation (SD) expressed in
the percentage of the SD of the original data, e.g., 10%
of noise means SD(noise)=0.1SD(data), or 100% of noise
means SD(noise)=SD(data). The noised data were pro-
cessed and tested in the same way as the noise-free data
above. The test sensitivity, i.e., the rate of true positive
detections of causality, as well as the rate of false pos-
itives, i.e., the rate of formal detections of causality in
uncoupled directions, as functions of time series length
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FIG. 10: Sensitivity (a,c) and the rate of false positives (b,d)
as functions of time series length N for the tests using the cou-
pled Rössler systems (5),(6) with the frequency ratio 1:1 for
different amounts of noise in the data. The portions of noise
are in (a,b) 0% (dotted line), 10% (dashed line), 20% (dash-
and-dotted line) and 30% (solid line); in (c,d) 50% (dashed
line), 70% (dash-and-dotted line) and 100% (solid line).

N are illustrated in Fig. 10. The higher the amount of
noise in the data, the more data samples are required
in order to obtain 100% sensitivity of the test (Fig. 10a).
For moderate amounts of noise, the rate of false positives
remains well under or about the nominal value α = 0.05
(Fig. 10b). With large amounts of noise, however, the
attainment of the 100% sensitivity is followed by an in-
crease of the rate of false positives. With 100% of noise
in the data, the rate of false positives goes to 1 (i.e.,
to 100%) even before the sensitivity rises from 0 to 1,
i.e., the detection ability of the test is completely lost.
For amounts from 50% of noise there is a bounded range
of time series lengths for which the test is reliable, e.g.,
from 8192 to 32768 samples for 50%, but only around
16384 samples for 70% of noise. The applicability of the
test is limited when the data are contaminated by a large
amount of noise. An improvement is possible not only by
preprocessing and de-noising of the data, but potentially
also by considering alternative approaches in the three
stages of the test: the phase estimation, the surrogate
data construction, and the conditional mutual informa-
tion estimation. Various approaches to the latter will be
discussed in a separate article.

In order to demonstrate how the discussed approach
can be applied to real data, we use cardiac and res-
piratory data from an animal experiment described in
[5]. Detailed account of the causality analysis in the
cardio-respiratory interactions of anaesthetized rats will
be given elsewhere [42]. Using the inter-beat and
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FIG. 11: Tests of causal influences of cardiac oscillations on
respiratory oscillations measured by I(φC ;∆τφR|φR) (a, c)
and of the influence of the respiratory rhythm on the cardiac
oscillations given by I(φR;∆τφC |φC) (b, d). Values from the
tested data are marked by the vertical lines, the surrogate
ranges are illustrated by the histograms obtained from 2500
surrogate realizations. (a,b) The test of bias using data from
two animals; (c,d) a real test for one of the animals.

inter-breath intervals we construct the marked events
phases φC , φR for the cardiac and respiratory dynam-
ics, respectively. We estimated I(φC ;∆τφR|φR) and
I(φR;∆τφC |φC) from 33-minute recordings which gave,
after subsampling to 40 Hz, the series length N = 80, 000
samples. Thus we can expect a good performance of the
tests using the marked events phases from experimen-
tal, possibly noisy data. In the first test, presented in
Figs. 11a,b we tried to evaluate the bias and the abil-
ity of the surrogate data to prevent possible false detec-
tions. For this test we used the cardiac data from one
animal and the respiratory data from another animal, so
no true causality cannot exist in this case. The CMI es-
timates are positive (although small, but this is typical
using the marked events phases) in both the directions
and the value of I(φR; ∆τφC |φC) (Fig. 11b) reflecting
the influence of the (slower) respiratory rhythm on the
(faster) cardiac dynamics is larger than I(φC ;∆τφR|φR)
(Fig. 11a) in the opposite direction. Both values from
the tested data, however, lie inside the surrogate his-
tograms. The latter result means that the CMI values
are not significantly larger than zero and no causality,
or no information flow exists in the either direction, as
we expected using the data from two different animals.
The situation is different when analyzing data from a sin-
gle animal. While there is no significant influence of the
cardiac dynamics on the respiration (Fig. 11c), the influ-
ence of the respiratory rhythm on the cardiac dynamics is
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clearly significant, since I(φR;∆τφC |φC) from the tested
data lies outside the surrogate distribution (Fig. 11d) and
thus even this small value I(φR;∆τφC |φC) = 0.0033 nat
is significantly positive.

In order to assure reliable tests, we used a large amount
of data. Due to the anaesthetized state we can expect an
acceptable level of stationarity in this case. In other ap-
plications, however, only shorter data are available. It is
therefore necessary to find out how to improve the per-
formance of the tests. One way is to use more sophisti-
cated estimators of the dependence measure. Behaviour
of several different estimators of the conditional mutual
information will be discussed in a separate article. An-
other way is an application of different randomization
schemes for the inter-events intervals, or better, to prefer
the “continuous” Hilbert phases and more sophisticated
surrogate data, such as the recurrence (twin) surrogates
[47].

VII. CONCLUSION

Inference of direction of coupling, or causality, as we
can say when we consider two, possibly coupled systems,
is not a trivial problem. In this paper we identified
some problems which could lead to incorrect inference
of causality from experimental bivariate time series. Let
us summarize the basic problems and ways how to cope
with them.

A. Dependence measures

As noted by Paluš et al. [9], the direction of coupling
can be inferred when two systems are coupled, but not
yet fully synchronized. This can be understood consid-
ering the example of identical synchronization. Once the
(identical) systems are synchronized, they produce iden-
tical time series and there is no way how to infer the
correct causality relation just from the measured data.
In the case of generalized synchronization, there is a one-
to-one relation between the states of the systems. Time
series {x(t)} can be predicted from time series {y(t)} and
vice versa. Although some dependence measures, includ-
ing those based on prediction errors, can give different
values for the relations x → y and y → x, these values
are not given by the causality relations but rather by
properties of the functional relation between the states
of the systems, e.g. by its Jacobian. The causal relation
can be inferred only when coupling is weaker than that
necessary for emergence of synchronization, or when the
synchronized state is frequently perturbed by variability
in coupling or by internal or external noise driving the
systems out of the synchronized state. Then the relation
between the system states is not deterministic, but prob-
abilistic, and can be measured by measures of statistical
dependence, such as the above introduced information-
theoretic measures.

B. Asymmetric dependence measures in uncoupled
direction

As we have observed above, asymmetric measures of
dependence can have nonzero values even in the uncou-
pled direction in cases of unidirectional coupling. This
holds for both probabilistic and deterministic measures.
Even though no deterministic relation exists before the
systems are synchronized, the deterministic measures, es-
timated in a coarse-grained approximation, reflect the
statistical dependence which occurs in both direction
even in the case of unidirectional coupling. Mutual com-
parison of these positive values or positivity/negativity of
their difference (sometimes rescaled to some ‘direction-
ality indices’) does not necessarily indicate the correct
causal direction. For a correct inference of causality it
is desirable to have a measure which vanishes in the un-
coupled direction in the case of unidirectional coupling
so that we can identify the causal direction by its statis-
tically significant digression from zero, while in the un-
coupled direction the measure does not cross the borders
of a “statistical zero”. The latter is given by the range
obtained from appropriate surrogate data, separately for
each direction. As a measure fulfilling this requirement
we introduced the conditional mutual information (CMI).

C. Amplitudes, phases and the course of
dimensionality

The proper conditioning which assures the vanishing
CMI in the uncoupled direction should contain full in-
formation about the future in the uncoupled state of the
system, influence on which is evaluated. It means that
in a case of m-dimensional dynamical system, or a vari-
able which can be modelled by a (possibly nonlinear)
autoregressive process of order m, the proper condition
is an m-dimensional vector. The order m should be es-
timated from studied data before causality tests are ap-
plied. Then the estimation of m + 2 dimensional prob-
ability distribution functional can also be a nontrivial
problem. It can be helpful, if the studied coupling can be
reflected in the dynamics of instantaneous phases, since,
in the case of phase dynamics, one-dimensional condi-
tioning is sufficient in many cases.

D. Estimator bias and significance testing

Having an appropriate asymmetric dependence mea-
sure, asymptotically vanishing in the uncoupled direc-
tion, the inference of causality can be complicated by a
bias in estimation from a limited amount of possibly noisy
data. Therefore we need to establish a statistical signif-
icance of the obtained result, e.g., by the application of
the surrogate data testing approach. The surrogate data,
however, should reflect statistical and dynamical proper-
ties of the tested data, since those can be the source
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of bias. It is necessary to test that the surrogate data
preserve the frequency distribution of the original data,
which might be more important than the amplitude dis-
tribution. For instance, it might be entirely incorrect
to make tests against white noise surrogates, obtained
by random permutation of amplitude time series, even
though they preserve amplitude distributions. Excep-
tional care must be applied when we study relations be-
tween systems which have different main frequencies, or
different complexity of dynamics, or even different vari-
ability.

E. Test critical values

In many applications of surrogate data, the significance
of the departure of the tested values from the surrogate
range is based on (not always explicitly stated) assump-
tion of a normal distribution of the test measure esti-
mated from the surrogate data. As we have observed,
it is necessary to study the surrogate distributions from
large enough surrogate ensembles in order to establish
the critical test values independently of the form of the
distribution and compare them with the critical values
based on the normal distribution and estimated from a
small number of surrogate realizations.

F. Test performance and data amounts

Before real data applications, it is always useful to as-
sess the performance of any test using appropriate model
data in order to estimate the amount of data necessary for
reliable inference. Subsampled data can cause problems,
while increasing the data amount by oversampling does
not improve the test performance. Inference of causality
usually requires more data than detection of synchroniza-
tion.

G. Reliable inference of causality

In this paper we have discussed several problems en-
countered in inference of causal relations between two
systems, i.e. in the identification of the driving and
driven systems from experimental time series. We have
summarized our extensive experience from development
of a reliable causality test, suitable for practical appli-
cations. We hope that the above information will help
other authors to avoid interpreting numerical and statis-
tical artifacts as causality and to detect true directional
interactions.
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APPENDIX A

Using the idea of finite-order Markov processes,
Schreiber [18] introduced a measure quantifying causal
information transfer between systems evolving in time,
based on appropriately conditioned transition probabili-
ties. Assuming that the system under study can be ap-
proximated by a stationary Markov process of order k,
the transition probabilities describing the evolution of the
system are p(in+1|in, ..., in−k+1). If two processes I and
J are independent, then the generalized Markov property

p(in+1|in, ..., in−k+1) = p(in+1 | i(k)
n , j(l)

n ), (A1)

holds, where i
(k)
n = (in, ..., in−k+1) and j

(l)
n =

(jn, ..., jn−l+1) and l is the number of conditioning states
from process J . Schreiber [18] proposed using the
Kullback-Leibler divergence to measure the deviation of
the transition probabilities from the generalized Markov
property (A1). This results into the definition

TJ→I =
∑

p(in+1, i
(k)
n , j(l)

n ) log
p(in+1|i(k)

n , j
(l)
n )

p(in+1|i(k)
n )

, (A2)

denoted as transfer entropy. The transfer entropy can
be understood as the excess amount of bits that must
be used to encode information on the state of the pro-
cess by erroneously assuming that the actual transition
probability distribution function is p(in+1|i(k)

n ), instead
of p(in+1|i(k), j

(l)
n ).

Let us do a few simple manipulations with the condi-
tional probabilities in (A2):

TJ→I =
∑

p(in+1, i
(k)
n , j(l)

n ) log
p(in+1, i

(k)
n , j

(l)
n )

p(in+1|i(k)
n )p(i(k)

n , j
(l)
n )

=
∑

p(in+1, i
(k)
n , j(l)

n ) log
p(in+1, i

(k)
n , j

(l)
n )

p(in+1|i(k)
n )p(i(k)

n , j
(l)
n )

p(i(k)
n )

p(i(k)
n )

=
∑

p(in+1, i
(k)
n , j(l)

n ) log
p(in+1, j

(l)
n |i(k)

n )

p(in+1|i(k)
n )p(j(l)

n )|i(k)
n )

.

Finally, TJ→I =
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∑
p(in+1, i

(k)
n , j(l)

n ) log p(in+1, j
(l)
n |i(k)

n )−
∑

p(in+1, i
(k)
n ) log p(in+1|i(k)

n )−
∑

p(i(k)
n , j(l)

n ) log p(j(l)
n )|i(k)

n ) (A3)

Now, considering Eq. (18), let us go back to the expres-
sion for conditional mutual information (22) and express

it using conditional entropies as

I
(
~Y (t); ~X(t + τ)| ~X(t)

)
= H

((
y(t), y(t− ρ), . . . , y(t− (m− 1)ρ)

)|(x(t), x(t− η), . . . , x(t− (n− 1)η)
))

+H
(
x(t + τ)|(x(t), x(t− η), . . . , x(t− (n− 1)η)

))
(A4)

−H
((

y(t), y(t− ρ), . . . , y(t− (m− 1)ρ)
)
, x(t + τ)|(x(t), x(t− η), . . . , x(t− (n− 1)η)

))
.

Next, let us express the conditional entropies using the
probability distributions, however, let us change our no-
tations according to Schreiber [18] by equating I ≡
{X(t)}, m = k, and J ≡ {Y (t)}, n = l, substitute t

for n and set η = ρ = τ = 1. We can see that we obtain
the same expression as Eq. (A3) for the transfer entropy.
Thus the transfer entropy is an equivalent expression for
the conditional mutual information (22).
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[44] M. Paluš, Neural Network World 3/97 269 (1997).

(http://www.cs.cas.cz/~mp/papers/rd1a.pdf)
[45] C.J. Cellucci, A.M. Albano, P.E. Rapp, Phys. Rev. E 71

066208 (2005).
[46] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J.D.

Farmer, Physica D 58 77 (1992).
[47] M. Thiel, M.C. Romano, J. Kurths, M. Rolfs, R. Kliegl,

Europhys. Lett. 75(4) 535 (2006).


