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Abstract

We show that the least number principle for 22 (strict ) formulas can be character-
ized by the existence of alternating minima and maxima of length k. We show simple
prenex forms of these formulas whose herbrandizations (by polynomial time functions)
are V3% formulas that characterize Y? theorems of the levels T of the Bounded Arith-
metic Hierarchy, and we derive from this another characterization, in terms of a search
problem about finding pure Nash equilibria in k-turn games.

Introduction

One of the main objects in proof-complexity is the Bounded Arithmetic Hierarchy. This is
the proof-complexity counterpart of the Polynomial Hierarchy which is studied in computa-
tional complexity. The theories in the Bounded Arithmetic Hierarchy are essentially Peano
Arithmetic with induction limited to bounded formulas with & alternations of bounded quan-
tifiers, where k is the level in the hierarchy. More precisely, in order to define T, the theory
on the k-th level, one chooses a suitable set of bounded formulas 22 that define precisely the
sets in the complexity class 37. The theory Ty is axiomatized by a finite set of basic axioms
and the induction schema for 3¢ formulas. It is well-known that induction can be replaced
by various other principles, in particular by the least number principle.

In this paper we will introduce another principle. Our principle says that, for a polynomial
time computable function v(p, xy, ..., xy), for each p there exists

minmaxmin...v(p, xy,...,Tg),
1 X9 xs3
where the minima and maxima are over z1,...,xr < p. This simple result is proved in order
to derive another one, which is the essence of this paper: we give new characterizations of
the VX% sentences (these are, essentially, sentences with a universal quantifier followed by

Institute of Mathematics, Academy of Sciences of the Czech Republic, Zitnd 25, CZ-115 67 Praha 1,
{pudlak, thapen}@math.cas.cg. Partially supported by Institutional Research Plan AV0Z10190503 and
grant TAA100190902 of GA AV CR and by a grant from the John Templeton Foundation.



an existential bounded quantifier) that are provable in 7w, for k = 1,2,.... The alternating
minima and maxima serve not only to prove these characterizations, but also to help us to
more fully understand the meaning of the sentences used in these characterizations.

The study of provable Vf]? sentences is an active research area in proof complexity.
These sentences are interesting for two reasons. In proof complexity we associate theories
with classes defined in computational complexity by postulating induction for classes of
formulas that define these complexity classes. If S and T" are theories associated with some
natural complexity classes C' and D (respectively) and it is conjectured that C' # D, we also
conjecture that (the sets of theorems of) S and 7" are different. It also seems likely that in
such a case S and T should differ in their provable VX sentences. To look at a particular
example, we do not know if TQI"’Jrl is strictly stronger than T, but one can prove this using
the assumption that the Polynomial Hierarchy is strictly increasing, and one can also show
that relativized versions of these theories are different. However, the separations obtained
in these results are by sentences of increasing complexity. Whether one can improve these
separations to fo{ sentences is still an open problem.

The second reason for studying these sentences is that the set of all true Vf]l{ sentences
defines exactly the class of total polynomial search problems, denoted TFNP (standing
for ‘total functional NP’). Various subclasses of TFNP have been studied in computational
complexity theory. Proof complexity provides tools for showing separations of the relativized
versions of these classes. Proof complexity is also a source of new subclasses of TFNP.

By a characterization of the Vf)’{ sentences provable in the theories T¥ we mean an ex-
plicitly defined set of ‘v@’{ sentences that are provable in T and from which all provable
Vf]l{ sentences are derivable over the base theory T% (in fact our characterizations are in
terms of a slightly stronger notion, search problem reducibility, which we explain in Section
2 below). Such characterizations for all k& were obtained fairly recently [13, 16, 15, 3]. Pre-
viously they were known only for £ = 0,1 and 2 [5, 9]. While we do not have a clue how to
prove conditional separations, it seems that the standard method of proof complexity should
work for relativized separations. This method is based on translating the sentences into
sequences of tautologies and proving lower bounds on the lengths of proofs of these tautolo-
gies. Unfortunately, the application of this method is hindered by the extreme complexity
of the combinatorial problems that have to be solved. Therefore, researchers are looking for
characterizations by simpler sentences than the known ones. This is also the main aim of
this paper.

We will present here two new characterizations of the Vf]ll’ sentences provable in the
theories To. In the first one our sentences are similar to those in [16, 3], but simpler.
Their simplicity may help to prove relativized separations. We obtain the sentences by first
writing the principle of alternating minima and maxima in a suitable prenex form and then
taking a herbrandization by polynomial time computable functions. This means that we
eliminate the universal quantifiers of the prenex formula by introducing function symbols,
as in Herbrand’s Theorem, and then use this as a schema in which the new function symbols
represent polynomial time computable functions. We discovered these sentences several years



ago and conjectured that they characterize the Vi]’{ sentences provable in the theories T%.
But we only recently realized that there is a reduction of the Game Induction Principle of
[16] to our sentences.

The second characterization is as a problem about finding equilibrium strategies for
a game. It was recently shown [6, 7] that the general problem of finding a mixed Nash
equilibrium is complete for the search problem class PPAD, and there is active ongoing
research into the computational complexity of game theory. In this setting, the standard
way to present a game is in strategic form, where essentially each player has only one move
and all players move simultaneously, and the standard way to input such a game to a machine
is as an explicitly given table of payoffs. In contrast, our games are in sequential form, where
we think of the (two) players as taking turns to move, and they are zero-sum, with the
players having opposite payoffs; it is straightforward to show that a pure Nash equilibrium
always exists (so we do not have to consider probabilistic strategies). Furthermore our payoff
functions are given succinctly, by a polynomial time function rather than a table — having
such a table as input would put the problem trivially into polynomial time. Similar kinds
of games are considered in [1] where it is shown that many decision problems about such
games are PSPACE-complete. The general question of how hard it is to find pure equilibria
in games where they are known to exist is raised in [8], where it is shown that for congestion
games this problem is complete for the class PLS (however the setting there is different, and
this seems to be unconnected to our results about PLS in this paper).

For our search problems to be in TFINP, we also need to weaken the definition of a Nash
equilibrium, in what we feel is a natural way. The usual definition of a pure equilibrium
is a pair of strategies for players A and B, such that neither player can improve his payoff
by unilaterally switching to a new strategy. We will weaken this by adding the condition
that any new strategy must be derivable from the old strategies, considered as oracles, by a
polynomial time algorithm. We show that the existence of such equilibria in k-turn games
characterizes the V3! sentences provable in the theory T%.

In the first two sections below we give some basic definitions of Bounded Arithmetic and
search problems. In Sections 3, 4 and 5 we introduce our sentences involving alternating
maxima and minima, and show that they can be used to axiomatize theories of Bounded
Arithmetic. In Section 6 we define a family GPLS; of search problems, arising from the
herbrandizations of these sentences, and prove that they characterize the Vf]l{ consequences
of T¥ - this is Theorem 6.1. In Section 7 we define a family PE; of search problems about
finding Nash equilibria and show in Theorem 7.2, using the earlier result, that these also
characterize the Y30 consequences of T5.

1 The Bounded Arithmetic Hierarchy

The theories T¥, for k > 0 were defined by Buss [4] (although our formalization is slightly
different from his; see the last paragraphs of this section). They are formalized in the lan-
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guage with primitive symbols 0, 1, +, X, |z|, #, |2/2], <. The intended interpretations of |z|
is [logy(z + 1)] (which is the length of the binary expansion of z, if > 0); the interpreta-
tion of z#ty is 21*I¥: and the interpretations of the other symbols are standard. The richer
language is needed because the theories have restricted induction schemes. In particular,
the function # enables us to construct, from a number z, the number z#(x# ... (x#x)...)
(with x occurring ¢-times) whose length is equal to the length of z raised to the fth power.
This is needed for formalizing polynomial time computations.

The theories T¥ are axiomatized by a finite set of axioms that fixes the interpretation of
the basic notions and by the usual scheme of induction for 3-2 formulas. This class of formulas
is defined as follows. First one defines bounded formulas in the usual way. Sharply bounded
quantifiers are defined by the condition that the outermost term is | ... |; thus they have forms
Vo < |t| and Jz < |t|, where ¢ is a term. Formulas with only sharply bounded quantifiers are
called sharply bounded formulas. A ilz formula consist of at most k alternations of bounded
quantifiers, with the first one existential, followed by a sharply bounded formula.

In the theory TY, as defined by Buss, the induction scheme is restricted to formulas with
only sharply bounded quantifiers. Since this theory is very weak, Jerabek has proposed
extending the language by the function |x/2Y] and a finite number of axioms fixing its
interpretation [10]. In the resulting version of the theory T3 it is possible to define polynomial
time computations by Al{ formulas. We will use this theory as the base theory for our results.

Terms of these theories do not suffice to define all polynomial time computable functions
(even with the function |x/2¥]) and sharply bounded formulas do not suffice to define all
polynomial time sets and relations. Therefore we shall allow the introduction of a new
function symbol representing a polynomial time computable function whenever it has a A’{
definition for which T3 proves that it is polynomial time computable. We shall use a similar
convention about polynomial time computable relations. In this richer language we do not
need to use sharply bounded quantifiers any more. Thus we may take the class flz to consist
of formulas with a quantifier-free part built from symbols for polynomial time functions
and predicates, prefixed by some bounded quantifiers. If the defined function symbols and
predicates are eliminated from such a formula by substituting their definitions, we obtain an
equivalent 30 formula.

Buss’s original formalization in [4] is in terms of classes X? in which sharply bounded
quantifiers can appear anywhere in a formula, without increasing its complexity; the iz
formulas then correspond to strict $3¢ formulas. However the strength of the theories Ty is
not changed by restricting induction to strict formulas. We note that our characterization of
the provable VXA]I{ sentences of Ty also gives a characterization of the provable V¥4 sentences,
if we strengthen our base theory from 7% to Buss’s theory Si in which every ¥ formula can
be shown to be equivalent to a 3¢ formula.

2 Polynomial search problems

Definition 1 A total polynomial search problem is given by a relation R such that

1. R(z,y) € P;



2. there is a polynomial p such that R(x,y) implies |y| < p(|z|);
3. Yx3yR(z,y).

The problem is: given input x, find y such that R(x,y).
The class of all total polynomial search problems is denoted by TFNP.

Definition 2 For i = 1,2, let S; be a search problem determined by R;(x,y). Then Sy is
polynomially many-one reducible to Sy if there exist polynomial time computable functions
f and g such that given x, f computes some string f(x) = x’ such that if Ry(z',y') for some

Y, then Ry(x,g(x,y')).

Various classes of TEFNP problems closed under polynomial reductions have been studied
and several separations of relativized classes have been shown (see e.g. [2]).

Clearly, a TFNP problem is associated with a true VXAJI{ sentence (the universal closure
of a f]? formula) and, vice versa, every true Vf]ll’ formula determines a TFINP problem.
Furthermore the definition of many-one reducibility of a search problem S; to a search
problem Sy can be read as a strong (skolemized) version of logical implication of the sentence
for S5 from the sentence for S;. Hence our goal will be to show that a scheme I' characterizes
the set of Vf]’{ consequences of a theory over T3 in a strong way, by explicitly showing how
each search problem for a sentence in the set can be reduced to a search problem for a
sentence in I' by a many-one reduction that can be formalized in T5.

It has been proved that all polynomial search problems for which the totality condition
3. is provable in Ty are computable in polynomial time (this is essentially Buss’s result from
[4]). Wilkie showed (reported in [12]) that if the totality is provable in Ty extended by a
surjective version of the weak pigeonhole principle, then the search problem can be solved in
probabilistic polynomial time. The first characterization of ‘v’f]’{ sentences provable at a level
of the hierarchy above T3 was due to Buss and Krajicek [5]. They proved that the provably
total polynomial search problems in T} are polynomially reducible to problems from the class
PLS (standing for polynomial local search [11]), and used this to give a relativized separation
of T} and T2 by a V3! sentence. A simplified version of the definition of polynomial local
search is given in Section 6. It is a special case of the polynomial search problems which we
will use to characterize the V3% sentences provable in theories T4. For this reason we call
our principles and search problems Generalized Polynomial Local Search.

3 Some useful sentences

In this section we present some sentences equivalent to the existence of the least number
satisfying a certain k-quantifier formula. In Section 5 we will use these sentences to state
corresponding axiom schemes and show that they axiomatize the theories T.

The equivalences that we are going to prove can be proved in a very weak theory. Thus
in this section we will only use pure logic and the assumption that < is a discrete linear



ordering and that v(p,xy,...,x) is an arbitrary function of k + 1 variables. The condition
that < is discrete means that

Ve(Jy(y <z) — o~ (2” <z AVy(y <z —y<z7))),

and the dual. We shall denote the predecessor (successor) of z, if it exists, by = (zT).

Thus we work in the theory of discrete linear orderings, with the ordering relation denoted
by <; the theory is extended by a function symbol v(p, z1, ..., x)) about which there are no
assumptions. Note that all basic theories studied in bounded arithmetic prove that natural
numbers are a discrete linear ordering. Thus our results are applicable to any function v
definable in these theories.

The meaning of the expression

z =minmaxmin...v(p,z1,...,Tx),
T x9 T3

with k£ mins and maxs, is clear when all the minima and maxima exist. Since we will deal
with situations in which some maxima and minima are not defined, we have to be more
careful when using such expressions.

Therefore, assuming k is even (and similarly for & odd), we will use such an expression
only if the existence of all minima and maxima is guaranteed for all suffixes

min ... max minv(p, 1, ..., Tg)
T Tp—1 Tk
for all p,x{,...,2;_1 and all odd 7, and
max ... maxminv(p, i, ..., Tg)
z; Tp—1 Tk
for all p,x1,...,2;-1 and all even j. Thus, in particular,
Jz (z = minmaxmin. .. v(p, 1, ..., Tk))

1 2 z3

is an abbreviation for the formula where the existence is stated for all suffixes as above.

The variable p serves only as a parameter, therefore in the rest of this section it will be
omitted. Note that the results below have duals in which max and min are switched and <
is reversed. We shall use the dual versions without comment when needed.

Theorem 3.1 The following two sentences are equivalent:

Ju (v = min{w; Fr1Veedzs ... v(z1,. .., 28) < w}), (1)
Fo1 Vi FyaVaoFesVys ... (v, .o 2) S vy, yk)- (2)
(The last two quantifiers in (2) are 3xVyy if k is odd, and Jy Ny, if k is even.)
Furthermore, if for all 1, max,, min,, ...v(xy,...,xy) exists, then (1) and (2) are equi-
valent to
Ju (v = minmaxmin...v(xy,...,Tx)). (3)

1 x2 3



The diagram below illustrates the order of quantifiers in (2).

dy Voo — dxs .
l 1 l (4)
Vyr — o Yy —

We will prove the theorem by a sequence of lemmas.
Lemma 3.2 Sentence (1) is equivalent to the following sentence (5):
Jw [HIIVIQHI:}) c (U(%l, ce ,ZL’k) S ’U)) VAN VylEIyQVyg . (U(yl, . 7yk> Z U})] (5)

Proof. Sentence (5) is clearly as strong as the existence of the minimum. For the opposite
direction, we shall use the discreteness of <. Let w = min{w; Jz1Vaodzs. .. v(xy,. .., z5) <
w}. The first part of (5) is immediate. To get the second part, observe that w satisfies:

Vu (u < w — Yy 3yeVys ... (v(yr, ..., ye) > u)).
If there is no u < w then the second part is clear. Otherwise w™ < w, so

Yy1FyeVys ... (v(y1, ..., yk) > w™),

whence
Yy 3yaVys .. (v, - Yk) > W),

Notice that we have shown that if w is the minimum in (1), then it satisfies the inequalities
in (5). n
To prove (1)< (3) we prove the following slightly stronger lemma.

Lemma 3.3 Suppose that for all x1, max,, min,, ...v(xq,...,xg) exists. If furthermore one
of the two numbers defined by the expressions in the following equality exists, then the other
exists too and they are equal:

minmaxmin...v(zy,. .., o) = min{w; Iz Veodrs. .. v(xy, ..., x) < w}.
T o T3

Proof. We shall use the following easy fact: if min X exists and
Vee XdyeY(y<z) ANVyeYdre X(z<y), (6)

then min Y exists and min X = minY'.
We prove the lemma by induction on k. The base case k = 1 is trivial:

minv(z;) = min{w; 3z, v(z;) < w}.
z1

By induction (applied to the dual statement), we can assume that for every z;

maxmin...v(ry,...,x;) = max{w; IroVas ... v(ry, ..., x5) > w}.
o 3



Thus we need to prove that if one of the two numbers defined by the expressions in the
following equality exists, then the other exists too and they are equal:

min max{w; JroVas...v(xy, ..., o) > w} = min{w; Iz VeoIrs. .. v(xy, ..., z) < w}.
1

Thus it suffices to prove (6) for

X =A{w; Jz1Vaodzs .. . v(xy, ..., x5) < w}
and Y = {u; Jr; u=max{z; JxoVrs.. . v(x1,...,2%) > 2}}.

To prove the first part of (6), let w € X and let b be such that
Vaodzs ... v(b, za, ..., x5) < w.
Let uw = max{u; JzoVas...v(b,xs,...,2x) > u} € Y. If u > w, then
JroVag ... v(b, xe,. .., xE) > w,

which is in contradiction with the condition above. Thus u < w.
For the second part of (6), let u € Y, so

w=max{u; I Vr3...v(a,x9,...,x) > u}

for some a. As we observed in the proof of Lemma 3.2, u satisfies Vro3zs ... v(a, s, ..., xx) <
u. Hence u € X. m

Finally for (1)< (2) it is sufficient to prove the following.
Lemma 3.4 Sentence (5) is equivalent to (2).
Proof. For (5)=-(2), transform (5) into the following prenex form
JwIx Yy Fyo Ve dzsVys . .. (v(z1, .., 2k) Sw Aw < v(yr, -, Yk)),
which, clearly, implies (2).
For (2)=(5) we shall use induction over k. For k = 1, there is nothing to prove, because

(2) says that there is a minimum of v(z).
Suppose that the theorem is true for k£ — 1. Let (2) be true and a be such that

Yy Jya Voo dasVys . .. (U(@, Ty ... >$k) < U(Z/b Y2, ... 7yk))- (7)

Thus we have
EIyQVZQEl:UvaS e (U(a7 HI I 7-Tk) S ’U(CL, Yo, ... 7yk))

By the (dual of the) induction assumption, this implies

Jw [FyeVys ... (v(a,ye,...,yx) > w) AVasTzs ... (v(a,za, ..., x5) < w))].

8



Let ¢ be such a w, i.e., we have (8) and (9) below:

FyoVys ... (v(a, Y2, - -, yk) = ), (8)

Vaodxs ... (v(a,xa,...,z1) < ). 9)
We shall show that (10) and (11) below also hold

dr Vaeodes ... (v(xy, ..., x,) < c) (10)

Y3y Vys ... (v(y, - .-, Uk) > ©), (11)

which will finish the proof.

First, (10) is an immediate consequence of (9). To prove (11) we shall argue by contra-
diction. Suppose it is false. Take the conjunction of (8), with ys renamed to xs, with the
negation of (11)

droVrg ... (v(a,xg, ..., xx) > ¢) A I VyaTys ... (v(yr, ... yk) < )
and put it into the prenex form
Ty VyoJxoVasIys . .. (v(a, e, ... x5) = cAv(Yr, ..., yk) < C).

This is in contradiction with (7). Hence (11) is true. n

4 An interpretation in terms of games

We can interpret the concepts introduced above in terms of games. Given a function

v(x1, xa, ..., x)) of k variables, consider the game G in which two players A and B alternate
in choosing values for x1, s, ..., xx. After playing these numbers the game ends and A loses
v(xy, Ta, ..., x) and B gains v(zy, xg, . .., xg). Thus the aim of A, who starts, is to minimize

the payoff, while B tries to maximize it (we will come back to this game in Section 7). The
number

w = minmaxmin. .. v(xy, g, ..., T,
1 T2 3

has the properties:
e there exists a strategy for A not to lose more than w;
e there exists a strategy for B to gain at least w.

In particular, the two strategies form an equilibrium.

The existence of such a w (the sentence (3) in Theorem 3.1) in general may be not
provable if the theory is too weak.

For sentence (2), consider the game H in which two players C and D play two copies of
G simultaneously. C plays as A in the first copy and as B in the second copy. The order of

9



moves is shown in the diagram (4), with C playing as the existential quantifier and D the
universal. If Z and g are the moves from the first and second copy, C wins H if v(z) < v(y).
The sentence (2) expresses that C can always win H; this is true if the value w above exists.

If (2) is true, then C can in particular still win H if D’s moves are played according to
some fixed strategy S; but now the universal quantifiers for D’s moves disappear and the
sentence becomes purely existential. This is essentially the principle GPLSy considered in
Section 6.

Principles based on the idea of two players playing simultaneously several games was
considered in [15]. The games considered in that paper had only two possible values, which
was the reason why those principles were much more complicated.

5 Schemes axiomatizing Ty

The sentences from Section 3 can be used to axiomatize theories in Bounded Arithmetic. In
this setting, we will let v range over polynomial time functions and let minima and maxima
be defined over the interval [0, p], where p is the parameter.

Theorem 5.1 For every k > 1, the theory Ty can be axiomatized by the azioms of TY
together with any of the following three schemes:

S1(k): Vp3z z = min,<p{w; oy < pVao < pIrs < pVay, <p...v(p,x1,...,25) < w};
S2(k): Vp3wy < pVy1 < pIya <pVae <p..v(p, o, k) S @Y UR);
S3(k): Vp3z z = min,, <, max,,<, Min,, <, MaxX,,<p, ... 0(p, 1, ..., k).

Here v denotes a formalization of a polynomial time computable function in T3 such that
U(p,Il,. . Jxk) SpfOT a’”paxlv‘ <y Tk

Proof. Note that schemes S1(k) and S2(k) imply S1(j) and S2(j) for all j < k. Hence by
Theorem 3.1, the schemes S1(k), S2(k) and S3(k) are equivalent. We will show that S1(k)

is equivalent to the least number principle for T2, formulas, which is the following scheme
Vp (Jy < pVry < p3zg < pVaz <p...oD, Yy, 15, Tho1) =
F2 <p 2 =min{y; Vo < pIey SpVay <po.$py, 21, ),

for every polynomial time (in 7%) predicate ¢. It is well-known that this axiomatizes Ty,
and in particular that the least number principle for ZA]Z formulas follows from it, cf. [4].

First observe that S1(k) is a special case of the least number principle for EA]Z formulas,
giving us one direction of the theorem. For the other direction, let ¢(p,y,x1,...,xx_1) be
given. We define a polynomial time function v(p,y, z1,...,Tk_1) by

Yy lfyﬁpand ¢<p7y7$17"'7xk71)7

v(p,y, 21, .., Tpo1) = { p otherwise.

10



Let us write ®(p,y) for
Vay < pdxe < pVas <p...o(D,y,T1,. .., Tk_1)-

Then we have, for all y < p,

Vay < pIry < pVas <p... v(p,y, 21, 26-1) Sy = D(p,y). (12)

Let z be the minimum given by S1(k), that is,
z= glgig{w; Jy < pVay < pJzy < pVaz <p...v(p,y,x1,...,T6-1) < W}.
We claim that
- Jy < 2®(p,y), (13)

because if there were such y we would obtain
Jy < pVry < pJee < pVos <p...v(p,y,x1,...,Tp_1) <Y
from (12), contradicting the minimality of z in S1(k). Suppose also that the antecedent of
the least number principle is true, that is,
Jy <p ®(p,y). (14)

Now consider two cases. First, suppose that z = p. Then by (14) and (13), p is the least
y satisfying ®(p,y). Second, suppose that z < p. Then z satisfies ®(p, z) by (12), and is the
least number satisfying this by (13). n

6 Generalized Polynomial Local Search

In this section we shall show that the herbrandization of (2) (more precisely, of the sentences
S3(k) of Theorem 5.1) characterizes the V34 theorems of 7. The herbrandization of (2) is:

3wy 3yp3ws ... v(@r, ha(wy, y2), T3, - ) S v(ha(@1), Y2, ha(21, Y2, 73), - - ).
We shall call the computational versions of these sentences GPLS, problems. Here is a

formal definition (with the parameter p explicitly mentioned).

Definition 3 A GPLS, problem is defined by polynomial time functions v depending on
k + 1 variables and hy, ..., hy depending on 2,3,4, ... k + 1 variables respectively (the first
variable is a parameter). An instance of the problem is given by a number a, a value of the
parameter. The goal is to find numbers by, ca, b3, cy, ... < a, values of x1,yo, T1,Ya, ..., such
that

v(a, by, ho(a, by, c),bs,...) <wv(a,hi(a,b),co, hs(a, by, ca,bs),...). (15)

The formalization of this GPLSy problem in Bounded Arithmetic is the sentence
Vp3xy < pJy, <pJzz <p...

v(p, 1, ha(p, 21, Y2), 3, .. .) < 0(p, ha(p, 21), Y2, ha(p, 21, Y2, 73), - - ).
The GPLSy scheme is the set of these sentences.

11



In particular, if £ = 1 these problems are special cases of PLS problems: v is the cost
function, h; is the neighborhood function and every z; < a is a feasible solution; the goal is,
for a given parameter a, to find a feasible solution b; such that the neighborhood function
hy does not decrease the cost, i.e., v(a,b;) < v(a, hi(a,b)).

Theorem 6.1 The GPLS,, scheme characterizes over Ty the Vi’{ sentences provable in Ty,
in the strong sense that

1. The GPLS, scheme is provable in T¥;

2. Every search polynomial search problem provably total in T¥ is reducible to a GPLS;,
problem, and the reduction can be formalized in Ty.

Proof. For 1., by Theorem 5.1, Ti proves all the sentences of the scheme S3(k). Since every
sentence implies its herbrandizations, T¥ also proves the sentences of the GPLS,, scheme.

For 2., we will reduce the k-Game Induction principle Gl of [16] to GPLS;. This
is sufficient, since it was proved in [16] that the total polynomial search problems of T
are reducible to the k-Game Induction principle (considered as a class of search problems),
provably in T%.

In the Game Induction principle games with only two values 0 (lose) and 1 (win) are
used. Let G(xy,...,x;) be a function representing such a game. A winning strategy for the
first (respectively, second) player is a string of functions sy, s3, ... (2,14, ...) such that

\V/l'QVI'ZL cee G(Sl(), T2, 83(1'2), .. ) = ]_,

respectively,
V$1V$3 ce G(l‘l, tz(l’l), I3, t4($1, 1‘3), - ) =0.

A reduction of a game GG to a game H is a strategy to play G as the first player assuming
that we know how to play H as the first player. Formally, it is a string of functions fi, ..., fx
such that

Vo, VyoVas . .. H(iﬁl,f2($1,y2)7$3a---) < G(f1($1),y2af3(371,3/2,9€3)7---)-

The principle GI states that it is impossible to have games Gg, Gy, ..., G, and
1. a winning strategy for the first player in Gy,
2. reductions of G; 1 to G; for i =0,...,a — 1, and
3. a winning strategy for the second player in G,.

The principle naturally gives rise to a class GI;, of search problems by letting the games,
strategies and reductions be given by polynomial time functions and bounding all moves by
the parameter a. In what follows functions si(a), ss(a,z2), ss(a, x2, z4), ... will denote the
winning strategy for the first player in Gg, function g(a,i,x1,...,z;) will denote the payoff
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of G; and functions ty(a, 1), t4(a, x1,z3), ... will denote the winning strategy for the second
player in G,.

We describe a reduction of GI, to GPLS,. W..o.g. we can assume that the first
argument in v in a GPLSy problem is encoding a pair (i, z;) of numbers < a. We will also
assume that for a given parameter a the value of v is bounded by 2a + 1. Given an instance
of GIj, define an instance of GPLSy as follows (we omit the parameter a for the sake of
readability):

v((i,21), 29, ..., x) :==2a+1—(a+1)g(i,z1,29,...,2%) — 1,

1 1,1i,[E1 if 4 a,
() o | F LG i<

(0,51()) if i = a,
and for j = 2,...,k,
fj(’i,xl,.xg,...,l’j) if 1 < a,
hi((i, 1), 2, .. 25) = ¢ sj(22,74,...,7;_1) ifi=aand jis odd,
ti(x1,23,...,2j_1) if i =a and j is even.

First let us observe that for ¢ < a,

IN

v((i,21), T2, ..., Tk) v((i 4+ 1,11), 92, - Yk) <
—(a+1)g(i,z1,29,...,28) —i < —(a+1D)gli+1,y5,y2,...,0) — (i+1) &  (16)
gli, 21,29, ... xk) > gt + 1L, y1,y2, -, Uk)-
Also

v((a,z1),xe,...,xr) < v((0,91),Y2,...,Yk) &
—(a+1)gla,x1,29,...,x) —a < —(a+1)g(0,y1,y2,-..,yx) < (17)

gla,xy,29,...,2x) =1 or ¢g(0,y1,%2,...,yx) = 0.

Now suppose that a, i, by, ca, b3, ¢4, ... < ais a solution of the GPLS, problem. Thus
v((4,b1), ho((7,01), ), b3, . ..) < v(h1((i,b1)), ca, ha((i,b1), 2, b3),...).

If i < a, then by (16) and the definition of the functions h;,

g(i7bla fQ(ia b1762)7 b37 .. ) > g(Z + 17 f1<i7b1)7627 f3(i,b1,C2,b3), o ')7

which shows that the functions f;(7,...) are not a reduction of G;4; to G;.
If i = a, then by (17) and the definition of the functions h;,

g(a7b17t2(b1>7b37"‘) =1 or 9(0751()702783(02>7"') :07

13



which shows that either t5,%,,... is not a winning strategy for the second player in G, or
S1, 83, ... 18 not a winning strategy for the first player in Gy.

Finally note that this reduction only uses elementary operations with polynomial time
computable functions, hence can be formalized in 7. Thus in 7§ the existence of a solution
of an instance of GI;, follows from the existence of a solution of an instance of GPLS,. =

We note that we can slightly simplify the formal definition of GPLS; problems by as-
suming that v defines a game in which each move encodes all previous moves. We can force
players to only play such moves by punishing the first one to deviate from this rule. Formally,
it means that we replace a value function v by another one v defined by

’lAJ(CL,.fl, (x17x2)7 <x17x27'r3)7 .- ) = U(a,x1,$2,I3, .- ')7

and
QA)(CL, Y1, Y2, Y3, - - ) =0 (respeCtiVGIY7 = CL),
if y1 = 21,92 = (21,22),...,Yj—1 = (T1, T2, ...,7j_1), where x1, 29, ...,7;_1 < a, but y; does
not have this form and j is even (respectively, j is odd).
In such games the herbrand functions hs, ..., h; can formally depend only on two moves

(and the parameter). Thus the principle gets the following form:
Vpdry <pdys < pJos <pys <p...
U(pa xy, h?(pa Ty, y2)7 xs3, h4(p7 xs3, y4)7 .. ) S U<p7 hl(p7 xl)a Y2, hS(pa Y2, xS)a Yq, .- )

7 Pure Nash equilibria in sequential games

Definition 4 A payoff function is a polynomial time function v(z,x1,...,xy), where we
think of z as a parameter and of x1, ...,z as moves in a game, which must be numbers less
than or equal to z. A game consists of players A and B alternately making moves. A’s goal
s to minimize the final value of the payoff function and B’s is to maximize it.

The next definition is in the context of a fixed assignment of a value a to the parameter
z, defining a particular game.

Definition 5 A strategy S for player A is a tuple (S1,S3,Ss,...) of functions telling A
which move to make at each of his turns given the history of the game so far, with each S;
a function with domain a'=' and range a. A strateqy T for B is defined dually. Strategies
should be thought of as oracles, with arguments and values bounded by the parameter; there
is no requirement that they are polynomial time computable. We write v[S,T] for the payoff
of the game in which A plays with strategy S and B plays with strategy T .

The existence of a pure Nash equilibrium (S,7) can now be written as a formula with
“second-order” quantifiers over oracles:

38, TVS, T (v[S",T] > v[S,T] A v[S,T'] <v[S,T]).
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That is, A cannot reduce the payoff by unilaterally changing his strategy, and B cannot
increase the payoff by unilaterally changing his strategy.

Theorem 7.1 [14] Every such game has a pure Nash equilibrium.

Proof. Suppose that k is even. The proof for odd £k is similar. We will exhibit two strategies
S and T. We define T, the last function in B’s strategy, by choosing Ty (z1, ..., zx_1) to be

the number z;, which maximizes the payoff v(a, z1,...,xx_1,x)). If there is more than one
such z, we pick the least one. The last function Sy_; in A’s strategy is then chosen as the
least xp_1 which minimizes v(a, 21, ..., 25 2, Tr_1, Tp(x1, ..., 25-1)). We carry on defining

the strategies in this way, backwards from the end of the game, alternating maxima and
minima. Notice that these strategies can be given by polynomial time functions with 37
oracles.

Now let S’ be a strategy for A different from S. Replace the first function S; of S with
S7, leaving S otherwise the same. By construction of Si, this change cannot decrease the
payoff. Now also replace the second function S3 of S with S%; similarly this cannot decrease
the payoff. Continuing in this way shows that S” does not do better than S for A. A similar
argument works for 7" and B. [ ]

Definition 6 An improvement function I4 for player A is a tuple (I, I3, ...) of polynomial
time machines. Fach I; takes a parameter a and inputs x4, ...,x;_1, can query oracles S and
T for strategies, and outputs a move xp < a. Clearly, given a, S and T, an improvement
function defines a strategy Ia(a,S,T) for A (when writing this strateqy we will usually omit
the parameter a). An improvement function Ig for B is defined similarly.

Definition 7 Given a parameter a and improvement functions I, and Ig, an equilibrium
with respect to 14, Ip is a pair (S,T) of strategies satisfying

WlLA(S,T),T] = 0[S, T] A o[S. I5(S,T)] < v[S, T]. (18)

This expresses the idea that neither A nor B can unilaterally improve his strategy in
polynomial time, even given knowledge of the other player’s strategy.

Evaluating (18) is polynomial-time in a,S,T. In particular if p(Ja|) is a bound on the
running time of the machines making up I, and Ip, then evaluating (18) uses at most
2kp(|al) 4+ 2k queries to each of S and T". This means that to find an equilibrium, we do not
need to find total strategies S and T', defined on all possible game histories. It is enough to
find partial strategies, as long as they are defined on all queries made in (18), and satisfy
it; this is because we could extend them arbitrarily to total strategies, and they would
still satisfy it. Since this is only a polynomial number of queries, we can code such partial
strategies as numbers less than a?*(?)+2F (the number of possible sequences of oracle replies).
Quantifying over them thus collapses to normal “first-order” bounded quantification. This
allows us to turn the principle that an equilibrium exists into a search problem in TFNP.
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Definition 8 A PE; search problem (standing for polynomial time equilibrium) is defined
by a payoff function v and improvement functions I, and Ig. The problem is: given a
parameter a, find a pair of partial strategies S and T which are in equilibrium with respect
to I4 and Ip.

Theorem 7.2 The class PE, of search problems characterizes the Vi’{ sentences provable
in Ty, by reductions formalizable in Ty .

Proof. One direction is immediate: Ty proves everything we need about alternating minima
and maxima of length k, and in fact is strong enough to formalize polynomial time functions
with 3¥ oracles. So in a model of Ty we can simulate a computation of (18) using the true
equilibrium min-maxing strategies of Theorem 7.1. We store every oracle query and reply
made to S and T in this computation, and these lists of queries and replies give us our partial
strategies.

For the other direction, we will give a reduction of GPLS; to PE;. Suppose that an
instance of GPLS,, is given by functions v, hy,..., hg. Recall that the problem is, given
a parameter a (which every function takes as a first argument, but which we will leave
unwritten for clarity), to find 1, xs, ... and ys,ys, . .. such that

v(x1, ha(1,92), T3, ha(1, y2, T3, 4a), - - ) < v(ha(21), Y2, hs(21, Y2, T3), Y, - - -)-

We define an instance of PE;. The payoff function will be exactly v (again we will not
write the first argument a). The improvement function 14 = ([, I3,...) for A will only
query A’s strategy S = (51, 53,...) and will not use B’s strategy. The idea is that for each
(odd) j the function I; is, roughly speaking, the composition h; o S; o h;j_;. More precisely,
I;(y2,Ya, - ., yj—1) is calculated as follows, in j + 1 steps:

o At step 1, set zy = S1();

o At step 2, set xg = ho(x1, y2);

e Then at odd steps i = 3,...,7, set x; = Si(x9, 24, ..., Ti_1);
e And at even steps i =4,...,j — 1, set x; = hi(z1,v2, ..., Yi);
e Finally at step j + 1 output hj(x1,v2,...,Yj-1,T;).

Similarly the idea for the improvement function /g = (Is, Iy, . . .) for B is that for each (even)
J, the function I; is the composition hjoTjoh;_y. Precisely, I;(x1,x3,...,x;_1) is calculated
as follows, in j + 1 steps:

e Atoddstepsi=1,...,5 —1, set y; = hy(x1,92,...,T;);
o At even stepsi=2,...,7, set y; = Ti(y1,Ys3, -, Yi-1);

e Finally at step j + 1 output hj(z1, 92, ..., Tj-1,Y;)-
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Now suppose (S, T) is an equilibrium for /4 and Ip. Let g be a play of I4 against 7', and
let  be the internal values used by I, as described in the definition of 14 above. Then we
have the following (in item 2, y; is the output of [;(ys, ..., y;—1)):

1. For each odd j, z; = Si(za, 24, ..., 2j-1);

2. For each odd j, y; = hj(z1,92, ..., yj—1,%;);
3. For each even j, y; = T(y1, Y3, - - -, Yj—1);

4. For each even j, z; = hj(ﬂc1,y2, e 7Ij—1ayj>‘

Since S and T are in equilibrium, v(y) = v[l4,T] > v[S,T]. On the other hand, if
we let z be a play of S against Ip and let y be the internal values used by Ip, then x
and y will have exactly the same values as above, and by equilibrium we get that v(z) =
v[S, Ig] < w[S,T]. Thus we have sequences Z and y such that v(Z) < v(y) and where each
even x; = hi(x1,Yy,...,y;) and each odd y; = hj(z1, 4, ...,2;), exactly as required for a
solution of our instance of GPLS,. [

This theorem relativizes (as does Theorem 6.1). Hence to prove a relativized separation
of the V3! consequences of T¥*! from those of T¥ it is sufficient to find an oracle with respect
to which finding a feasible equilibrium is strictly harder for (k + 1)-turn games than it is for
k-turn games.

From the proof we can also draw the corollary that the general problem of finding a poly-
nomial time equilibrium is always reducible to an instance where the improvement functions
have the rather simple form that arises from GPLS,.
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