
Constitutive models

Part 2
Elastoplastic



Elastoplastic material models

• Elastoplastic materials are assumed to 
behave elastically up to a certain stress limit 
after which combined elastic and plastic 
behaviour occurs.

• Plasticity is path dependent – the changes in 
the material structure are irreversible



Stress-strain curve of a hypothetical material
Idealized results of one-dimensional tension test 
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Real life 1D tensile test, cyclic loading

Hysteresis loops move
to the right - racheting

Where is the yield point?

Conventional yield point

Lin. elast. limit



Mild carbon steel 
before and after heat treatment

Conventional yield point … 0.2%



The plasticity theory  covers the 
following fundamental points

• Yield criteria
 

to define specific stress 
combinations that will initiate the non-elastic 
response – to define initial yield surface

• Flow rule
 

to relate the plastic strain increments to 
the current stress level and stress increments

• Hardening rule
 

to define the evolution of the 
yield surface. This depends on stress, strain and 
other parameters



Yield surface, function
• Yield surface, defined in stress space separates stress states 

that give rise to elastic and plastic (irrecoverable) states
• For initially isotropic materials yield function depends on 

the yield stress limit and on invariant combinations of 
stress components

• As a simple example Von Mises …
• Yield function, say F, is designed in such a way that 
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Three kinematic conditions are to be 
distinguished

• Small
 

displacements, small
 

strains
– material nonlinearity only (MNO)

• Large
 

displacements and rotations, small
 

strains
– TL formulation, MNO analysis
– 2PK stress and GL strain substituted for engineering 

stress and strain

• Large
 

displacements and rotations, large
 

strains
– TL or UL formulation
– Complicated constitutive models



Rheology models for plasticity

Ideal or perfect plasticity, no hardening



Loading, unloading, reloading and cyclic loading in 1D
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Isotropic hardening in principal stress space
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Kinematic hardening in principal stress space
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Von Mises yield condition, four hardening models

1. Perfect plasticity – no hardening 2. Isotropic hardening

3. Kinematic hardening 4. Isotropic-kinematic



Different types of yield functions
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Plasticity models – physical relevance

• Von Mises
- no need to analyze the state of stress
- a smooth yield sufrace
- good agreement with experiments

• Tresca
- simple relations for decisions (advantage for hand calculations)
- yield surface is not smooth (disadvantage for programming, 

the normal to yield surface at corners is not uniquely defined) 
• Drucker Prager

a more general model



1D example, bilinear characteristics
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Strain hardening parameter again

Elastic strains removed

Initial yield

Upon unloading and reloading the effective stress must exceed

Geometrical meaning of the strain hardening parameter is 
the slope of the stress vs. plastic strain plot



How to remove elastic part
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1D example, bar (rod) element 
elastic and tangent stiffness
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Results of 1D experiments must  
be correlated to theories capable 
to describe full 3D behaviour of 

materials

• Incremental theories
 

relate stress increments to strain increments

• Deformation theories
 

relate total stress to total strain



Relations for incremental theories
 isotropic hardening example 1/9

σσ
&=

→ tt d
dlim:rates and increments between Relation

0

surface yield back to go0

0 that meansit  - neutral0and0

ticelastoplas0and0
elastic0and0

elastic0if
 and on  dependsn deformatio ofincrement 

 

 0),( is surface yield Let the

P
eff

eff

eff

eff

P

>

===

>=
<=

<

=

F

F

F
F
F

F

F

ij

ijij

εσ

σ
σ

σ

εσ

&&

&

&

&

Parameter only



Relations for incremental theories
 isotropic hardening example 2/9

Eq. (i) … increment of plastic deformation has a direction 
normal to F while its magnitude (length of vector) is not yet known

defines outer normal to F
in six dimensional stress space
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Relations for incremental theories
 isotropic hardening example 3/9
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Relations for incremental theories
 isotropic hardening example 4/9
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Relations for incremental theories
 isotropic hardening example 5/9
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Relations for incremental theories
 isotropic hardening example 6/9
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Relations for incremental theories
 isotropic hardening example 7/9
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Relations for incremental theories
 isotropic hardening example 8/9
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J2 theory, perfect plasticity 1/6 
alternative notation … example of numerical treatment
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J2 theory, numerical treatment …2/6
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J2 theory, numerical treatment …3/6
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J2 theory, numerical treatment …4/6
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J2 theory, numerical treatment …5/6 
predictor-corrector method, first part: predictor

1. known stress

2. test stress (elastic shot)

3a. elastic part of increment 
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J2 theory, numerical treatment …6/6 
predictor-corrector method, second part: corrector
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Secant stiffness method and the method of radial return
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