Fitting experimental data

1D stretch experiment with rubber

1D stretch experiment with rubber

Polynomial fit

From a table

We could get (assuming for example the $3^{\text {rd }}$ degree polynomial)
${ }^{t} P=c_{1} \xi^{3}+c_{2} \xi^{2}+c_{3} \xi+c_{4} \quad$ (a) (see function polyfit in Matlab)
The derivative with respect the stretch yields
$\frac{d^{t} P}{d \xi}=3 \xi^{2} c_{1}+2 \xi c_{2}+c_{3}$
At $\xi=1$ (no stretching)

$$
\begin{equation*}
\left.\frac{\partial^{t} P}{\partial \xi}\right|_{\xi=1}=3 c_{1}+2 c_{2}+c_{3}=k^{L}=\operatorname{tg} \alpha \tag{*}
\end{equation*}
$$

Interlude

In the small-strain world we have

$$
\begin{aligned}
& \sigma={ }_{0} E \varepsilon, \quad \varepsilon=\frac{\Delta l}{{ }^{0} l}=\frac{{ }^{t} l-{ }^{0} l}{{ }^{0} l}=\xi-1 \\
& \sigma=\frac{{ }^{t} P}{{ }^{0} A} \\
& { }^{t} P={ }^{0} A_{0} E(\xi-1)
\end{aligned}
$$

$$
{ }^{t} P=k^{L} \xi-k^{L} \quad-\quad \text { linear relation }
$$

$$
k^{L}={ }^{0} A_{0} E
$$

So a sort of an „equivalent" Young modulus is

$$
{ }_{0} E=\frac{k^{L}}{{ }^{0} A}=\frac{1}{{ }^{0} A} \quad\left(3 c_{1}+2 c_{2}+c_{3}\right)
$$

$\xi=1$

A trivial check

$$
\begin{aligned}
& \sigma^{e n g}={ }^{t} P /{ }^{0} A=\frac{{ }^{0} A_{0} E(\xi-1)}{{ }^{0} A}={ }_{0} E(\xi-1) \\
&={ }_{0} E\left(\frac{{ }^{t} l}{{ }^{0} l}-1\right)={ }_{0} E \frac{{ }^{t} l-{ }^{0} l}{{ }^{0} l}={ }_{0} E \frac{\Delta l}{{ }^{0} l}={ }_{0} E \varepsilon
\end{aligned}
$$

where

$$
{ }_{0} E=\frac{k^{L}}{{ }^{0} A} \quad \text { from experiment see }\left({ }^{*}\right)
$$

For practical FE computations we need $S_{i j}=f\left(E_{i j}\right)$

In 1D case the Green-Lagrange strain tensor is

$$
\begin{gathered}
E_{11}=E_{G L}=\frac{1}{2}\left(\xi^{2}-1\right)(b) \Rightarrow \xi=\sqrt{2 E+1} \\
{ }_{t}^{t} \sigma=\frac{{ }^{t} \rho}{{ }^{0} \rho} F{ }_{0}^{t} S F^{T}
\end{gathered}
$$

Assuming uniform deformation

$$
{ }^{t} x=\frac{{ }^{t} l}{{ }^{0} l} \quad{ }^{0} x=\xi^{0}{ }_{X}
$$

we get 1D deformation gradient

$$
F=\frac{\mathrm{d}^{t_{X}}}{\mathrm{~d}^{0}{ }_{X}}=\xi
$$

Using the mass conservation law

$$
\begin{aligned}
& { }^{0} \rho{ }^{0}{ }^{0} A={ }^{t} \rho{ }^{t}{ }^{t} A \\
& \frac{{ }^{t} \rho}{{ }^{0}} \rho
\end{aligned}=\frac{{ }^{0} l}{{ }^{t} l}{ }^{0} A\left({ }^{t} A \quad=\frac{1}{\xi} \frac{{ }^{0} A}{{ }^{t} A}\right.
$$

So the relation we are looking for is

$$
{ }_{t}^{t} \sigma=\frac{1}{\xi} \frac{{ }^{0} A}{{ }^{t} A} \xi{ }_{0}^{t} S \xi={ }_{0}^{t} S \frac{{ }^{0} A}{{ }^{t} A} \xi
$$

but

$$
{ }_{t}^{t} \sigma=\frac{{ }^{t} P}{{ }^{t} A} \Rightarrow{ }^{t} P={ }^{t} A{ }_{0}^{t} S \frac{{ }^{0} A}{{ }^{t} A} \xi={ }_{0}^{t} S{ }^{0} A \xi
$$

also

$$
\xi=\sqrt{2 E_{G L}+1}
$$

Finally

$$
{ }^{t} P={ }_{0}^{t} S{ }^{0} A \sqrt{2 E_{G L}+1}
$$

$$
\begin{equation*}
{ }_{0}^{t} S=\frac{{ }^{t} P}{{ }^{0} A \sqrt{2 E_{G L}+1}} \tag{c}
\end{equation*}
$$

force vs. stretch

force vs. GL

GL vs. stretch

Check and summary

a) geometry

$$
F_{11}=\bar{F}=\xi=\frac{{ }_{l} l}{0_{l}}
$$

b) conservation of mass

$$
\frac{{ }^{t} \rho}{{ }^{0} \rho}=\frac{1}{\xi} \frac{{ }^{0} A}{{ }^{T} A}
$$

c) stresses

$$
{ }_{t}^{t} \sigma_{11}={ }_{t}^{t} \bar{\sigma}, \quad{ }_{0}^{t} S_{11}={ }_{0}^{t} \bar{S}
$$

d) true stress

$$
{ }_{t}^{t} \bar{\sigma}=\frac{{ }^{t} P}{{ }^{t} A}
$$

$$
\Rightarrow \quad{ }_{t}^{t} \bar{\sigma}=\frac{1}{\xi} \frac{{ }^{0} A}{{ }^{t} A}{ }{ }_{0}^{t} \bar{S} \xi=\frac{{ }^{0} A}{{ }^{t} A}{ }_{0}^{t} \bar{S} \xi
$$

Still not enough

What is the relation between ${ }^{t} A$ and ${ }^{0} A$?
This would depend on other components of deformation gradient, i.e. F_{22}, F_{33}.
And this, in turn would depend on the type of material deformation.
Assuming EQUIVOLUMETRIC deformation $\left({ }^{t} V={ }^{0} V, \mu=0.5\right)$ - typical for rubber.
We would get

$$
\begin{aligned}
& { }^{t} l{ }^{t} A={ }^{0} I{ }^{0} A \\
& \frac{{ }^{0} A}{{ }^{t} A}=\frac{{ }^{t} l}{{ }^{0} l}=\xi \\
& { }_{t}^{t} \bar{\sigma}={ }_{0}^{t} \bar{S} \xi^{2} \\
& \text { For } 0<\mu \leq 0.5 \\
& \frac{{ }^{0} A}{{ }^{t} A}=\frac{{ }^{t} l}{0_{l}}=\xi \\
& { }_{t}^{t} \bar{\sigma}={ }_{0}^{t} \bar{S} \xi^{(1+2 \mu)}
\end{aligned}
$$

And finally

A thought experiment - part 1

Let's assume that we have a material which behaves linearly in a very wide range of stretch, meaning

$$
\begin{aligned}
& { }^{t} P=k \varepsilon=k \frac{\Delta l}{{ }^{0} l}=k \frac{{ }^{t} l-\Delta l}{{ }^{0} l}=k(\xi-1) ; \\
& \frac{{ }^{t} P}{{ }^{0} A}=\frac{k}{{ }^{0} A} \varepsilon \quad \sigma^{e n g}={ }_{0} E \varepsilon \Rightarrow{ }_{0} E=k /{ }^{0} A
\end{aligned}
$$

This force expressed by means of the 2nd Piola-Kirchhoff is

$$
{ }^{t} P={ }_{t}^{t} \sigma{ }^{t} A={ }_{0}^{t} S{ }^{0} A \xi
$$

Comparing the last two equations we get

$$
{ }_{0}^{t} S=\frac{{ }^{t} P}{{ }^{0} A \xi}=\frac{k(\xi-1)}{{ }^{0} A \xi}=\frac{k}{{ }^{0} A}\left(1-\frac{1}{\xi}\right)=\frac{k}{{ }^{0} A}\left(1-\frac{1}{\sqrt{2 E_{G L}+1}}\right)
$$

So a linear function ${ }^{t} P=f(\xi)$ has a strongly non-linear counterpart in ${ }_{0}^{t} S=f\left(E_{G L}\right)$ for

$$
{ }_{0}^{t} S=\frac{k}{{ }^{0} A}\left(1-\frac{1}{\sqrt{2 E_{G L}+1}}\right)
$$

the rate is given by

$$
\frac{d_{0}^{t} S}{d E_{G L}}=-\frac{k}{{ }^{0} A}\left(1-\frac{1}{\left(2 E_{G L}+1\right)^{3 / 2}}\right)
$$

$$
\begin{aligned}
& \left.\frac{d_{0}^{t} S}{d E_{G L}}\right|_{E_{G L}=0}=+\frac{k}{{ }^{0} A}={ }_{0} E \\
& \Rightarrow \operatorname{tg} \beta={ }_{0} E
\end{aligned}
$$

There is the same tangent in origin - but that's a trivial conclusion.

A thought experiment - part 2

Let's conclude this thought experiment by finding the material properties which would correspond to a linear relation

$$
{ }_{0}^{t} S={ }_{0} E E_{G L}=\frac{1}{2}{ }_{0} E\left(\xi^{2}-1\right)
$$

Since

$$
{ }^{t} P={ }_{0}^{t} S{ }^{0} A \xi
$$

by substitution we get

$$
{ }^{t} P=\frac{1}{2} E_{0}{ }^{0} A \xi\left(\xi^{2}-1\right)
$$

if 2PK is a linear function of GL, then force vs. stretch must be

