# Continuum Mechanics, part 1 

Background, notation, tensors

## The Concept of Continuum

The molecular nature of the structure of matter is well established.

In many cases, however, the individual molecule is of no concern.

Observed macroscopic behavior is based on assumption that the material is continuously distributed throughout its volume and completely fills the space.

The continuum concept of matter is the fundamental postulate of continuum mechanics.

Adoption of continuum concept means that field quantities as stress and displacements are expressed as piecewise continuous functions of space coordinates and time.

## CONTINUUM MECHANICS

- generally, it is a non-linear matter,
- theoretical foundations are known for more than two centuries - Cauchy, Euler, St. Venant, ...,
- the non-linear mechanics develops quickly during the last decades and it is substantially influenced by the availability of high-performance computers and by the progress in numerical and programming methods,
- it was the computer and modern mathematical methods which allowed to solve the difficult theoretical and engineering problems taking into account the material and geometrical nonlinearities and transient phenomena,
- still, the most difficult task is the determination of validity range of the used mathematical, physical and computational models.
- The mathematical description of non-linear phenomena is difficult - for the efficient development of formulas it is suitable to use the tensor notation.
- The tensor notation can be considered as a direct hint for algorithmic evaluation of formulas, however, for the practical numerical computation the matrix notation is preferred.
- Note: To a certain extent Maple and Matlab and old Reduce could handle symbolic manipulation in a tensorial notation.


## Notation

- That's why we will talk not only about the tensor notation, which is very efficient for deriving the fundamental formulas, but also about the equivalent matrix notation, which is preferable for the computer implementation.
- Besides, we will also mention a so called 'vector' notation, which is currently being used in the engineering theory of strength of material.


## Example

Strain tensor in indicial notation is

## $\varepsilon_{i j}$

Its matrix representation is

$$
[\varepsilon]=\left[\begin{array}{lll}
\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
\varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
\varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
\end{array}\right]
$$

Due to the strain tensor symmetry a more compact 'vector' notation is often being employed in engineering, i.e.

$$
\{\varepsilon\}=\left\{\begin{array}{llllll}
\varepsilon_{11} & \varepsilon_{22} & \varepsilon_{33} & \varepsilon_{12} & \varepsilon_{23} & \varepsilon_{31}
\end{array}\right\}^{\mathrm{T}} .
$$

The engineering strain is

$$
\{\varepsilon\}=\left\{\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\varepsilon_{5} \\
\varepsilon_{6}
\end{array}\right\}=\left\{\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z} \\
\gamma_{x y} \\
\gamma_{y z} \\
\gamma_{z x}
\end{array}\right\}=\left\{\begin{array}{c}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{33} \\
2 \varepsilon_{12} \\
2 \varepsilon_{21} \\
2 \varepsilon_{21}
\end{array}\right\}
$$

The reason for the appearance of a 'strange' multiplication factor of 2 will be explained later.

You should carefully distinguish between constants in

$$
\sigma_{i j}=C_{i j k l} \varepsilon_{k l} \quad \text { and } \quad\{\sigma\}=[C]\{\varepsilon\}
$$

## Continuum mechanics in Solids ...

scope of the presentation
Tensors and notation
Kinematics
Finite deformation and strain tensors
Deformation gradient
Displacement gradient
Left Cauchy deformation gradient
Green-Lagrange strain tensor
Almansi (Euler) strain tensor
Infinitesimal (Cauchy) strain tensor
Infinitesimal rotation
Stretch
Polar decomposition

## Continuum mechanics in Solids ... cont.

Rigid body motion
Motion and flow
Stress tensors
Incremental quantities
Energy principles
Total and updated Lagrangian approach
Numerical approaches

## Tensors, Notation, Background

Continuum mechanics deals with physical quantities, which are independent of any particular coordinate system.

At the same time these quantities are often specified by referring to an appropriate system of coordinates.

Such quantities are advantageously represented by tensors. The physical laws of continuum mechanics are expressed by tensor equations.

The invariance of tensor quantities under a coordinate transformation is one of principal reasons for the usefulness of tensor calculus in continuum mechanics.

Notation being used is not unified.
Deformation and motion of a considered body could be observed from the configuration
at time 0 to that at time $t$,
at time $t$ to that at time $t+\Delta t$.
Notation
symbolic
$\mathbf{A}, \mathbf{B}, \mathbf{c}, \vec{x}$
indicial
$A_{i j}, B_{i j}, c_{i}, x_{i}$
matrix
$[A],[B],\{c\},\{x\}$

Tensors, vectors, scalars
General tensors .. transformation in curvilinear systems Cartesian tensors .. transformation in Cartesian systems

Tensors are classified by the rank or order according to the particular form of the transformation law they obey.

In a three-dimensional space $(n=3)$ the number of components of a tensor is $n^{N}$, where $N$ is the rank (order) of that tensor.

Tensors of the order zero are called scalars.
In any coordinate system a scalar is specified by one component. Scalars are physical quantities uniquely specified by magnitude.

Tensors of the order one are called vectors.
In physical space they have three components.
Vectors are physical quantities possessing both magnitude and direction.

Scalars ... magnitude only (mass, temperature, energy), will be denoted by Latin or Greek letters in italics as

$$
a, \alpha, E
$$

Vectors ... magnitude and direction (velocity, acceleration), may be represented by directed line segments and denoted by

$$
\mathbf{x},\{x\}
$$

Free vectors

Bounded vectors $\vec{a} / \vec{b}$
$\vec{a}=\vec{b}$ $\vec{b}$
$\vec{a}$

Positional (reference) vectors are completely fixed


Rigid body mechanics

For the correct calculation of reactions the loading force can be freely moved along the line $\ell$

It cannot, however, be shifted lateraly

A model ... no deformation due to an external loading


Mechanics of deformable bodies


Even if the reactions are the same, the stress distribution is different

It should be reminded that in linear mechanics the stress is calculated from the undeformed configuration of the body

$$
\sigma_{\text {engineering }}=\frac{F_{\mathrm{current}}}{A_{\mathrm{initial}}}
$$

A vector may be defined with respect to a particular coordinate system by specifying the components of the vector in that system.

The choice of coordinate system is arbitrary, but in certain situations a particular choice may be advantageous.

The Cartesian rectangular system is represented by mutually perpendicular axes. Any vector may be expressed as a linear combination of three, arbitrary, nonzero, noncomplanar vectors, which are called base vectors.

The most frequent choice of base vectors for the rectangular Cartesian system is the set of unit vectors along the coordinate axis $\{x\}$ that are often denoted $\{e\}$

Notalion used
$\bar{v}=v_{1} \bar{e}_{1}+v_{2} \bar{e}_{2}+v_{3} \bar{e}_{3}=$


Notice the summation sign being dropped.
Einstein or summation convention - dummy index.

## Summation rule

When an index appears twice in a term, that index is understood to take on all values of its range, and the resulting terms summed.

$$
c=a_{i} b_{i}=\sum_{i=1}^{3} a_{i} b_{i}
$$

So the repeated indices are often referred to as dummy indices, since their replacement by any other letter, not appearing as a free index, does not change the meaning of the term in which they occur.

Vectors will be denoted in a following way
Symbolic or Gibbs notation

$$
\vec{a}, \bar{a}, \mathbf{a}
$$ Indicial notation; a component or all of them $a_{i}$ Matrix algebra notation

Note
Tensor indicial notation does not distinguish between row and column vectors

$$
\{a\}=\left\{\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
\vdots \\
a_{n}
\end{array}\right\} \quad\{a\}^{\mathrm{T}}=\left\{\begin{array}{llllll}
a_{1} & a_{2} & a_{3} & \ldots & \ldots & a_{n}
\end{array}\right\} ; s=\sqrt{\{a\}^{\mathrm{T}}\{a\}}=\left(a_{i} a_{i}\right)^{\frac{1}{2}}
$$

## Orthogonal transformation $\quad \mathbf{x}^{\prime} \leftarrow \mathbf{x}$

Direction cosines


$$
a_{i j}=\cos \left(x_{i}^{\prime} x_{j}\right)
$$

$$
9 \text { quantities, } 6 \text { of them independent }
$$

## are stored in 3 by 3 matrix <br> $\mathbf{A}=a_{i j}$

Transformation law is
$x_{i}{ }^{\prime}=a_{i j} x_{j} \quad$ or $\quad\left\{x^{\prime}\right\}=[A]\{x\} \quad$ or $\quad \mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$
for the first order Cartesian tensors.

## Inverse transformation

 $\mathbf{x} \leftarrow \mathbf{x}^{\prime}$$$
x_{i}=a_{j i} x_{j}^{\prime} \quad\{x\}=[A]^{\mathrm{T}}\left\{x^{\prime}\right\}
$$

Combining forward and inverse transformations for an arbitrary vector

$$
\begin{array}{ll}
x_{i}^{\prime}=a_{i j} x_{j} \quad x_{j}=a_{k j} x_{k}^{\prime} & \left\{x^{\prime}\right\}=[A]\{x\} \quad\{x\}=[A]^{\mathrm{T}}\left\{x^{\prime}\right\} \\
x_{i}^{\prime}=a_{i j} a_{k j} x_{k}^{\prime} & \left\{x^{\prime}\right\}=[A][A]^{\mathrm{T}}\left\{x^{\prime}\right\} \\
x_{i}^{\prime}=\delta_{i k} x_{k}^{\prime} & \left\{x^{\prime}\right\}=[I]\left\{x^{\prime}\right\} \\
x_{i}^{\prime}=x_{i}^{\prime} & \left\{x^{\prime}\right\}=\left\{x^{\prime}\right\}
\end{array}
$$

The coefficient

$$
a_{i j} a_{k j} \text { or }[A]^{\mathrm{T}}[A]
$$

gives the symbol or variable which is equal either to one or to zero according to whether the values $i$ and $k$ are the same or different.
This may be simply expressed by

$$
\delta_{i j} \quad \text { or } \quad[I]
$$

i.e. by Kronecker delta or unit matrix
to the Keoveaker delta is defined by

$$
\delta_{i j}=\left\{\begin{array}{l}
1 \\
0
\end{array} \text { for } \quad i \neq j\right.
$$

then for direction cosines we can unite

$$
a_{i j} a_{i k}=\delta_{j k} \quad[A]^{\top}[A]=[I]
$$

or

$$
a_{j i} a_{k i}=\delta_{j k}
$$

$$
[A][A]^{T}=[I]
$$

this ulalion in expanded frour ensiths of wine equations, kuown as orthogonality anditims. (Six cre incerdant Condinate axis iotelinus and reflechin of the aris
in a cordinate plave - both lelad ho athofornal trautfonalion.
the Kionecher delta is foncelimes called the substitution operator for which

$$
\delta_{i k} x_{k}=x_{i}
$$

$$
\left.\delta_{i k} x_{k}=\delta_{i_{1} x_{1}+\delta_{i 2} x_{2}+\delta_{i 3} x_{3}=}^{\text {since }} \begin{array}{ll}
x_{1} & i=1 \\
x_{2} & \text { for } \\
x_{3} & i=2 \\
i=3
\end{array}\right\rangle x_{i}
$$

Second order tensors, definition and properties
Let $\bar{R} \equiv \bar{R}^{\prime}$ and $\bar{S} \equiv \bar{S}^{\prime}$ are two rectors sepersed in unprimed and primed coordinate systems. Applying the ontergoval transformation we get

$$
\begin{array}{ll}
R_{i}^{\prime}=\text { aik } R_{k} & \left\{R^{\prime}\right]=[A]\{R\} \\
S_{j}^{\prime}=a_{j \ell} S_{l} & \left\{S^{\prime}\right\}=[A]\{S\}
\end{array}
$$

For all frrmble puoducts of veetor compriments be can unite

$$
R_{i}^{\prime} S_{j}^{\prime}=a_{i k} a_{j l} R_{k} S_{l} \quad\left\{R^{\prime}\right\}\left\{S^{\prime}\right\}^{\top}=[A]\{R\}\{S\}^{\top}[A]^{\top}
$$

the second-order fentor is defined as

$$
\begin{array}{ll}
T_{i j}^{\prime}=R_{i}^{\prime} S_{j}^{\prime} & {\left[T^{\prime}\right]=\left\{R^{\prime}\right\}\left\{S^{\prime}\right\}^{T}} \\
T_{k l}=R_{k} S_{l} & {[T]=\{R\}\{S\}^{T}}
\end{array}
$$

Second order tensor transformation

$$
T_{i j}^{\prime}=a_{i k} a_{j l} T_{k l} \quad\left[T^{\prime}\right]=[A][T][A]^{\top}
$$

With the belp of athognality endilins it is eary to iuvert the perions relation, thereby gining the trausformation rele from primed to unprimed. emuponents in the from

$$
T_{i j}=a_{k i} \quad a_{l j} \quad T_{k l}^{\prime} \quad[T]=[A]^{T}\left[T^{\prime}\right][k]
$$

indicial motation matrix alpetra cootation

Unrefeated indeces are known as fue inclices Number of unrefeated indides is equal to tentrial rauk fo for a range of thee on brte indices $i, j$ the syutine $A_{i j}$ represents in thece-dimeestinal pace vine emufnents that may be arrauged riuto the frim of 3 ky I squere methix
$A_{i j}$
A
[A]

- indicial urtation
- symerblic (boldfaced) notalion
- ruatir algeha voselion
$\left[\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23}\end{array}\right]$ - tentor peseented explicitly $A_{21} \quad A_{22} \quad A_{23}$ by gining all emperients anauped $A_{11} A_{22} A_{23}$ ice a square array
the higher-nder tensors are defined sicuilerly by weans of the hausformation law

$$
T_{i j k l}^{\prime}=a_{i r} a_{j s} a_{k t} a_{l \ell \mu} T_{r s t m}
$$

the precise meaning of this tensrrial equation can easily be clarified by the following sequent of the basic furpram

## Fourth order tensor transformation

```
    \(T_{i j k l}^{\prime}=a_{i r} a_{j s} a_{k t} a_{l u} T_{r s t u}\)
\(d=3 ; D I M T^{\prime}(d, d, d, d), T(d, d, d, d), a(d, d)\)
for \(i=1\) to \(d\)
    for \(j=1\) to \(d\)
            for \(k=1\) to \(d\)
            for \(l=1\) to \(d\)
                \(T^{\prime}(i, j, k, l)=0 ;\)
                for \(r=1\) to \(d\)
            for \(s=1\) to \(d\)
                                    for \(t=1\) to \(d\)
                                    for \(u=1\) to \(d\)
\(T^{\prime}(i, j, k, l)=T^{\prime}(i, j, k, l)+a(i, r) * a(j, s) * a(k, t) * a(l, u) * T(r, s, t, u) ;\)
                        next u
                        next \(t\)
                        next \(s\)
                        next \(r\)
        next 1
    next \(k\)
    next j
next i
```

The inverse tranffrwation low is

$$
T_{i j k l}=a_{r i} a_{s j} a_{t k} a_{m l} T_{r s t \mu}^{\prime}
$$

cm0016c

Addilion and substraction of Cantention teutr:-

$$
T_{i j k}=A_{i j k} \pm B_{i j k}
$$

Multiplication by a sealar

$$
\begin{aligned}
b_{i} & =\lambda a_{i} \\
B_{i j} & =x A_{i j}
\end{aligned} \quad\{b\}=\lambda\{a\},
$$

Contraction of a tenter
with reppech to two free indices is the frees of assigning to both indices the same letter fubpeupt - changing thereby these indies to dumuny iuchices. Contraction produces a tensor having an order two less than the original.

$$
\begin{array}{ll}
T_{i j} \rightarrow T_{i i} \Rightarrow s=T_{i i} \quad s:=\theta_{i} \\
R_{i j k} \rightarrow R_{i i j} \Rightarrow v_{i}=R_{i, j} \quad & \text { fri } i=1 \text { to } 3 \text { do } s=s+t[i, i] ;
\end{array}
$$

for $i:=1$ do 3 do begin

$$
v[i]:=\theta_{j}
$$

for $j:=1$ to $3 d \sigma$

$$
v[i]:=v[i]+t[i, j, j]_{i}
$$

end;

Tensor multiplication
A) Outer product of two tensors of arbitrary order is the tensor whose emupments are framed by multiplying each crneproent of one tensor by every enufrieest of the other tenters of the first order (dyadic produced) notation

- iudicial
- symbolic
- mathis algehar
the exact meaning is clarified by for $i:=1$ to $u$ do
for $j:=1$ to $\sim$ do $c[i, j]:=a[i] * b[j] ;$
tensors of the second order (tenter, product)
notation
- indicial

$$
\begin{gathered}
C_{i j k l}=A_{i j} B_{k l} \\
C=A * B
\end{gathered}
$$

- Symbolic.
- mahix $\qquad$
The exact meaning is clarified by
for $i:=1$ to $m$ do
for $j:=1$ to $m$ do
for $k_{0}:=1$ to $\mu$ do
for $l:=1$ to $\mu$ do $c[i, j, k, l]:=a[i, j] * b[k, l]_{j}$

Tensor multiplication
2.) Inner products

Tenses of the firth order (scalar or dot product) notation
-judicial $s=a_{i} b_{i}$

- spubolic. $s=\vec{a} \cdot \vec{b}$
- matrix algebra $s=\{a\}^{\top}\{b\}$

Meaning


$$
s:=\theta_{i}
$$

for $i:=1$ to $\mu$ do $s:=s+a[i] * b[i]$;

An iusterlude (rector or cioss forduct)
notation

- iudicial $\quad c_{i}=\varepsilon_{i j k} a_{j} b_{k}$,
where.
is so called permutating, alterualing. or Levi-Civit sumbol
- syustolic.

$$
\bar{c}=\bar{a} \times \bar{b}=\left|\begin{array}{lll}
\bar{e}_{1} & \bar{e}_{2} & \bar{e}_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Inner products - cont.
Tensors of the second order (tensor dot product or matrix product)
NOTATION

- indicial

$$
\begin{aligned}
c_{i y} & =a_{i k} b_{k j} \\
\mathbb{C} & =\mathbb{A} \cdot \mathbb{B} \\
{[C] } & =[A][B]
\end{aligned}
$$

- symbolic.
- matrix alpeha

Meaning for $i:=1$ do me do for $j:=1$ to $m$ dr
begin

$$
c[i, j]:=\theta_{i}
$$

$$
\text { for } k:=1 \text { to } m \text { do } c[i, j]:=c[i, j]+a[i, k] * b[k, j] i
$$

end;

Other fomibilities

$$
\begin{array}{ll}
d_{i j}=a_{k i} b_{k j} & {[D]=[A]^{\top}[B]} \\
e_{i j}=a_{i k} b_{j k} & {[E]=[A][B]^{\top}} \\
f_{i j}=a_{k i} b_{j k}=b_{j k} a_{k i} \quad[F]^{\top}=[B][A] \\
b_{i}=a_{i j} c_{j} & \{b\}=[A]\{c\} \\
d_{i}=a_{j i} c_{j} & \{d\}=[A]^{\top}\{c\} \\
e_{j}=c_{k} a_{k j} & \{e\}^{\top}=\{c\}^{\top}[A] \quad \begin{array}{l}
\text { cametbe } \\
\text { dishingerished } \\
\text { by fentor calc }
\end{array}
\end{array}
$$

Juver products - cont
Amble dot pioduct of two seend rder teutors notation
-indicial $\quad s=A_{i j} B_{i j}$

- symbolic $\quad s=A: B$
- mathix $\longrightarrow s=[A]:[B]$

Meaming

$$
\begin{aligned}
s= & A_{11} B_{11}+A_{12} B_{12}+A_{13} B_{12}+ \\
& A_{21} B_{21}+A_{22} B_{22}+A_{21} B_{22}+ \\
& A_{21} B_{31}+A_{21} B_{32}+A_{33} B_{33}
\end{aligned}
$$

PASCAL

$$
s:=\theta ;
$$

for $i:=1$ to $m$ do
for $j:=1$ to $\mu$ do $s:=s+a[i, j] * b[i, j]$;
An example


$$
s=\{\sigma\}^{\top}\{\varepsilon\} \frac{1}{2} \quad s=[\sigma]:[\varepsilon] \frac{1}{2}
$$

A NOTE ON VECTOR AND TENSOR INVARIANCE
Let $\{e\}$ and $\left\{e^{\prime}\right\}$ are mit ketris in two coordinate oysters $\{x\}$ and $\left\{x^{\prime}\right\}$ respectively. The condinete systems are related by inthogmal transformation defined by direction cosines $a_{i j}$ so that

$$
\begin{array}{ll}
x_{i}=a_{j i} x_{j}^{\prime} & \{x\}=[A]^{\top}\left\{x^{\prime}\right\} \\
e_{i}=a_{j i} e_{j}^{\prime} & \{e\}=[A]^{\top}\left\{e^{\prime}\right\}
\end{array}
$$

If $\vec{z}$ is an arbitrary rector, then for its components we can write

$$
z_{i}=a_{i j} z_{j}^{\prime}
$$

$$
\{z\}=[A]^{\top}\left\{z^{\prime}\right\}
$$

Which gives a conclusion which is almost trivial

$$
\vec{z}=z_{i} \vec{e}_{i}=z_{i}^{\prime} \vec{e}_{i}^{\prime}=\vec{z}^{\prime} \quad \text { but } \quad\{z\} \neq\left\{z^{\prime}\right\} \text {. }
$$

The same rector doesnot have the same components in different coordinate systems.

There is another from which is used as a notation for a second order tutor.

$$
\begin{aligned}
\mathbb{B}=B_{i j}\left(\bar{e}_{i} \circledast \bar{e}_{j}\right) & =B_{11} e_{1} \circledast e_{1}+B_{12} \bar{e}_{1} \circledast \bar{e}_{2}+B_{13} \bar{e}_{1} \circledast \bar{e}_{3}+ \\
& +B_{21} \bar{e}_{2} \circledast \bar{e}_{1}+B_{22} \bar{e}_{2} \circledast \bar{e}_{2}+B_{23} \bar{e}_{2} \circledast \bar{e}_{3}+ \\
& +B_{31} \bar{e}_{3} \circledast \bar{e}_{1}+B_{32} \bar{e}_{2} \circledast \bar{e}_{3}+B_{33} \bar{e}_{3} \circledast \bar{e}_{3}
\end{aligned}
$$

This notation expresses the fact that tenter components can be specified only after a condivate fy them has sew introduced. It cannes information about the coordinate system.
the tutor $\mathbb{B}$ however is a quantity which is independent of the chosen system of coordiciales
fo

$$
\begin{aligned}
& \mathbb{B}= B_{i j} \bar{e}_{i} \otimes \bar{e}_{j}=\underbrace{L_{a_{p i}}^{\prime} a_{q j}^{\prime} \bar{e}_{q}^{\prime} \oplus \bar{e}_{q}^{\prime}=}_{a_{p i} B_{i j} a_{q j}} \\
& B_{p q}^{\prime}
\end{aligned}
$$

So again we can stat that

$$
\mathbb{B}=\mathbb{B}^{\prime}
$$

$$
\left[B_{i j}\right] \neq\left[B_{i j}^{\prime}\right]
$$

THE CONTINUUM CONCEPT
the molecular mature of the structure of matter is well estathished.

In many cases, however, the individual molecule is of $\mu \mathrm{N}$ concern
observed maeroreopic behaviour is based $\sim$ assumption that the material is erntiumontly dithibused throughout its volume and completely, fill the pee it occupies.
this continuum concept of matter is the fundamental pothlete of contiunm mechavies.

Within the limitation for which the contiusum assumption is valid this concept prides a framework for thrdyiup the behaviour of solids, liquids and gases alike.

Addoption of cnhimenn जiewfoict means that field quantities as thess and dipeacement are expressed as piecenice coutimuens functions of space coordinates and time.
homogeneity - identical properties at all prints isotropy - with respect to true property if that property i's the same in all directions of a forint.

Terminology

Mêti bychove by't schopui jasué volisotrat meni veliciuauri stann (deformace, uapiatst) a mi'rami, ktere' tyto veliciuy koantifikupí (forury a fiotronsei' iton mi'ro deformace, waph' je mirow uapiatorti)

Stav

| $C^{v}$ | A | $R$ | $F$ |
| :---: | :---: | :---: | :---: |
| napiatosh | state of stress | Hampräcëntoe <br> cocrinaruee | etal de <br> tersion |
| deformace | defirmation | gedopmayner | de'formation |

Mina stavn

meinht ani ĖSN o1 1302 z 1976
Eiij ... pomerrue' fodlon wue' à vha'cun'
Püdralusu' vyda'u' depornéorslo .... pometrual defornace

