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Abstract

Let CC[m] be the class of circuits in which all gates areMODm gates. In this paper we prove
lower bounds for circuits inCC[m] and related classes.

• Circuits in which all gates areMODm gates needΩ(n) gates to compute theMODq func-
tion, whenm andq are co-prime. No non-trivial bounds were known before for computing
MODq functions. Our argument is based on a new theorem about the boolean solutions of
systems of linear equations overZm, which may be of independent interest.

• Whenm is prime we get a similar theorem for systems of non-linear equations of small
degree. As a consequence, we obtain linear lower bounds on the number ofMODq gates in
circuits of type(MODp ◦ MODq ◦ ANDO(1)) computingMODr function where(r, q) =
(r, p) = 1. The study of such circuits was intiated by Barrington et al. [3] as an important
step towards understandingCC[m] circuits of constant depth.

• CC[m] circuits of constant depth need superlinear number of wires to compute both the
AND andMODq functions. To prove this, we show that any circuit computing such func-
tions has a certain connectivity property that is similar to that of superconcentration. We
show a superlinear lower bound on the number of edges of such graphs extending results on
superconcentrators.



1 Introduction

Proving lower bounds on the size of boolean circuits needed to compute explicit functions is of funda-
mental importance in theoretical computer science. Since the problem has proved to be very hard in
general, various restricted models of circuits have been considered. One of the most fruitful directions
has been the study of small depth circuits. The result (see [1, 10, 15, 30]) that circuits constructed us-
ing unrestricted fan-in OR, AND and NOT gates with constant depth (the class of circuits denoted by
AC0) need exponential size to compute the PARITY function, remains a jewel of this area. Smolen-
sky [26], extending the work of [25], showed that sub-exponential sizeAC0 circuits augmented with
MODm gates (such circuits define the classACC0[m]) cannot computeMODq if (m, q) = 1 andm
is a prime power. However, the seemingly innocuous extension of these lower bounds toACC0[m]
circuits for generalm has remained open despite extensive efforts.

One of the main impediments seems to be understanding the power ofMODm counting in this
context. DefineCC0[m] to be the class of constant depth circuits composed only ofMODm gates.
Since it is difficult to compute theMODm function using AND and OR gates, it is a natural task to
determine the smallest sizeCC0[m] circuits computing AND and OR. It is known that both AND and
MODq functions are impossible to compute by constant depth circuits composed entirely ofMODm

gates whenm is a prime power. In contrast, it is also known that depth twoMOD6 circuits can
compute every boolean function in exponential size [3]. A conjecture of [19] and a special case of a
conjecture of Smolensky respectively imply thatCC0[m] circuits computing AND andMODq need
exponential size whenever(m, q) = 1. Most known lower bounds, e.g., [3, 17, 13, 12] work only for
special classes ofCC0[m] circuits. We do not even know if the satisfiability problem (SAT) can be
solved by depth-2 linear sizeCC[6] circuits, when the gates used aregeneralizedMOD6 gates (see
Section 2 for the definition of generalized MOD gate) [8].

The currently best known lower bound for AND forCC0[m] is linear in the number of vari-
ables [28]. Previous to this work, no linear lower bounds were known forMODq. The difficulty
in proving such lower bounds may be partly explained by the fact mentioned above that depth two
CC[m] circuits can compute all boolean functions ifm contains at least two different prime factors,
but not ifm is a prime power. The advantage of cmoposites over prime powers in computing the AND
andMODq functions is also witnessed in the closely related setting of polynomials overZm wherem
is a composite which is not a prime power [2, 5, 14].

As a special case ofCC0[m] [3] consideredMODp ◦MODq circuits (those having depth two with
a MODp gate at the output and a single layer ofMODq gates at the input). A number of papers [3,
13, 27] show exponential lower bounds for such circuits computing AND andMODr, where(r, p) =
(r, q) = 1. [3] formulate the Constant Degree Hypothesis (CDH) whose special case asserts that
circuits of the typeMODp ◦MODq ◦ANDO(1) (layered depth-3 circuits with AND gates of constant
fan-in in the input layer,MODq gates in the middle layer, and aMODp gate at the output) require
exponentially manyMODq gates to compute AND. Some progress towards proving CDH is made by
[29, 13, 12]. While obtaining the general CDH remains wide open, previous to our work even no linear
lower bounds on the number ofMODq gates were known without restricting the type of sub-circuits
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rooted at eachMODq gate.
While the number of gates has been the more popular measure of circuit size, number of wires

has also been studied fairly extensively, e.g., [9, 23, 24, 16]. The method in [16] is able to give a
superlinear bound on the number of wires inACC0 circuits for only those functions, that have high
communication complexity. Consequently, their method fails to give bounds on simple functions like
AND andMODq.

Our results. Let CC[m] denote the class of circuits consisting ofMODm gateswithout any depth
restriction. In our discussion, unless otherwise specified, we always consider generalized MODm

gates.
Let q be a positive integer andb ∈ {0, . . . , q − 1}. Define thebth MODq-residue class of{0, 1}n

by

Mn,q(b) = {x = (x1, . . . , xn) ∈ {0, 1}n |
n∑

i=1

xi = b mod q}.

Lower bounds on the number of gates. One of the technical contributions of this paper is to prove
the followinguniformityproperty of boolean solutions of a system of linear equations overZm (see
Lemma 4 and Theorem 5): If the number of equations in the system is at mostdn for a small constant
d > 0 then the boolean solutions to the system are essentially uniformly distributed among all the
MODq-residue classes of{0, 1}n. The proof of this fact uses ideas from additive number theory,
Fourier analysis and exponential sums. We apply the uniformity property to obtain:

Theorem 1 For all positive integersq and m such that(q, m) = 1, CC[m] circuits computing
MODq(x1, . . . , xn) have sizeΩ(n).

We say that a boolean functionf is (c,m)-hard if the following holds: there does not exist a system
L of cn homogeneous linear equations inn variables overZm such thatf is constant over points in the
boolean hypercube that satisfyL. We will show that for every suchf and aCC0[m] circuit C having
less thancn gates, there exists a boolean vectorb ∈ {0, 1}n, such thatC(b) = C(0n). Hence such a
circuit cannot computeMODq. The main result in [28] essentially shows that AND is(c,m)-hard for
all m. The uniformity property of the set of boolean solutions to a system of linear equations inZm

implies thatMODq is (c,m)-hard, wheneverm andq are co-prime andc = c(m, q) is some constant
independent ofn. Thus we get Theorem 1.

Lower bounds for circuits of type MODp ◦MODq ◦ANDO(1). For the case whenm = p is prime
we can show a similar uniformity property of the set of boolean solutions to a system of small degree
polynomial equations overZp (Lemma 10 and Theorem 11). This is done in Section 3 making use
of the probabilistic method and a certain strong version of the Chevalley-Warning Theorem. This
uniformity property yields the following :

Theorem 2 For all primes p and q and integerr such that(p, r) = (q, r) = 1, circuits of type
(MODp ◦MODq ◦ANDO(1)) needΩ(n) MODq gates to compute both AND andMODr functions.
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Lower bound for number of wires. We give super-linear lower bounds on the number of wires
in CC0[m] circuits computing AND andMODq. To state our result more precisely, define ford =
1, 2, . . . ,,

λ1(n) = dlog2 ne,

λd+1(n) = min{i ∈ N; λ
(i)
d (n) ≤ 1},

where the superscripti denotes thei-times iterated function.

Theorem 3 For everyq andd there existδ > 0, c > 0 such that every circuit computing a(c,m)-
hard boolean functionF (x1, . . . , xn) that has depthd + 1 and uses onlyMODm gates, has at least
δnλd(n) wires.

We consider the bounded depth directed graph of a boolean circuit. The proof of the above theorem
involves first showing that such graphs must satisfy a certain connectivity property similar to that of
superconcentrators. We next prove a superlinear lower bound on the number of edges in such graphs.
This theorem is stronger than lower bounds proved on bounded depth superconcentrators (when the
depth of superconcentrator is even) and enables us to prove lower bounds onCC0[m] circuits for
which we cannot use superconcentrators. .

2 Bounds on the number of gates

For any vectorx ∈ {0, 1}n, let xi refer to itsith component, and|x| denote itsweighti.e. #{i | xi =
1}. For every positive integerm, we define the boolean functionMODm : {0, 1}n → {0, 1} in the
following way: MODm(x) = 1 iff

∑n
i=1 xi 6= 0 (modm). For eachA ⊆ Zm, thegeneralizedMODA

m

boolean gate computes the following function :MODA
m(x) = 1 iff

∑n
i=1 xi ∈ A. The setA is called

the accepting set of the MOD gate. We remark that the standard gate used in the literature is the one
that has the accepting set{1, . . . ,m − 1}. To avoid notational clutter, we shall denote byMOD∗

m a
generalized gate without explicitly referring to its accepting set. However, in circuits that we consider,
each gate would have its own accepting set that may or may not be the same as that of others.

Let θ be a set ofr linear homogeneous formsθ1, . . . , θr, each of which is inn variablesx1, . . . , xn

overZm, wherem is a positive integer. Every suchθ defines a linear map fromZn
m into Zr

m in a natural
way. For any vectorv ∈ Zr

m, let Kθ(v) denote the set of boolean points that are mapped tov by θ i.e.
the set{x ∈ {0, 1}n | 1 ≤ i ≤ r, θi(x) = vi}.

We shall show the following lemma that essentially says that the elements ofKθ(v) are more or
less uniformly distributed among theq mod classes, wheneverq andm are relatively prime to each
other:

Lemma 4 (Linear Uniformity Lemma) For all positive integersq, m with (q, m) = 1, there exists a
constantγ = γ(m, q) < 1, such that for all positive integersn, b, vectorv ∈ Zr

m and linear mapping
θ : Zn

m → Zr
m, if Kθ(v) is non-empty, then∣∣|Kθ(v) ∩Mn,q(b)| − |Kθ(v)|/q

∣∣ ≤ (2γ)n (1)
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The Uniformity Lemma above becomes meaningful when the size ofKθ(v) is large enough so that
the term(2γ)n in (1) behaves as an error-term. In this case, the points inKθ(v) are almostuniformly
distributed among theMn,q(b) classes for various values ofb. We note that results in [28, 3] imply a
lower bound of( α

α−1)n · 1
αr for |Kθ(v)| when it is non-zero, whereα = α(m) is a constant. This is

still not large to offset(2γ)n. We obtain a sufficiently large bound on size ofKθ(v) in the Theorem
below:

Theorem 5 For anyv ∈ Zr
m, if Kθ(v) is non-empty, then

|Kθ(v)| ≥ 2n

cr
. (2)

The proof of the Uniformity Lemma uses an exponential sum argument. Exponential sums have
been previously used in similar contexts [7, 11]. As is standard, we use the notationem(x) to denote
e2πix/m, wherei is the complex square root of−1.

Proof: [of Uniformity Lemma] SupposeKθ(v) is non-empty. Then,θ(a) = v for some boolean vector
a. Substitutingxi = xi − ai andb = b −

∑n
i=1 ai, for 1 ≤ i ≤ n, we reduce to the case ofv being

the all-zero vector. For removing clutter, we denoteKθ(0r) by Kθ. We first write|Kθ ∩ Mn,q(b)| as
an exponential sum and then estimate this exponential sum by grouping the terms appropriately.

|Kθ ∩Mn,q(b)| =
∑

x∈{0,1}n

[ r∏
i=1

( 1
m

m−1∑
j=0

em(jθi(x))
)(1

q

q−1∑
j=0

eq(j(
n∑

k=1

xk − b))
)]

. (3)

The above identity is immediate from the well-known and simple fact that1
m

∑m−1
j=0 em(ja) is 1

if a = 0 and is0 otherwise, for every positive integerm. We now rewrite the right hand side (RHS) in
(3) as

(3) =
∑

x∈{0,1}n

1
q

r∏
i=1

( 1
m

m−1∑
j=0

em(jθi(x)
)

+
∑

x∈{0,1}n

[ r∏
i=1

( 1
m

m−1∑
j=0

em(jθi(x))
)(1

q

q−1∑
j=1

eq(j(
n∑

k=1

xk − b))
)]

.

(4)

The first term on the RHS is easily seen to be|Kθ|/q. Hence, we get the following:

∣∣|Kθ ∩Mn,q(b)| − |Kθ|/q
∣∣ =

∣∣∣∣∣ ∑
x∈{0,1}n

[ r∏
i=1

( 1
m

m−1∑
j=0

em(jθi(x))
)(1

q

q−1∑
j=1

eq(j(
n∑

k=1

xk − b))
)] ∣∣∣∣∣

(5)
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We now estimate the RHS of 5. To do this, let us multiply out the terms in the summand inside the
abolute value and then sum the resulting terms. We obtainmr(q − 1) terms after multiplying out the
terms in the summand, each of which gives rise to a sum of the form:

eq(−jb)
msq

∑
x∈{0,1}n

em(j1θ1(x) + . . . + jrθr(x))eq(j
n∑

k=1

xk). (6)

wherej 6= 0. Writing a1x1 + . . .+ anxn := j1θ1(x)+ . . .+ jrθr(x), using the trigonometric identity
1 + ei2ρ = 2eiρ cos(ρ), and taking absolute values, we have

|(6)| =
∣∣∣∣ 1
mrq

n∏
i=1

(1 + em(ai)eq(j))
∣∣∣∣ =

∣∣∣∣ 2n

mrq

n∏
i=1

cos
(
π(

ai

m
+

j

q
)
)∣∣∣∣. (7)

Let γ = maxai∈Zq ; j∈Zm | cos
(
π(ai

m + j
q )|. Since,m andq are co-prime andj 6= 0, it can be verified

thatγ < 1. Hence,

|(7)| ≤ 2nγn

mrq
. (8)

Using the triangle inequality on the RHS of (5) and plugging in the bound of (8), we get

∣∣|Kθ ∩Mn,q(b)| − |Kθ|/q
∣∣ ≤ mr(q − 1)

(2γ)n

mrq
. (9)

This gives us the Uniformity Lemma.

We now want to prove Theorem 5. To do so, we will have to introduce a notion from additive
combinatorics: for any abelian groupG, theDavenport constantof G (denoted bys(G)) is the small-
est integerk such that every sequence of elements ofG having length at leastk, has a non-empty
subsequence that sums to zero. Olson[21] showed that there exists a connection betweens(G) and the
set of boolean solutions to the equationg1x1 + . . . + gnxn = 0 (denoted byK(G, n)), where each
gi ∈ G.

Theorem 6 (Olson’s Theorem) |K(G, n)| ≥ max{1, 2n+1−s(G)}.

Note that the group we are interested in, isZr
m i.e. an equation inn variables overZr

m is equivalent
to r equations overZm in the same set of variables. Recalling the argument as used at the beginning
of the proof of the Uniformity Lemma, we get the following corollary:

Corollary 7 For everyθ andv ∈ Zr
m such thatKθ(v) is non-empty, we have|Kθ(v)| ≥ 2n+1−s(Zr

m).
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To the best of our knowledge, determinings(Zr
m) for r ≥ 3 and arbitrarym, is an open question.

However, the independent works of [20, 28] based on Fourier analysis, imply the following upper
bound:

Theorem 8 s(Zr
m) ≤ (m log m)r.

Theorem 5 follows by combining Corollary 7 and bound ons(Zr
m) given by Theorem 8. The Unifor-

mity Lemma and Theorem 5 immediately imply that

Corollary 9 There is a constantd′ ∈ (0, 1) depending onm andq such that ifr ≤ d′n thenKθ(v) ∩
Mn,q(b) is nonempty, for everyb ∈ {0, . . . , q − 1}, wheneverKθ(v) is non-empty.

We now show the lower bound on the number of gates needed byCC0[m] circuits to compute the
MODq function:

Proof:[of Theorem 1] Let the gates in the circuit beG1, . . . , Gr, wherer = o(n) < d′n andd′ is given
by Corollary 9. LetiG be the set of all indicesk such thatGk feeds intoGi. Consider the all-zero
assignmenta = 0n to the input variables. LetGi(a) ∈ Zm andGi(a) ∈ {0, 1} be respectively the
value to which theith gate evaluates ona internallyand the boolean value it outputs in the circuit. For
each gatei, we form the following affine equation :

∑n
j=1 ci

jxj +
∑

k∈iG
Gk(a) = Gi(a), whereci

j is
the number (modulom) of copies of input bitxi fed intoGi. By Corollary 9 ifr ≤ d′n then there is a
b ∈ {0, 1}n such that allr affine equations are satisfied andMODq(b) 6= 0. Hence for assignmentb,
each gate in the circuit evaluates (internally, and hence for the boolean outputs) to the same value as it
evaluated to for assignmenta. Thus, such a circuit cannot be computing theMODq function.

3 Nonlinear Uniformity

In this section, we show that the linear uniformity theorem can be strengthened whenm is a prime (we
denote this prime byp). This will immediately yield Theorem 2. LetS = {φ1, . . . , φr} be a set ofr
polynomials overZp, whereφi has degreedi. Let D = D(S) = d1 + . . . + dr be the total degree of
the system, and∆ = ∆(S) = max1≤i≤rdi be the maximum degree among all polynomials inS. For
v ∈ Zr

p, let KS
n represent the set of points in{0, 1}n, that satisfyφi = vi for all 1 ≤ i ≤ r. We have

Lemma 10 (Nonlinear Uniformity Lemma) Using the notation above, for all positive integersb, p, q,
vectorv ∈ Zr

p with (p, q) = 1 andp prime, there exist constantsα, β such that for alln and polynomial
mappingS : Zn → Zr, if KS

n (v) is non-empty, then

∣∣|KS
n (v) ∩Mn,q(b)| − |KS

n |/q
∣∣ ≤ (

2
eα/β∆

)n

. (10)
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The proof of this lemma, which appears in Appendix A, has a similar overall structure as the linear
uniformity theorem, but now requires the use of some estimates on exponential sums due to [7, 11].
We want to use the nonlinear uniformity lemma to show thatKS

n intersects all residue classes modq
if the sum of the degrees of the polynomials inS is not too large. This will follow if we can show that
|KS

n | is much larger than the right hand side in (10). The next theorem achieves this:

Theorem 11 Using the notation above, we have|KS
n (v)| ≥ 2n/p(p−1)D.

Before embarking on the proof we recall a strong form of the Chevalley-Warning theorem, whose
elementary proof can be found in the book of Lidl and Niederreiter [18].

Theorem 12 (Chevalley-Warning) Let φ1, . . . , φs be s polynomials inFa[x1, . . . , xn], whereFa is
a field of cardinalitya. Let D =

∑s
i=1 deg(φi) < n, be the total degree of the system. Then, if the

system of equations,φi(x1, . . . , xn) = 0, where1 ≤ i ≤ s, has a solution then it has at leastan−D

solutions inFn
a .

Proof:[of Theorem 11] We will assume thatKS
n is nonempty, else there is nothing to prove. Recall

that Fermat’s little theorem says that fory ∈ Zp we haveyp−1 = 1 iff y 6= 0. To study the boolean
solutions ofS, we use the technique of replacing each variablexi by yp−1

i in every equation. Call the
new system of equationsS′.

Here we pause to give some intuition for the proof. We can lower bound the number ofZp-
solutions of the systemS′ using the Chevalley-Warning theorem. However we want a lower bound on
the number of boolean solutions ofS. An immediate approach is to estimate how manyZp-solutions
of S′ can lead to the same boolean solution ofS. This gives the following:

Note that the total degree of the system of new equations is(p− 1)D. Theorem 12 can be applied
to this new system of equations to conclude that the solution space inZn

p (denoted byK ′) has size at
leastpn/p(p−1)D. For any vectorv in {0, 1}n, let |v| denote the number of1’s in v. On the other hand,
using Fermat’s little theorem we get the following relation:

|K ′| =
∑

v∈KS
n

(p− 1)|v| ≤ |KS
n | · (p− 1)n (11)

Combining these two observations we get|KS
n | ≥ ( p

p−1)n · 1
p(p−1)D . This however falls much short

of what we need for Lemma 11. The way we resolve this difficulty is to consider maps fromZp-
solutions to the boolean solutions more carefully. In fact, we consider a family of maps and then
use a probabilistic argument to show that there is a choice of a map from this family that allows us
to transfer the lower bound on the number ofZp-solutions to a good lower bound on the number of
boolean solutions. We now continue with the proof.

Consider the equationxp−1−1 = (x(p−1)/2−1)(x(p−1)/2 +1) = 0 in Zp. The solution set of this
equation isZ∗

p = Zp \ {0}. Let Sp be the set of elements inZp that satisfyf(x) = x(p−1)/2 − 1 = 0.
Clearly, |Sp| = (p − 1)/2. Further,f evaluates top − 2 for every element ofZ∗

p not in Sp. It can be
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verified that we can choose constantsa, b, c ∈ Zp such that the functiong(x) = a·(f(x))2+b·f(x)+c
will evaluate to0 for every element inSp ∪ {0} and to1 for all other elements. The degree ofg is
p− 1.

Now consider the following random process: letf be a random function that isg with probability
1/2 and1 − g with probability1/2. Let f1, . . . fn ben independent random functions each of which
is identically distributed asf . Let F : Zn

p → {0, 1}n be the function defined byF = f1 × . . . × fn.
In each of the given equations, we replace each variablexi by fi(xi). Let N ′ be the random variable
representing the number of solutions inZn

p for the system of equations obtained by the above process.
Our bound will be obtained by estimatingE[N ′] in two ways. The random system of equations that
we get has total degree(p− 1)D. Applying Chevalley-Warning, one thus getsE[N ′] ≥ pn−(p−1)D.

We countE[N ′] in another way. For any boolean vectoru, let F−1(u) represent the set of vectors
in Zn

p that get mapped tou by F . Using linearity of expectation, one gets the following:

E[N ′] =
∑

u∈KS
n

E[|F−1(u)|] (12)

Since eachfi is independent, for anyu ∈ KS
n , we get

E[|F−1(u)|] =
n∏

i=1

E[|f−1
i (ui)|] (13)

It is easily verified thatE[|f−1
i (ui)|] = p/2 for everyi. Combining these observations we getE[N ′] =

(p/2)n · |KS
n | ≥ pn−(p−1)D. This immediately yields the bound we are looking for.

Proof sketch of Theorem 2:The proof follows along the same lines as the proof of Theorem 1, only
more simply. Briefly, suppose that the number of inputMODq gates iso(n). Then, using the nonlinear
uniformity theorem we can fool the layer ofMODq gates in the sense that there are two settings of
the inputs such that the output of theMODq gates is the same on both the inputs but theMODk

function takes different values, and thus the circuit is not computingMODk. It should be noted that
this argument actually shows a stronger result, namely the lower bound holds irrespective of what is
the output gate.

4 Lower bound on the number of wires

In this section we prove superlinear lower bound on the number of wires needed in aCC0 circuit to
compute(c,m)-hard functions, namely Theorem 3 .

This section is organized as follows. After setting up some notation we prove a superlinear lower
bound on the number of edges in bounded depth graphs with a certain connectivity property. The
proof is then completed by showing that the circuits in Theorem 3 satisfy this property and hence have
superlinear number of edges.
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Notation. Let G be a finite directed acyclic graph with a distinguished set of indegree zero vertices
V0, which will be calledinput vertices. Let X be a subset of input vertices. We shall say that a subset
of verticesS separatesX, if for every two different input verticesx, y ∈ X, every vertexv and every
pair of directed pathsp, q starting inx andy respectively and ending inv, at least one of the paths
must contain a vertex fromS. S may contain input vertices.

We shall say thatX is ε-separable, if there exists anS such thatS separatesX and|S| ≤ ε|X|.
We shall say thatG is ε-inseparable, if for every subset of input verticesX, if |X| ≥ 2, thenX is

notε-separable. (ε < 1, asX separates itself.)
Define, ford = 1, 2, . . . ,

λ1(n) = dlog2 ne,

λd+1(n) = min{i ∈ N; λ
(i)
d (n) ≤ 1},

where the superscripti denotes thei-times iterated function.1

We can now state the theorem about graphs that we will use for our lower bound on the number of
wires.

Theorem 13 For everyε > 0 and every integerd ≥ 1, there existsδ > 0 such that for alln, if G has
depthd, n inputs and it isε-inseparable, then it has at leastδnλd(n) edges.

We shall prove a stronger version of this theorem. For a set of inputsX of G, define

s(X) = min{|S|; S separatesX}.

Let n be the number of input vertices, let2 ≤ t ≤ n, andε > 0. We shall say thatG is weakly
t, ε-inseparable, if for all k, t ≤ k ≤ n,

E
|X|=k

(s(X)) > εk.

The greater generality (in particular, the bound on the expectation, instead of an absolute bound) is
needed for the proof.

Theorem 14 For everyε > 0 and every integerd ≥ 1, there existsδ > 0 such that for every
2 ≤ t ≤ n, every weaklyt, ε-inseparableG of depthd with n input vertices has at leastδnλd(n

t )
edges.

This theorem is proved by induction on the depthd. We shall assume w.l.o.g. thatG is stratified
into levelsV0, V1, · · · , Vd and edges are only between consecutive levels. The following two lemmas
formalize the induction base and the induction step.

1Note that the functionsλi defined in [24] are different.
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Lemma 15 For everyε > 0, there existsδ > 0 such that ifG has depth 1, hasn input vertices and it
is weaklyt, ε-inseparable, where2 ≤ t ≤ n, then it has more thanδn log n

t edges.

The proof appears in Appendix 4.

Lemma 16 For every integerd ≥ 1, realsε > 0, andγ > 0, there existsδ > 0 such that for everyn,
if

(i) for every2 ≤ t ≤ n, every weaklyt, ε
2 -inseparableG of depthd with n input vertices

has at leastγnλd(n
t ) edges,

then

(ii) for every 2 ≤ t ≤ n, every weaklyt, ε-inseparableG of depthd + 1 with n input
vertices has at leastδnλd+1(n

t ) edges.

The proof appears in Appendix 4.

Proof:[Proof of Theorem 3] Let0 < ε < γ, let δ > 0 be given by Theorem 13 for theseε andd.
Suppose that the circuit has< δnλd(n) edges. Then, by Theorem 13, there exists a set of inputs
X which is ε-separated in the depthd graph obtained by removing the output gate from the circuit.
Let S be the separating set augmented with the output gate. ThenS is a separating set in the whole
circuit and|S| ≤ ε|X|+ 1. We may moreover require that|X| ≥ log n, thus ifn is sufficiently large,
|S| ≤ γ|X|.

Furthermore, for everyv ∈ S, disconnectv from its inputs and set it to be the constant equal to
the boolean value computed atv when all inputs are 0. LetC ′ be the resulting circuit. Letv ∈ S and
let w be an input gate ofv in C. Then inC ′, the gatew only depends on at most one input fromX,
becauseS is a separating set. Thus if we put back the originalMODm gate onv, the boolean function
computed atv will be someMODm functionGv.

Thus in order to get a contradiction with the assumption thatC computesF (x1, . . . , xn), we need
only to find a boolean assignmenta 6= 0n of x1, . . . , xn such that the variables outsideX are set to0
and the following holds: For everyv ∈ S,

Gv(a) = Gv(0n), (14)

butF (a) 6= F (0n).
On the left hand side of (14) we replace each boolean functionGv(·) by its underlying linear form

that takes values inZm.
Then if the resulting linear system overZm is satisfied then so is (14). The assumption that

F is (c,m)-hard guarantees the existence of a boolean solutiona 6= 0n to this system such that
F (a) 6= F (0n). ThusC cannot computeF .

10
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A Proof of Theorem 10

We now state an upper-bound for an exponential sum that appeared in [7, 11]:

Fact 17 Let q, m be any relatively prime numbers. Further, let

S =
∑

x∈{0,1}n

em(φ(x))eq(a
n∑

i=1

xi) (15)

whereφ(x) = φ(x1, . . . , xn) is a polynomial of degreed with coefficients inZq. Then, there exists
0 < α < 1 such that|S| ≤ (2µ)n, whereµ < 1− α

(m2m)d andα depends only onm andq.

Now we can complete the proof of Theorem 10.

Proof: [of Theorem 10] For simplicity we will work with the case wherev = 0 is the all-zero vector;
other cases are handled similarly. We writeKS

n for KS
n (0). As in the proof of Theorem 4, we get the

following:

|KS
n ∩Mn,q(b)| =

∑
x∈{0,1}n

[ r∏
i=1

(1
p

p−1∑
j=0

ep(jφi(x))
)(1

q

q−1∑
j=0

eq(j(
n∑

k=1

xk − b))
)]

. (16)

As before, this can be re-written as :

(16) = |KS
n |/q + R (17)

whereR is a sum ofps(q − 1) terms, each of which is of the form

eq(−jb)
psq

∑
x∈{0,1}n

ep(j1φ1(x) + . . . + jrφr(x))eq(j
n∑

k=1

xk). (18)

Note that the degree of the formj1φ1(x)+. . .+jrφr(x) is at most∆(S) for every(j1, . . . , jr) ∈ [m]r.
Using the bound on (15) in Fact 17 and the fact that1− x ≤ e−x, one can write

|R| ≤ q − 1
q

( 2
eα/β∆

)n
(19)

whereβ = p2p. Applying the bound in (19) to (17), we get (10) proving Theorem 10.

We can easily combine Theorem 10 and Theorem 11 to get the following:

Corollary 18 There exist constantsα, β that depend only onm andq such that if

D(S) · β∆(S) <
α

log p
n (20)

thenKS
n ∩Mn,q(b) is nonempty, for everyb ∈ {0, . . . , q − 1}.

13



B Proofs from Section 4

Proof:[of Lemma 15] SupposeG is weaklyt, ε-inseparable. Letv1, v2, . . . be all vertices on the level
1 (the level 0 being the input vertices) ordered by the decreasing indegreesd1 ≥ d2 ≥ . . . . For
t ≤ q ≤ εn

2 consider the undirected graphHq with the set of vertices being the input vertices ofG and
edges(x, y) such thatx → vi, y → vi in G for somei > q. ThusHq hasm ≤

∑
i>q

(
di
2

)
edges. Let

X be a random subset of inputs of cardinalityk = d2q
ε e (thust ≤ k ≤ n). The expected number of

edges onX is m

(n
2)

(
k
2

)
.

Observe that if there arèedges ofHq onX, thens(X) ≤ ` + q (take the verticesv1, · · · , vq and
one vertex from each edge). Thus we have

m(
n
2

)(
k

2

)
+ q ≥ E(s(x)) > εk.

Sinceq ≤ εk/2, we have
m(
n
2

)(
k

2

)
>

εk

2
.

Substituting form and simplifying we get

∑
i>q

(
di
2

)(
n
2

) >
ε

k − 1
.

Sincedi ≤ n, we can estimate
(di

2 )
(n
2)

≤ d2
i

n2 . Thus we get

∑
i>q

d2
i

n2
>

ε

k − 1
=

ε

d2q
ε e − 1

≥ ε2

2q
.

By Lemma 4 of [22], this implies ∑
i

di

n
≥ δ1 log

b εn
2 c
t

,

for someδ1 > 0 depending only onε. Hence ift = o(n), we get∑
i

di ≥ δn log
n

t
.

Otherwise use the trivial lower boundεt on the number of edges.
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Proof:[of Lemma 16] Suppose (i) holds true. LetG be weaklyt, ε-inseparable directed graph with
depthd + 1 andn input vertices.

Let us briefly sketch the idea of the proof before doing detailed computations. We would like to
distinguish two cases: either there are a lot of vertices of high degree on the first level, or not. In
the first case there are, clearly, many edges. In the second case we can delete the vertices on the first
level that have large degrees, connect inputs directly to the second level and then we can apply (i)
to the resulting depthd graph. However, this does not quite work, as after deleting the vertices with
high degree, the degrees of the remaining vertices on level 1 are still too large. Therefore we have to
consider also vertices with intermediate degrees. If the number of those vertices would be small, then
a random set of inputs would meet only a few edges connected to them.

Let deg(v) denote the indegree of a vertexv. Let t be given,2 ≤ t ≤ n. Putr = n
t ,

A0 = {v ∈ V1; deg(v) > λd(r)},

Ai = {v ∈ V1; λ
(i+1)
d (r) < deg(v) ≤ λ

(i)
d (r)}, for i ≥ 1.

Let E denote the set of edges ofG.
Claim. For everyi, 1 ≤ i ≤ λd+1(r)/2 − 3, at least one of the following three inequalities is

satisfied:

1. |A0 ∪ · · · ∪Ai−1| ≥ ε
4

n

λ
(i+1)
d (r)

;

2. |{(u, v) ∈ E; u ∈ V0, v ∈ Ai ∪Ai+1 ∪Ai+2}| ≥ ε
4n;

3. |{(u, v) ∈ E; u, v 6∈ A0 ∪ · · · ∪Ai+2}| ≥ γn
λ
(i+2)
d (r)

λ
(i+3)
d (r)

.

Proof of Claim.Let i be given and suppose that conditions (1) and (2) are false. Letn/λ
(i+1)
d (r) ≤

k ≤ n. Observe thatn/λ
(i+1)
d (r) = n/λ

(i+1)
d (n/t) ≥ t, sinceλd(x) ≤ x for all x. Let X ⊆ V1

be a random subset of sizek. We shall show that if we remove fromG all edges incident with
A0 ∪ · · · ∪Ai+2, then

E(s′(X)) >
ε

2
k,

wheres′(X) denotess(X) in the modified graph, which we shall denote byG′.
Indeed, leta = |A0 ∪ · · · ∪Ai−1|, b(X) = |{(u, v) ∈ E; u ∈ X, v ∈ Ai ∪Ai+1 ∪Ai+2}|. Then

s(X) ≤ a + b(X) + s′(X).

Hence
E(s′(X)) ≥ E(s(X)− b(X)− a) = E(s(X))−E(b(X))− a.

By non-1,a < ε
4

n

λ
(i+1)
d (r)

≤ ε
4k. By non-2, we haveE(b(X)) < ε

4k, (each edge from{(u, v) ∈

E; u ∈ V0, v ∈ Ai ∪Ai+1 ∪Ai+2} is chosen with probabilityk/n; use the linearity of expectation).
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ThusG′ is weaklyn/λ
(i+1)
d (r), ε

2 -inseparable.
We shall further modifyG′ by removing all edges betweenV1 andV2 and adding, for every path

(u, v, w) in G′ with u ∈ V0, v ∈ V1, w ∈ V2, the edge(u, w). The resulting graph will be denoted
by G′′. It has depthd (the first level beingV1 ∪ V2, the second level beingV3 etc.) and at most
λ

(i+3)
d (r)-times more edges.

Furthermore,G′′ is also weaklyn/λ
(i+1)
d (r), ε

2 -inseparable. To see that, observe that ifX is a set
of inputs (inG′ andG′′) andS is a separating set forX in G′′, thenS is a separating set forX also in
G′. Indeed, letS be a separating set forX in G′′ and let(v0, · · · , vj) and(u0, · · · , uj) be two paths
in G′, v0, u0 ∈ X, v0 6= u0 andvj = uj . Then ifj = 1, these paths are also paths inG′′, and ifj > 1,
(v0, v2, · · · , vj) and(u0, u2, · · · , uj) are paths inG′′. In both cases they contain an element fromS,
whence the original pair of paths also contains an element fromS. Thus separating sets are at least as
large inG′′ as inG′.

By the assumption (i),G′′ must have at leastγnλd(λ
(i+1)
d (r)) = γnλ

(i+2)
d (r) edges. HenceG′

has at leastγnλ
(i+2)
d (r)/λ

(i+3)
d (r) edges, which proves 3. This finishes the proof of the Claim.

To finish the proof of Lemma 16, we shall use the inequality

λ
(i)
d (r)

λ
(i+1)
d (r)

≥ 1
2λd+1(r),

for every i ≤ λd+1(r)/2 − 1, which was proved in [22] as Lemma 5. By the Claim it suffices to
consider the following three cases.

1. Suppose for somei ≤ λd+1(r)/2 − 3 the condition (i) of Claim is satisfied. Then, since every

v ∈ A0 ∪ · · · ∪Ai−1 has degree> λ
(i)
d (r), the number of edges inG is at least

ε

4
n

λ
(i+1)
d (r)

λ
(i)
d (r) ≥ ε

8
nλd+1(r).

2. Suppose forall i ≤ λd+1(r)/2 − 3 the condition (ii) of Claim is satisfied. Then the number of
edges ofG is at least

1
3(λd+1(r)/2− 3)

ε

4
n = Ω(nλd+1(r)).

3. Suppose for somei ≤ λd+1(r)/2− 3 the condition (iii) of Claim is satisfied. Then the number
of edges ofG is at least

γn
λ

(i+2)
d (r)

λ
(i+3)
d (r)

≥ 1
2γnλd+1(r).
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