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Title: Shape optimization in problems governed by generalised Navier–
Stokes equations
Author: Jan Stebel
Department: Mathematical Institute of Charles University
Supervisor: Prof. RNDr. Jaroslav Haslinger, DrSc.
Supervisor’s e-mail: haslin@met.mff.cuni.cz
Abstract: We study the shape optimization problem for the paper machine
headbox which distributes a mixture of water and wood fibers in the paper
making process. The aim is to find a shape which a priori ensures the given
velocity profile on the outlet part. The mathematical formulation leads to
the optimal control problem in which the control variable is the shape of
the domain representing the header, the state problem is represented by the
generalised Navier-Stokes system with nontrivial boundary conditions. The
objective is to analyze theoretically this problem (proof of the existence of
a solution), its discretization and the numerical realization.
Keywords: Optimal shape design, paper machine headbox, incompressible
non-Newtonian fluid, algebraic turbulence model

4



1 Introduction

For many years paper belongs to the most used every day’s tools. Thus its
invention can be considered as one of the most important steps both in the
technological and cultural progress. About 19 centuries ago ancient Chi-
nese developed the paper making technique using the bark and hemp. Since
that time many improvements have been made in order to reduce the costs
and enhance the quality, production speed and environmental compatibility.
Today’s paper production has become a complex process.

Recently the paper machine technology has been achieved mostly through
the experimental work in pilot plants. With increasing speeds and sophisti-
cated machines this approach has become too expensive and time-consuming
so that more effective methods must be used to bring further development.
One of such methods is mathematical modelling and the numerical simula-
tion. However the experimental research is still needed to verify the simu-
lated results.

Figure 1: Paper machine viewed from the wet end (reproduced from
http://www.csc.fi).

The first component in the paper making process is the headbox which
is located at the wet end of a paper machine. The headbox shape and the
fluid flow phenomena taking place there largely determines the quality of
the produced paper. The first flow passage in the headbox is a dividing
manifold, called the header. It is designed to distribute the fiber suspension
on the wire so that the produced paper has an optimal basis weight and
fiber orientation across the whole width of a paper machine. The aim of this
work is to find an optimal shape for the back wall of the header so that the
outlet flow rate distribution from the headbox results in an optimal paper
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quality.
The paper making pulp (also called the fibre suspension, furnish or stock)

is a mixture of wood fibres, water, filler clays and various chemicals at con-
centration of 1% solids to 99 % water by weight. In the large-scale simulation
it is sufficient to perform one-phase modelling with the fluid being an incom-
pressible liquid. The presence of only a few solid particles in the suspension
changes its properties to a non-Newtonian fluid. Flows of such fluids are
mathematically described by the generalized Navier–Stokes equations (2.3).
In the flow model the effect of turbulence must be taken into account as
it is a desirable phenomenon in the paper making process. Here we use an
algebraic turbulence model based on the so-called mixing-length.

Figure 2: The header.

On Figure 2 the geometry of the header is shown. The inlet is on the
left and the so-called recirculation on the right hand side. Typically about
10 % of the fluid flows out through the recirculation. The main outlet is
performed by a number (usually several hundreds or thousands) of small
tubes. This fact presents a difficulty in the numerical simulation and thus the
complicated geometry of the tube bank is replaced by an effective medium
using the homogenization technique. It introduces a nonstandard boundary
condition of the form

T22 = −σ|uν |uν , (1.1)

where T , uν , σ are the stress tensor, normal component of the velocity and
the coefficient of suction, respectively. Another simplification is done using
depth-averaged equations and two-dimensional geometry. Such model gives
still satisfactory results while the computations become less time-consuming.

This work was motivated by some previous papers: The fluid flow model
which is used here has been derived and studied numerically in [2]. The shape
optimization problem has also been solved numerically and the results are
presented in [3]. Both fluid flow model and shape optimization problem have
been studied there formally without establishing existence results. Therefore
our primary goal is to give the theoretical analysis of the flow equations and
of the whole optimization problem, further the discretisation and finally the
numerical solution.
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The text is organized as follows. In Section 2 we present the fluid flow
model and analyze the existence of a solution. The existence proof is based
on appropriate energy estimates and the Galerkin method. The shape op-
timization problem is then formulated in Section 3 and the existence of
an optimal shape is established. The continuous dependence of solutions to
state problems with respect to shape variations is the most important re-
sult of this part. A discretization of these problems and numerical results
are presented in Section 4. The elementary mathematical tools as well as
notation are listed in Appendix.
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2 Steady flow of a non-Newtonian fluid

2.1 Classical formulation

For describing the fluid flow we will use a two–dimensional stationary model.
First we define the geometry of the problem.

Let L1, L2, L3 > 0, H1 ≥ H2 > 0, αmax ≥ αmin > 0, γ > 0 be given and
suppose that α ∈ Uad, where

Uad =
{
α ∈ C0,1([0, L]); αmin ≤ α ≤ αmax,

α|[0,L1] = H1, α|[L1+L2,L] = H2,

|α′| ≤ γ a.e. in [0, L]
}
.

(2.1)

Here C0,1([0, L]) denotes the set of Lipschitz continuous functions on [0, L]
and L = L1 + L2 + L3. With any α ∈ Uad we associate the domain Ω(α):

Ω(α) =
{
(x1, x2) ∈ R

2; 0 < x1 < L, 0 < x2 < α(x1)
}

(2.2)

and introduce the system of admissible domains

O =
{
Ω; ∃ α ∈ Uad : Ω = Ω(α)

}
.

L1 L2 L3

H1

H2

α(x1)

Figure 3: Geometry of the domain Ω.

Further we will need the domains

Ω̂ = (0, L) × (0, αmax),

Ω0 =
(
(0, L1) × (0,H1)

)
∪
(
(0, L) × (0, αmin)

)
∪
(
(L1 + L2, L) × (0,H2)

)

for which it holds that Ω0 ⊂ Ω ⊂ Ω̂ for all Ω ∈ O.
Let us remark that Ω(α) ∈ C0,1 for all α ∈ Uad, where C0,1 is the system

of bounded domains with Lipschitz continuous boundaries 1. We will denote

1See e.g. [5], Chapter 1 for the definition
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the parts of the boundary ∂Ω(α) as follows:

ΓD =
{
(x1, x2) ∈ ∂Ω(α);x1 = 0 or x1 = L

}

Γout =
{
(x1, x2) ∈ ∂Ω(α);L1 ≤ x1 ≤ L1 + L2, x2 = 0

}

Γα =
{
(x1, x2) ∈ ∂Ω(α);L1 ≤ x1 ≤ L1 + L2, x2 = α(x1)

}

Γf = ∂Ω(α) \
(
ΓD ∪ Γout ∪ Γα

)
.

The components ΓD, Γout and Γf are fixed for every α ∈ Uad.

ΓD

ΓD

Γout

Γα

Figure 4: Parts of the boundary ∂Ω.

The fluid motion in Ω(α) is described by the generalised Navier–Stokes
system

−div T (ε(u), p) + ρ(u · ∇)u = 0
div u = 0

}
in Ω. (2.3)

Here u means the velocity, p the pressure, ρ is the density of the fluid and
the stress tensor T is defined by the following formulae:

Tij(ε(u), p) = −pδij + 2µ(|ε(u)|)εij (u),

µ(|ε(u)|) := µ0 + µt(s) = µ0 + ρl2m,α|ε(u)|, µ0 > 0,

where µ0 is a constant laminar viscosity and µt(|ε(u)|) stands for a turbulent
viscosity. The function lm,α represents an algebraic model of turbulence and
it has the following form (see [3] for more details):

lm,α(x) =
1

2
α(x1)

[
0.14 − 0.08

(
1 −

2dα(x)

α(x1)

)2
− 0.06

(
1 −

2dα(x)

α(x1)

)4
]
,

dα(x) = min
{
x2, α(x1) − x2

}
, x ∈ Ω(α).

The symbol ε(u) means the symmetric part of the gradient of u whose
components are

εij(u) =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, 2
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Figure 5: Graph of the function lm,α.

and |ε(u)| means its norm

|ε(u)| =


1

2

2∑

i,j=1

εij(u)εij(u)




1/2

.

The equations are completed by the following boundary conditions:

u = 0 on Γf ∪ Γα,
u = uD on ΓD,

u · τ = u1 = 0 on Γout,∑2
i,j=1 Tijνiνj = T22 = −σ|u2|u2 on Γout,

(2.4)

where ν, τ stands for the unit normal, tangential vector, respectively and
σ > 0 is a given suction coefficient.

By the classical solution we mean any velocity field u ∈
(
C2(Ω(α))

)2
∩(

C1(Ω(α))
)2

and pressure p ∈ C1(Ω(α))∩C(Ω(α)) satisfying (2.3) and (2.4).

2.2 Weak formulation

2.2.1 Boundary conditions

Throughout the paper we assume that there exists a function u0 ∈
(
W 1,3(Ω0)

)2
,

which satisfies the Dirichlet boundary conditions in the sense of traces, i.e.

u0|ΓD
= uD, u0|∂Ω0\(ΓD∪Γout) = 0, u0 · τ |Γout

= 0

and, in addition, div u0 = 0 in Ω0. We extend u0 by zero on Ω̂ \ Ω0. Then,

due to the boundary conditions, u0 ∈
(
W 1,3(Ω̂)

)2
and div u0 = 0 in Ω̂.

2.2.2 Function spaces

For any α ∈ Uad we denote

V(α) =
{
ϕ ∈ (C∞(Ω(α)))2; div ϕ = 0 in Ω(α)

}

V0(α) =
{
ϕ = (ϕ1, ϕ2) ∈ V(α); ϕ1 ∈ C∞

0 (Ω(α)),

dist(supp(ϕ2), ∂Ω(α) r Γout) > 0
}
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and define the spaces

W (α) = V(α)
‖·‖α

,

W0(α) = V0(α)
‖·‖α

,

where the norm ‖ · ‖α is defined by

‖v‖α := ‖v‖1,2,Ω(α) + ‖Mαε(v)‖3,Ω(α)

= ‖v‖1,2,Ω(α) +

(∑2
i,j=1

∥∥Mαεij(v)
∥∥3

3,Ω(α)

)1/3

,

Mα(x) :=
(
lm,α(x)

)2/3
, x ∈ Ω(α).

Further we define the set

Wu0
(α) =

{
v ∈W (α); v − u0 ∈W0(α)

}
.

Remark 2.1. It is very easy to verify that the norms ‖·‖α and ‖·‖1,2,Ω(α) +
‖Mα|ε(·)|‖3,Ω(α) are equivalent in W (α).

Remark 2.2. The seminorm

|v|α := ‖∇v‖2,Ω(α) + ‖Mαε(v)‖3,Ω(α)

is due to the Friedrichs inequality a norm in W0(α), which is equivalent with
‖v‖α.

Lemma 2.1. W (α) is a separable reflexive Banach space.

Proof. We will use the fact that a closed subspace of a separable reflexive
space is also separable and reflexive (for details see [6], Chapter 8). Let us
define the space

S :=
(
L2(Ω(α))

)2
×
(
L2(Ω(α))

)2×2
×
(
L3(Ω(α))

)2×2

which is a separable reflexive Banach space with the norm

‖(v, w, z)‖S := ‖v‖2,Ω(α) + ‖w‖2,Ω(α) + ‖z‖3,Ω(α), (v, w, z) ∈ S.

Further define the mapping I : W (α) → S by the formula

I(v) := (v,∇v,Mαε(v)).

Then I is an isomorphism of W (α) onto Sα := I(W (α)) and

∀v ∈W (α) ‖I(v)‖S = ‖v‖α.
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We show that Sα is a closed subspace of S. Let {vn} ⊂W (α) and I(vn) →
(v, w, z) in S. Then clearly w = ∇v in Ω(α). Moreover

∀f ∈ L3/2(Ω(α)) ∀i, j = 1, 2

∫

Ω(α)
Mαεij(vn)f dx→

∫

Ω(α)
zijf dx, z = (zij)

2
i,j=1.

Because ∇vn → ∇v in L2(Ω(α)) and Mα ∈ L∞(Ω(α)), also

∫

Ω(α)
Mαεij(vn)ϕ dx→

∫

Ω(α)
Mαεij(v)ϕ dx ∀ϕ ∈ C∞(Ω(α)).

Since C∞(Ω(α)) is dense in L3/2(Ω(α)), we have z = Mαε(v) in Ω(α). The
fact that div v = 0 in Ω(α) is readily seen. Finally, for any δ > 0 there exists
vn ∈ {vn} and ϕn ∈ V(α) such that

‖v − vn‖α ≤ δ/2

‖vn − ϕn‖α ≤ δ/2.

From this and the triangle inequality we have

‖v − ϕn‖α ≤ δ,

meaning that v ∈W (α) and (v, w, z) = I(v) ∈ Sα.

Definition 2.1. Define the operator Aα : W (α) →
(
W (α)

)∗
by the formula

〈
Aα(v), w

〉
α

:=

2∑

i,j=1

∫

Ω
M3

α|ε(v)|εij(v)εij(w)dx; v, w ∈W (α).

Here
〈
·, ·
〉
α

denotes the duality pairing between
(
W (α)

)∗
and W (α).

Remark 2.3. The fact that Aα(v) ∈
(
W (α)

)∗
follows from the Hölder’s

inequality.

In what follows we will use the Einstein summation convention, i.e.
aibi :=

∑n
i=1 aibi.

Remark 2.4. Since Mα = 0 on ∂Ω(α) \ ΓD it can be extended by zero on

Ω̂ \ Ω(α). The resulting function, which is continuous in Ω̂ and which will
be used in the next analysis, will be denoted by M̃α.

The following lemma is needed in order to prove a useful relation between
the functions α and lm,α.
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Lemma 2.2. Let (X1, ρ1), (X2, ρ2), (X3, ρ3) be metric spaces and consider
functions fn : X1 → X2, n ∈ N, f : X1 → X2, g : X2 → X3 such that g is
uniformly continuous in X2 and

fn ⇒ f in X1.

Then
g ◦ fn ⇒ g ◦ f in X1.

Proof. Choose δ > 0. Then there exists η > 0 such that for every x, y ∈ X2,
ρ2(x, y) < η,

ρ3(g(x) − g(y)) < δ.

Further there exists n0 ∈ N such that for every n ≥ n0 and x ∈ X1 it holds

ρ2(fn(x), f(x)) < η

from which the lemma follows.

Lemma 2.3. (Some properties of Mα and Aα, α ∈ Uad)

(i) If αn ⇒ α in [0, L] then M̃αn
⇒ M̃α in Ω̂.

(ii) Aα is monotone in W (α):

〈
Aα(v) −Aα(w), v − w

〉
α
≥ 0 ∀v, w ∈W (α),

and strictly monotone in W0(α), i.e. the previous inequality is sharp
for v 6= w, where v, w ∈W0(α).

(iii) Aα is continuous operator in W (α).

Proof. (i) Let us define the function lm by the formulae

lm(x) :=
1

2
x1

(
0.14 − 0.08d2(x) − 0.06d4(x)

)
,

d(x) :=

(
1 −

2min{x2, x1 − x2}

x1

)
,

x ∈ [αmin, αmax] × [0, αmax]. Then it is easy to verify that lm is con-
tinuous in [αmin, αmax] × [0, αmax] and that

lm,α(x) = lm(α(x1), x2) ∀α ∈ Uad.

From this and Lemma 2.2 it follows that

lm,αn
⇒ lm,α in Ω̂.
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(ii) For any B1, B2 ∈ R
2×2 we have:

(
|B1|B1 − |B2|B2

)
·
(
B1 −B2)

= |B1|
3 + |B2|

3 −
(
|B1| + |B2|

)
B1 ·B2

≥ |B1|
3 + |B2|

3 −
(
|B1| + |B2|

)
|B1||B2|

=
(
|B1| + |B2|

)(
|B1| − |B2|

)2
≥ 0.

(2.5)

Now, let us assume that everywhere in (2.5) the equality holds. Then

|B1| = |B2|

|B1||B1 −B2|
2 = 0

and thus B1 = B2.

Let u, v ∈W (α). Then
〈
Aα(u) −Aα(v), u − v

〉
α

=

∫

Ω(α)
M3

α

(
|ε(u)|εij(u) − |ε(v)|εij(v)

)
εij(u− v)︸ ︷︷ ︸

≥0

dx ≥ 0 (2.6)

as follows from (2.5). To prove strict monotonicity of Aα assume that
u, v ∈ W0(α) and the expression (2.6) equals zero. Then necessarily
ε(u) = ε(v) a.e. in Ω(α). From the Korn and the Friedrichs inequality
it follows that u = v a.e. in Ω(α).

(iii) Let vn → v in W (α). Then also Mα|ε(vn)| → Mα|ε(v)| in L3
(
Ω(α)

)
.

We want to show that Aα(vn) → Aα(v) in
(
W (α)

)∗
. Indeed:

∣∣〈Aα(vn) −Aα(v), w
〉
α

∣∣

≤

∣∣∣∣
∫

Ω(α)
M3

α

(
|ε(vn)|εij(vn − v) + (|ε(vn)| − |ε(v)|)εij(v)

)
εij(w) dx

∣∣∣∣

≤ ‖w‖α

(
‖vn‖α‖vn − v‖α + ‖v‖α‖Mα

(
|ε(vn)| − |ε(v)|

)
‖3,Ω(α)

)
→ 0

holds for every w ∈W (α). Therefore

‖Aα(vn) −Aα(v)‖(
W (α)

)
∗ = sup

w∈W (α)r{0}

∣∣〈Aα(vn) −Aα(v), w
〉

α

∣∣
‖w‖α

→ 0

Definition 2.2. For every u, v, w ∈
(
W 1,2(Ω(α))

)2
we define the trilinear

form bα:

bα(u, v, w) :=

∫

Ω(α)
uj
∂vi

∂xj
wi dx

Remark 2.5. From the imbedding of W 1,2(Ω(α)) into L4(Ω(α)) it follows

that bα is continuous on
[(
W 1,2(Ω(α))

)2]3
.
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2.2.3 Weak solution

Now we are ready to give the weak formulation of the state problem. It
can be formally derived by multiplying the equations (2.3) by a smooth
solenoidal test function ϕ and integrating over Ω(α) with the use of the
Green theorem.

Definition 2.3. We will say that u := u(α) is a weak solution of the state
problem (P(α)) iff

• u ∈Wu0
(α)

• for every ϕ ∈W0(α) it holds:

2µ0

∫

Ω(α)
εij(u)εij(ϕ) dx+ 2ρ

〈
Aα(u), ϕ

〉
α
+

+ρbα(u, u, ϕ) + σ

∫

Γout

|u2|u2ϕ2 dS = 0

(2.7)

Remark 2.6. Since ϕ = 0 on ∂Ω(α) r Γout and divϕ = 0, the pressure
disappeared from the weak formulation.

In the following subsections the existence of a weak solution to (P(α))
on a fixed domain Ω(α), α ∈ Uad will be examined. Thus for simplicity
of notations the letter α in the argument will be omitted (we shall write
Ω := Ω(α), W := W (α), b := bα etc. in what follows).

2.3 Energy estimates

Recall that the function u0 is now defined in the whole Ω̂ and it does not
depend on α ∈ Uad.

Theorem 2.4. Let

‖∇u0‖3,bΩ < C and σ >
ρ

2
, (2.8)

where C > 0 is specified in (2.14) below. Then there exists a constant CE :=
CE(‖∇u0‖3,bΩ) such that for any weak solution u of (P(α)) the following
estimate holds

‖∇u‖2
2,Ω + ‖M |ε(u)|‖3

3,Ω +

∫

Γout

|u2|
3 dS ≤ CE (2.9)

Remark 2.7. From the proof it will be seen that estimate (2.9) holds with
a constant CE independent of α ∈ Uad. In particular, the zero extension of
u(α) from Ω(α) to Ω̂ still satisfies (2.9).

Proof of Theorem 2.4. We use ϕ := u− u0 as a test function in (P(α)) and
estimate each term on the left of (P(α)) from below.
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(i) The first term can be estimated by means of Hölder’s, Young’s and
Korn’s inequalities:

∫

Ω
εij(u)εij(u− u0)dx ≥

C2
Korn

2
‖∇u‖2

2,Ω −
1

2
‖∇u0‖

2
2,bΩ

(2.10)

The Korn inequality is applied to the zero extension of u from Ω to Ω̂
with the constant CKorn := CKorn(Ω̂) which is independent of α ∈ Uad.

(ii) The second term can be estimated by using the Hölder and the Young
inequality:

〈
A(u), u− u0

〉
≥

1

3
‖M |ε(u)|‖3

3,Ω −
1

3
‖M |ε(u0)|‖

3
3,bΩ

(2.11)

(iii) The convective term can be rearranged as follows:

b(u, u, u− u0) = b(u, u− u0, u− u0)︸ ︷︷ ︸
J1

+ b(u, u0, u)︸ ︷︷ ︸
J2

−b(u, u0, u0)︸ ︷︷ ︸
J3

Since u = u0 on ∂Ω \ Γout and div u = 0 in Ω, we have

J1 =

∫

Ω
uj

∂

∂xj

(
|u− u0|

2

2

)
dx =

∫

∂Ω
(u · ν)

|u− u0|
2

2
dS−

−

∫

Ω
div u

|u− u0|
2

2
dx ≥ −

1 + η

2

∫

Γout

|u2|
3 dS − Cη

∫

Γout

|u02|
3 dS

(2.12)

for any η > 0 with Cη > 0 depending on η.

The term J2 can be estimated using the imbedding W̃ 1,2(Ω̂) ↪→ L3(Ω̂):

J2 ≥ −‖∇u0‖3,bΩ‖u‖
2
3,Ω ≥ −C2

Imb‖∇u0‖3,bΩ‖∇u‖
2
2,Ω (2.13)

where W̃ 1,2(Ω̂) is the subspace of functions from W 1,2(Ω̂) which are
equal to zero on the top of Ω̂, i.e. on Γ̂ = (0, L) ×{αmax} and CImb is
the norm of this imbedding.

Further

J3 ≥ −‖u‖3,Ω‖∇u0‖3,bΩ‖u0‖3,bΩ ≥ −η1‖∇u‖
2
2,Ω − Cη1

‖∇u0‖
4
3,bΩ

holds for any η1 > 0 with Cη1
> 0 depending on η1 making use of the

Friedrichs inequality on W̃ 1,2(Ω̂) and the imbedding of W̃ 1,2(Ω̂) into
L3(Ω̂).

(iv) Finally the boundary term can be estimated as follows:
∫

Γout

|u2|u2(u2 − u02) dS ≥ (1 − η2)

∫

Γout

|u2|
3 dS − Cη2

∫

Γout

|u02|
3 dS

holds for any η2 > 0 with Cη2
> 0 depending on η2.
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Multiplying each term by the respective physical constant and summing
them up we obtain that

(
µ0C

2
Korn − ρC2

Imb‖∇u0‖3,bΩ − ρη1

)
‖∇u‖2

2,Ω +
2

3
ρ‖M |ε(u)|‖3

3,Ω

+
(
(1 − η2)σ − ρ

1 + η

2

)∫

Γout

|u2|
3 dS

≤ CE

(
‖∇u0‖2,bΩ, ‖M |ε(u0)|‖3,bΩ,

∫

Γout

|u02|
3 dS, ‖∇u0‖3,bΩ

)

holds for any η, η1, η2 > 0 with a constant CE which depends on the indicated
arguments. Choosing

‖∇u0‖3,bΩ <
µ0

ρ

(
CKorn

CImb

)2

(2.14)

ρ

2
< σ

we finally arrive at (2.9). Here we also used the fact that all arguments
appearing in CE can be estimated by ‖∇u0‖3,bΩ

.

Remark 2.8. Assume that there exists a constant C > 0 such that

∀α ∈ Uad ‖M−1
α ‖6,Ω(α) ≤ C. (2.15)

Then Theorem 2.4 holds for any ‖∇u0‖3,bΩ with the constant CE > 0 inde-
pendent of α.

Proof. Let v ∈W satisfy v|{(x1,α(x1)); x1∈(0,L)} = 0. Then the zero extension

of v belongs to
(
W̃ 1,2(Ω̂)

)2
and one can use the Korn inequality with the

same constant CKorn > 0 as in (2.10):

‖∇v‖2,Ω ≤ C−1
Korn‖M

−1Mε(v)‖2,Ω.

The Hölder inequality then yields

‖∇v‖2,Ω ≤
C

CKorn
‖Mε(v)‖3,Ω. (2.16)

In the proof of Theorem 2.4 the term J2 is estimated as follows:

J2 ≥ −C2
Imb‖∇u‖

2
2,Ω‖∇u0‖3,bΩ ≥ −

(
CImbC

CKorn

)2

‖Mε(u)‖2
3,Ω‖∇u0‖3,bΩ

making use of (2.16). Using the Young inequality we obtain for any η > 0:

J2 ≥ −η‖Mε(u)‖3
3,Ω −Cη‖∇u0‖

3
3,bΩ
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with a constant Cη > 0 depending on η. Finally, summing up all the terms
multiplied by the respective constants, the term

ρ

(
1

3
− η

)
‖Mε(u)‖3

3,Ω

appears on the left, which is positive for η ∈ (0, 1
3 ).

Remark 2.9. In our case unfortunately, condition (2.15) is not satisfied
since

M(x1, x2) = O(x
2/3
2 ), x2 → 0+

for x1 ∈ (0, L) fixed.

2.4 Existence and uniqueness

Theorem 2.5 (Existence). Let the assumptions of Theorem 2.4 be satis-
fied. Then there exists a weak solution of (P(α)).

Proof. Will be done in two steps (for the sake of simplicity of notations we
set 2µ0 = 2ρ = σ = 1):

(i) Galerkin approximations

Let
{
ωs
}∞

s=1
be a dense set in W0 of linearly independent functions

and denote the finite-dimensional subspace

KN := span
{
ω1, ..., ωN

}
.

For every N = 1, 2, ... we solve the Galerkin problem:

Find uN ∈W such that

• uN − u0 ∈ KN ,

• Equation (2.7) is satisfied for all ϕ ∈ KN .

Define a mapping PN : R
N → R

N by

PN (dN )s =

∫

Ω
εij(u

N )εij(ω
s)dx+

〈
A(uN ), ωs

〉
+

+
1

2
b(uN , uN , ωs) +

∫

Γout

|uN
2 |uN

2 ω
s
2 dS; s = 1, ...N,

where

uN (x) := u0(x) +

N∑

r=1

dN
r ω

r(x).

Then the Galerkin problem is equivalent to:

18



Find d
N

∈ R
N such that

PN (d
N

) = 0. (2.17)

Next we show that this nonlinear algebraic system has a solution by us-
ing Brouwer’s theorem (respectively Corollary A.3). Clearly the map-
ping PN is continuous. To prove the existence of a solution to (2.17)
we need to verify that there exists R > 0 such that

∀dN ∈ R
N , |dN | = R : PN (dN ) · dN > 0.

Using the same technique as in the proof of the energy estimate (2.9)
we obtain:

PN (dN ) · dN ≥ C
(
‖∇uN‖2

2,Ω + ‖M |ε(uN )|‖3
3,Ω +

∫

Γout

|uN
2 |3 dS

)

− CE(‖∇u0‖3,bΩ
) ≥ C‖∇uN‖2

2,Ω − CE(‖∇u0‖3,bΩ
).

For |dN | large enough the last term is positive. Indeed:

‖∇uN‖2
2,Ω =

= ‖u0‖
2
2,Ω + 2

N∑

r=1

dN
r

(
∇u0,∇ω

r
)
0,Ω

+

N∑

r,s=1

dN
r d

N
s

(
∇ωr,∇ωs

)
0,Ω

≥ ‖u0‖
2
2,Ω + 2

N∑

r=1

dN
r (∇u0,∇ω

r)0,Ω + β|dN |2 → ∞ as |dN | → ∞.

Here we used that the Gramm matrix of the linearly independent
system {ωs}N

s=1 is positive definite with a constant β > 0. The notation
(·, ·)0,Ω stands for the scalar product in L2(Ω).

From Corollary A.3 the existence of d
N

∈ R
N solving (2.17) follows.

(ii) Limit passages

Energy estimate (2.9) holds for every uN with the same constant
CE(‖∇u0‖3,bΩ

). From this it follows that there exists u ∈W such that

(a chosen subsequence is denoted again by the same index N)

uN ⇀ u in W, N → ∞ (2.18)

and also in
(
W 1,2(Ω)

)2
because

(
W 1,2(Ω)

)∗
⊂W ∗. Trivially u ∈Wu0

.
Further we will use the compact imbedding of W 1,2(Ω) into Lq(Ω),
and Lq(∂Ω), q ∈ [1,+∞) so that

uN → u in Lq(Ω)
uN → u in Lq(∂Ω), N → ∞.

(2.19)
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Let ϕ ∈W0 be given. Then
∫

Ω
εij(u

N )εij(ϕ)dx→

∫

Ω
εij(u)εij(ϕ)dx,

∫

Γout

|uN
2 |uN

2 ϕ2 dS →

∫

Γout

|u2|u2ϕ2 dS,

b(uN , uN , ϕ) = b(uN − u, uN , ϕ) + b(u, uN , ϕ) → b(u, u, ϕ), N → ∞

as follows from (2.18) and (2.19).

It remains to analyze the second term in (2.7). It is sufficient to show
that

A(uN ) ⇀ A(u) in W ∗, N → ∞.

From the energy estimates we obtain boundedness of {A(uN )} in W ∗:
∣∣〈A(uN ), ϕ

〉∣∣ ≤ C‖ϕ‖α,

where C does not depend on N and therefore A(uN ) ⇀ χ in W ∗. To
prove that χ = A(u) we use monotonicity of A:

∀ψ ∈W : 0 ≤
〈
A(uN ) −A(ψ), uN − ψ

〉
=

=
〈
A(uN ), uN − u0

〉
−
〈
A(ψ), uN − ψ

〉
−
〈
A(uN ), ψ − u0

〉
.

(2.20)

Since uN − u0 ∈ KN , the term
〈
A(uN ), uN − u0

〉
can be expressed by

the remaining terms of the Galerkin identity. Therefore (2.20) reads
as follows:

∫

Ω
εij(u

N )εij(u
N − u0)dx ≤ −

1

2
b(uN , uN , uN − u0)−

−

∫

Γout

|uN
2 |uN

2 (uN
2 − u02) dS −

〈
A(ψ), uN − ψ

〉
−
〈
A(uN ), ψ − u0

〉
.

Letting N → ∞ and using weak lower semi-continuity of the term
on the left of the previous inequality and continuity of the remaining
terms we obtain:

∫

Ω
εij(u)εij(u− u0)dx ≤ −

1

2
b(u, u, u− u0)−

−

∫

Γout

|u2|u2(u2 − u02) dS −
〈
A(ψ), u − ψ

〉
−
〈
χ, ψ − u0

〉
.

(2.21)

Further, we use uL − u0, L ≤ N as a test function in the Galerkin
identity for uN . Passing to the limit with N → ∞ and then with
L→ ∞ we have:

∫

Ω
εij(u)εij(u

L − u0)dx+
〈
χ, uL − u0

〉
+

+
1

2
b(u, u, uL − u0) +

∫

Γout

|u2|u2(u
L
2 − u02) dS = 0,
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∫

Ω
εij(u)εij(u− u0)dx+

〈
χ, u− u0

〉
+

+
1

2
b(u, u, u − u0) +

∫

Γout

|u2|u2(u2 − u02) dS = 0,
(2.22)

respectively. From (2.21) and (2.22) we arrive at the inequality

0 ≤
〈
χ−A(ψ), u − ψ

〉
(2.23)

We now use the so-called Minty trick. Instead of ψ we insert into (2.23)
a function u± λξ, where λ > 0, ξ ∈W :

0 ≤
〈
χ−A(u± λξ),∓λξ

〉
.

Dividing this inequality by λ we obtain for λ→ 0:

0 ≤ ±
〈
χ−A(u), ξ

〉
∀ξ ∈W,

making use of continuity of A. Thus χ = A(u).

It remains to verify that u is a weak solution: Choose ϕ ∈ W0. This
function can be approximated by a sequence {ϕL}, ϕL ∈ KL:

ϕL → ϕ in W0, L→ ∞.

Substituting ϕL into the Galerkin identity for uN , N ≥ L and letting
N → ∞ and next L → ∞, we see that (P(α)) is satisfied for every
ϕ ∈W0. Therefore u is a weak solution.

Theorem 2.6 (Uniqueness). Let all the assumptions of Theorem 2.4 be
satisfied and ‖∇u0‖3,bΩ be small enough. Then there exists exactly one solu-

tion to (P(α)).

Proof. Let u and v be two solutions of (P(α)). We subtract the weak for-
mulations for u and v with ϕ = u− v ∈W0 as a test function. We obtain:

2µ0‖ε(u− v)‖2
2,Ω + 2ρ

〈
A(u) −A(v), u− v

〉
︸ ︷︷ ︸

≥ 0

+σ

∫

Γout

(|u2|u2 − |v2|v2)(u2 − v2)︸ ︷︷ ︸
≥ 0

dS

= ρb(v − u, v, v − u) + ρb(u, v − u, v − u).

We estimate the terms on the right hand side, making use of the Hölder
inequality, the imbedding of W̃ 1,2(Ω̂) into L4(Ω̂) and the energy estimates:

b(v − u, v, v − u) ≤ ‖∇v‖2,Ω‖u− v‖2
4,Ω ≤ CEC

2
Imb‖∇(u− v)‖2

2,Ω,
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b(u, v−u, v−u) ≤ ‖u‖4,Ω‖∇(u− v)‖2,Ω‖u− v‖4,Ω ≤ CEC
2
Imb‖∇(u− v)‖2

2,Ω,

where CImb is the norm of the respective imbedding and CE = CE

(
‖∇u0‖3,bΩ

)

is the constant from the energy estimates. Applying the Korn inequality on
the left hand side, we finally obtain

µ0C
2
Korn‖∇(u− v)‖2

2,Ω ≤ 2ρCEC
2
Imb‖∇(u− v)‖2

2,Ω,

from which it follows that u = v a.e. in Ω if 2CE < µ0

ρ

(
CKorn

CImb

)2
.

Remark 2.10. Let us observe that the bound guaranteeing uniqueness of
the solution to (P(α)) is independent of α ∈ Uad.
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3 Shape optimization problem

The aim of this part is to formulate a shape optimization problem and to
prove the existence of a solution.

3.1 Formulation of the problem

We proved that on every domain Ω(α) ∈ O there exists at least one weak
solution of the state problem (P(α)). Let G be the graph of the control–to–
state (generally multi-valued) mapping:

G := {(α, u); α ∈ Uad, u is a weak solution of (P(α))} .

Further let us define the cost functional J : G → R by

J : (α, u) 7→

∫

Γ̃
|u2 − zD|2 dS, u = (u1, u2), (3.1)

where zD ∈ L2(Γ̃) is a given function representing the desired outlet velocity
profile and Γ̃ ⊂ Γout.

We now formulate the following problem:

Find (α∗, u∗) ∈ G so that

J(α∗, u∗) ≤ J(α, u) ∀(α, u) ∈ G.
(P)

In the next definition we introduce convergence of a sequence of domains.

Definition 3.1. Let {Ω(αn)}, αn ∈ Uad be a sequence of domains. We will
say that {Ω(αn)} converges to Ω(α), shortly Ω(αn) ; Ω(α), iff αn ⇒ α in
[0, L].

Lemma 3.1. System O is compact with respect to convergence introduced
in Definition 3.1.

Proof. Functions from Uad are uniformly bounded and equicontinuous, which
means (by Arzelà-Ascoli’s theorem A.4) that Uad is compact in the sense of
uniform convergence.

3.2 Existence of an optimal solution

First let us recall that the function u0 which realizes the boundary conditions
is the same for all domains Ω ∈ O.

We now rewrite (P(α)), α ∈ Uad using the formulation on the fixed
domain Ω̂:

2µ0

∫

bΩ
εij(ũ(α))εij(ϕ̃) dx+ 2ρ

〈
Ãα(ũ(α)), ϕ̃

〉
bΩ
+

+ ρbbΩ
(ũ(α), ũ(α), ϕ̃) + σ

∫

Γout

|ũ2(α)|ũ2(α)ϕ̃2 dS = 0 ∀ϕ ∈W0(α), (P̂(α))
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where the symbol˜stands for the zero extension of functions from Ω(α) on
Ω̂,

〈
Ãα(ũ(α)), ϕ̃

〉
bΩ

:=

∫

bΩ
M̃3

α|ε(ũ(α))|εij(ũ(α))εij(ϕ̃) dx,

bbΩ(ũ(α), ũ(α), ϕ̃) :=

∫

bΩ
ũj(α)

∂ũi(α)

∂xj
ϕ̃i dx.

Further let Ŵ (α) = W 1,2
div (α) ∩W 1,3

M (α), where

W 1,2
div (α) :=

{
v ∈

(
W 1,2(Ω(α))

)2
; div v = 0 in Ω(α)

}
,

W 1,3
M (α) :=

{
v ∈

(
W 1,2(Ω(α))

)2
; Mα|ε(v)| ∈ L3(Ω(α))

}

and define

Ŵu0
(α) :=

{
v ∈ Ŵ (α); v satisfies the Dirichlet

conditions (2.4)1 − (2.4)4 on ∂Ω(α)
}
.

Remark 3.1. It holds that Wu0
(α) ⊆ Ŵu0

(α). The question is, if these
spaces are identical. This is in fact the problem of density and at this moment
we do not know the answer.

From the part dealing with the existence of a solution to (P(α)) we can
use the energy estimate

‖∇ũ(α)‖2
2,bΩ

+ ‖M̃α|ε(ũ(α))|‖3
3,bΩ

+

∫

Γout

|u2(α)|3 dS ≤ CE(‖∇u0‖3,bΩ
) (3.2)

which holds for every (α, u(α)) ∈ G with the constant CE(‖∇u0‖3,bΩ) inde-
pendent of α.

Theorem 3.2. Let αn ⇒ α in [0, L], αn, α ∈ Uad and un := u(αn) be a

solution of (P(αn)). Then there exists û ∈
(
W 1,2(Ω̂)

)2
and a subsequence of

{ũn} (denoted by the same symbol) such that

ũn ⇀ û in
(
W 1,2(Ω̂)

)2

M̃αn
ε(ũn) ⇀ M̃αε(û) in

(
L3(Ω̂)

)2×2
, n→ ∞.

(3.3)

In addition, the function u(α) := û|Ω(α) solves (P(α)) provided that u(α) ∈Wu0
(α).
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Proof. Let us denote M̃n := M̃αn
, Ωn := Ω(αn),

〈
·, ·
〉
n

:=
〈
·, ·
〉
αn

etc.
From energy estimate (3.2) it follows that

‖ũn‖1,2,bΩ ≤ C

‖M̃nε(ũn)‖3,bΩ ≤ C,

where C > 0 does not depend on n. Therefore we can choose a subsequence
of {ũn} (denoted again by the same symbol) so that

ũn ⇀ û in
(
W 1,2(Ω̂)

)2

M̃αn
ε(ũn) ⇀ ẑ in

(
L3(Ω̂)

)2×2
, n→ ∞.

(3.4)

The following properties of û and ẑ are easily verified:

(i) û = 0 in Ω̂ \ Ω(α), ẑ = 0 in Ω̂ \ Ω(α),

(ii) ẑ = M̃αε(û) in Ω̂,

(iii) div û = 0 in Ω̂,

(iv) û satisfies the required Dirichlet boundary conditions on ∂Ω(α).

We prove (ii). Since C∞(Ω̂) is dense in L3/2(Ω̂), it is sufficient to show that

∫

bΩ
M̃nεij(ũn)ψij dx→

∫

bΩ
M̃αεij(û)ψij dx, n→ ∞, i, j = 1, 2

holds for every ψ ∈
(
C∞(Ω̂)

)2×2
. Indeed:

∣∣∣∣
∫

bΩ

(
M̃nεij(ũn)ψij − M̃αεij(û)ψij

)
dx

∣∣∣∣ ≤

≤

∫

bΩ
|M̃n − M̃α||εij(ũn)ψij | dx+

∣∣∣∣
∫

bΩ
M̃α (εij(ũn) − εij(û))ψij dx

∣∣∣∣→ 0,

making use that M̃n ⇒ M̃α in Ω̂, (3.4)1 and the fact that M̃αψij ∈ L2(Ω̂).

Let u(α) := û|Ω(α). Then (i)-(iv) implies that u(α) ∈ Ŵu0
(α). Next we

prove that u(α) solves (P(α)) provided that u(α) ∈ Wu0
(α). We start from

the definition of (P̂(αn)):

2µ0

∫

bΩ
εij(ũn)εij(ϕ̃) dx+ 2ρ

〈
Ãn(ũn), ϕ̃

〉
bΩ

+ ρbbΩ
(ũn, ũn, ϕ̃)

+ σ

∫

Γout

|ũn2|ũn2ϕ̃ dS = 0 ∀ϕ ∈W0(αn). (3.5)

Let ϕ ∈ V0(α) be an arbitrary function. Then ϕ̃|Ωn
∈ V0(αn) for n

sufficiently large so that it can be used as a test function in (3.5). The limit
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supp ϕ

Ω(α)

Figure 6: Support of the test function ϕ.

passage in the first, third and fourth term is a classical one:
∫

bΩ
εij(ũn)εij(ϕ̃) dx→

∫

bΩ
εij(ũ(α))εij(ϕ̃) dx,

bbΩ(ũn, ũn, ϕ̃) = bbΩ(ũn − ũ(α), ũn, ϕ̃) + bbΩ(ũ(α), ũn, ϕ̃)

→ bbΩ
(ũ(α), ũ(α), ϕ̃),

∫

Γout

|ũn2|ũn2ϕ̃2 dS →

∫

Γout

|ũ2(α)|ũ2(α)ϕ̃2 dS, n→ ∞.

(3.6)

The most difficult is to handle the second term. Let Bn ∈
(
W0(α)

)∗
be

the functional defined by

2ρ
〈
Bn, ψ

〉
α

:= −2µ0

∫

bΩ
εij(ũn)εij(ψ̃) dx− ρbbΩ(ũn, ũn, ψ̃)−

− σ

∫

Γout

|ũn2|ũn2ψ̃ dS ∀ψ ∈W0(α).

From the energy estimate it follows:

‖Bn‖(
W0(α)

)
∗ ≤ C ∀n ∈ N.

Thus there exists B ∈
(
W0(α)

)∗
such that

Bn ⇀ B. (3.7)

In addition, if ψ ∈ V0(α) then ψ̃|Ωn
∈ V0(αn) for n sufficiently large and

〈
Bn, ψ

〉
α

=
〈
Ãn(ũn), ψ̃

〉
bΩ
. (3.8)

We use monotonicity of An on W (αn). For any ψ ∈W (αn) we have

0 ≤
〈
An(un) −An(ψ), un − ψ

〉
n

=
〈
An(un), un − u0

〉
n
−

−
〈
An(ψ), un − ψ

〉
n
−
〈
An(un), ψ − u0

〉
n
. (3.9)
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In what follows we use ψ of the form

ψ̃ = u0 + ϕ̃,

where ϕ ∈ V0(α) is fixed. Then

〈
An(un), ψ − u0

〉
n

=
〈
Ãn(ũn), ϕ̃

〉
bΩ

=
〈
Bn, ϕ

〉
α

(3.10)

provided that n is large enough making use of (3.8). Since un ∈ Wu0
(αn),

the definition of (P̂(αn)), (3.9) and (3.10) yield:

2µ0

∫

bΩ
εij(ũn)εij(ũn − u0) dx ≤ −ρbbΩ(ũn, ũn, ũn − u0)

− σ

∫

Γout

|ũn2|ũn2(ũn2 − u02) dS −
〈
An(ψ), un − ψ

〉
n
−
〈
Bn, ϕ

〉
α
. (3.11)

Letting n→ ∞ in (3.11) we obtain:

2µ0

∫

bΩ
εij(ũ(α))εij(ũ(α) − u0) dx ≤ −ρbbΩ(ũ(α), ũ(α), ũ(α) − u0)

− σ

∫

Γout

|ũ2(α)|ũ2(α)(ũ2(α) − u02) dS −
〈
Aα(ψ), u(α) − ψ

〉
α
−
〈
B,ϕ

〉
α
.

(3.12)

Here we use the fact that

〈
An(ψ), un − ψ

〉
n
→
〈
Aα(ψ), u(α) − ψ

〉
α

=
〈
Ãα(ψ̃), ũ(α) − ψ̃

〉
bΩ
.

Indeed: From (3.4)2 and (ii) we know that

M̃nε(ũn) ⇀ M̃αε(ũ(α)) in
(
L3(Ω̂)

)2×2
(3.13)

using that û = ũ(α). Further

M̃2
n|ε(ψ̃)|ε(ψ̃) → M̃2

α|ε(ψ̃)|ε(ψ̃) in
(
L3/2(Ω̂)

)2×2

since Mn ⇒ Mα in Ω̂ and ψ̃ ∈
(
W 1,3(Ω̂)

)2
. From this and (3.13) we obtain

that 〈
An(ψ), un

〉
n
→
〈
Ãα(ψ̃), ũ(α)

〉
α
.

The limit passage
〈
An(ψ), ψ

〉
n
→
〈
Aα(ψ), ψ

〉
α

is trivial.
By assumption there exists w(α) ∈W0(α) such that u(α) = u0+w(α). Then
there exists a sequence {wk}, wk ∈ V0(α) such that

wk → w(α) in W (α), k → ∞. (3.14)
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Let k ∈ N be fixed. Then w̃k|Ωn
∈ V0(αn) for n large enough. Therefore

w̃k|Ωn
can be used as a test function in (P(αn)). Inserting w̃k in (P̂(αn))

and passing to the limit with n→ ∞ and then k → ∞ we obtain:

2µ0

∫

bΩ
εij(ũ(α))εij(w̃(α)) dx+

〈
B,w(α)

〉
α

+ ρbbΩ
(ũ(α), ũ(α), w̃(α))

+ σ

∫

Γout

|ũ2(α)|ũ2(α)w̃2(α) dS = 0 (3.15)

making use of (3.6), (3.7) and (3.14). From (3.12) and (3.15) we have:

−
〈
Ãα(ψ̃), ũ(α) − ψ̃

〉
bΩ
−
〈
B,ϕ

〉
α

+
〈
B,w(α)

〉
α
≥ 0 (3.16)

using that w̃(α) = ũ(α) − u0. Since ũ(α) − ψ̃ = w̃(α) − ϕ̃ we see that (3.16)
can be written as follows:

〈
B −Aα(ψ), w(α) − ϕ

〉
α
≥ 0 ∀ϕ ∈ V0(α). (3.17)

From (3.17), density of V0(α) in W0(α), continuity of Aα and the fact that
ψ = u0|Ω(α) + ϕ, ϕ ∈ V0(α), we obtain

〈
B −Aα(u0 + z), w(α) − z

〉
α
≥ 0 ∀z ∈W0(α). (3.18)

Let z ∈ W0(α) be of the form z = w(α) ± λθ, λ > 0, where θ ∈ W0(α) is
arbitrary. Then

〈
B −Aα(u0 + w(α) + λθ),±λθ

〉
α
≥ 0.

Dividing by λ and passing to the limit λ→ 0+ we finally obtain

B = Aα(u0 + w(α)) = Aα(u(α)). (3.19)

This, together with (3.6)1-(3.6)3 leads to

2µ0

∫

bΩ
εij(ũ(α))εij(ϕ̃) dx+ 2ρ

〈
Ãα(ũ(α)), ϕ̃

〉
bΩ

+ ρbbΩ(ũ(α), ũ(α), ϕ̃) + σ

∫

Γout

|ũ2(α)|ũ2(α)ϕ̃2 dS = 0, (3.20)

for every ϕ ∈ V0(α) and consequently also for ϕ ∈W0(α).

Remark 3.2. Under the assumptions which guarantee uniqueness of the
solution to (P(α)) the whole sequence {ũn} converges to ũ(α) in the sense
of Theorem 3.2.

Remark 3.3. Let us comment on the condition u(α) ∈Wu0
(α). We mention

two special cases when this condition is satisfied:
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(i) Wu0
(α) = Ŵu0

(α),

(ii) it holds that αn ≤ α for every n ∈ N.

Proof. The case (i) is evident.

(ii) Let αn ⇒ α in [0, L], αn ≤ α ∀n ∈ N and û be a limit function of the
sequence {ũn} in the sense of Theorem 3.2. We denote

wn := un − u0|Ω(αn) ∈W0(αn)

w := û|Ω(α) − u0|Ω(α) ∈ Ŵ0(α) := Ŵu0
(α) setting u0 = 0.

Since Ω(αn) ⊂ Ω(α) ∀n ∈ N we see that w̃n|Ω(α) ∈W0(α). From (3.3)
it also holds that

w̃n ⇀ w in
(
W 1,2(Ω(α))

)2

M̃αn
ε(w̃n) ⇀Mαε(w) in

(
L3(Ω(α))

)2×2
, n→ ∞.

Using Theorem A.5 we know that there exists a sequence {ψn} of
convex combinations of {w̃n}, i.e. ψn =

∑n
k=1 a

n
k w̃k,

∑n
k=1 a

n
k = 1,

an
k ≥ 0, tending strongly to w in the norm of W0(α). Therefore w ∈
W0(α) and û|Ω(α) = u(α) ∈Wu0

(α).

Theorem 3.3 (Existence of an optimal shape). Let there exist a mini-
mizing sequence {(αn, un)}, (αn, un) ∈ G, of (P) with an accumulation point
(α∗, u(α∗)) such that u∗|Ω(α∗) ∈ Wu0

(α∗). Then (α∗, u∗|Ω(α∗)) is an optimal
pair for (P).

Proof. Without loss of generality we may assume that αn ⇒ α∗ in [0, L].
From the assumptions on the sequence {(αn, un)} it follows that there exists
its accumulation point (α∗, u∗) such that (α∗, u∗|Ω(α∗)) ∈ G. Further

q = inf
(α,u(α))∈G

J(α, u(α)) = lim
n→∞

J(αn, un) = J(α∗, u∗|Ω(α∗)) ≥ q

making use of continuity of J .
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4 Numerical results

4.1 Numerical solution of the state problem

Numerical computations of the flow problem are done by the open software
Featflow, which is designed for solving Navier–Stokes-like problems. Descrip-
tion of this program can be found on its web page http://www.featflow.de
and in [8]. We start with the formulation of the discrete version of (P(α)).
Since the shape is fixed, the letter α will be dropped.

Let Wh, W0h be finite dimensional spaces approximating W , W0 respec-
tively, {ωn

h} be a basis of W0h and u0h ∈Wh be an approximation of u0. We
formulate the discrete problem as follows:

Find uh ∈Wh such that uh − u0h ∈W0h and

2µ0

∫

Ω
εij(uh)εij(ω

n
h) dx+ 2ρ

〈
A(uh), ωn

h

〉
+ ρb(uh, uh, ω

n
h)+ (Ph)

+ σ

∫

Γout

|uh2|uh2ω
n
h2 dS = 0, n = 1, . . . , nh,

where nh denotes the dimension of W0h.
The discrete problem has 3 nonlinear terms. The second and third term

are handled by the above mentioned program. To treat the nonlinearity
arising from the boundary condition we use the fixed-point approach. Having
the k-th iteration uk

h at our disposal we approximate the boundary term

∫

Γout

|uk+1
h2 |uk+1

h2 ωn
h2 dS ≈

∫

Γout

|uk
h2|u

k
h2ω

n
h2 dS,

which leads to the modified problem for uk+1
h :

Find uk+1
h ∈Wh such that uk+1

h − u0h ∈W0h and

2µ0

∫

Ω
εij(u

k+1
h )εij(ω

n
h) dx+ 2ρ

〈
A(uk+1

h ), ωn
h

〉
+ ρb(uk+1

h , uk+1
h , ωn

h) =

(4.1)

= −σ

∫

Γout

|uk
h2|u

k
h2ω

n
h2 dS, n = 1, . . . , nh.

This modified problem is solved by Featflow using either the fixed-point
or the Newton method. The algorithm reads as follows:

(1) Choose u0
h such that u0

h − u0h ∈W0h and εtol > 0, k := 0.

(2) Find uk+1
h by solving (4.1).

(3) If ‖uk+1
h − uk

h‖2,Γout
≤ εtol‖u

k+1
h ‖2,Γout

then go to (5).
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(4) k := k + 1, go to (2).

(5) Stop.

Alternatively we solved (Ph) using the fixed-point method updating the
right hand side after each iteration.

In the first algorithm the nonlinearity arising from the boundary term
is updated when (4.1) was solved ”exactly”. Unlike to this, the second algo-
rithm updates this term inside of (4.1) and thus it should be more efficient.
In the following table both methods are compared.

Algorithm and used method Iterations Time in seconds

1 - Fixed-point 12 863
1 - Newton 12 848
2 - Fixed-point 7 101

Table 1: Comparison of the used algorithms, stopping criterion εtol = 10−6.

Let us mention that Featflow uses the mixed velocity-pressure formula-
tion. For the discretisation of the function spaces the finite element method
with a nonconforming finite element pair Q̃1/Q0 is used. Let Ωh be a polygo-
nal approximation of Ω and Th a partition of Ωh into quadrilaterals. For each
T ∈ Th we denote by ψT : T̂ → T the bilinear transformation of T̂ = [−1, 1]2

onto T and set

Q̃1(T ) :=
{
q ◦ ψ−1

T ; q ∈ span
{
1, ξ, η, ξ2 − η2

}}
,

Q0(T ) := span {1} ,

where (ξ, η) denotes the local coordinate system in T̂ . The degrees of free-

u

u

u

u

p

Figure 7: The finite element Q̃1/Q0
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dom are given by the values at the midpoints of each edge for Q̃1, and by
the mean value for Q0. This element pair satisfies the Babuška–Brezzi con-
dition and enjoys the approximation property (we refer to [8], Chapter 3.1
for further details).

The function u0h is given by the values of u0 at the midpoints of edges be-
longing to the Dirichlet boundary and by zero elsewhere. Due to the velocity-
pressure formulation this function does not need to be divergence-free.

In the model example the following size parameters (in meters) were
chosen: H1 = 1.0, H2 = 0.1, L1 = 1.0, L2 = 8.0, L3 = 0.5. The back wall Γα

corresponds to the traditional linearly tapering design. These parameters in
fact do not correspond to any existing headbox design.

The physical parameters are chosen as follows: the density ρ = 1000,
the laminar viscosity µ0 = 0.001, the coefficient of the outflow bound-
ary condition σ = 1000. The inflow and recirculation velocity (in m/s) is
uD|{0}×(0,H1) = (4(1− ( 2

H1
x2 − 1)8), 0), uD|{L}×(0,H2) = (1− ( 2

H2
x2 − 1)8, 0),

respectively.
The computational domain is discretized using 12288 elements. On Fig-

ure 8 the used computational mesh is shown. Size of the computed velocity
field, the pressure filed and the viscosity is shown on Figure 9, 10, 11, re-
spectively. Near the right end of Γout large shear and pressure changes occur,
therefore the mesh is refined locally to get more accurate numerical results.
On Figure 11 one can notice that the viscosity reaches its maximum in the
middle of Ω while near ∂Ω \ ΓD it diminishes to the value µ0 due to the
presence of the weight function.

4.2 Numerical solution of shape optimization problem

The set Uad will be discretized by using Bézier functions.

Definition 4.1. Let β0, . . . , βn ∈ R be given. The expression

Pn(ξ) =

n∑

i=0

Θi,n

(
ξ − L1

L2

)
βi, ξ ∈ [L1, L1 + L2], (4.2)

where

Θi,n(t) =

(
n

i

)
ti(1 − t)n−i, t ∈ [0, 1],

is called a Bézier function of the n-th order on the interval [L1, L1 + L2].
The points Ci =

(
L1 + i

nL2, βi

)
, i = 0, . . . , n are termed control points of

Pn.

32



Figure 8: The computational mesh (3072 elements displayed).

Figure 9: Size of the velocity vector.

Figure 10: Pressure field p/ρ.

Figure 11: Kinematic viscosity µ/ρ.
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We now define the set of admissible values of {βi}
n
i=0:

∆n =

{
β = (β0, . . . , βn); β0 = H1, βn = H2,

αmin ≤ βi ≤ αmax, i = 1, . . . , n− 1,

|βi − βi−1| ≤ γ
L2

n
, i = 1, . . . , n

}
.

(4.3)

With any β ∈ ∆n we associate the Bézier function Pn and denote by αn the
function

αn(ξ) =





H1, ξ ∈ [0, L1]
Pn(ξ), ξ ∈ (L1, L1 + L2)
H2, ξ ∈ [L1 + L2, L].

(4.4)

Then the discrete system Un
ad of admissible functions is given by

Un
ad =

{
αn : [0, L] → [αmin, αmax]; αn is defined by (4.4) and β ∈ ∆n

}

(4.5)

Due to the properties of Bézier’s functions it satisfies the inclusion

Un
ad ⊂ Uad.

The system O of admissible domains will be now replaced by On =
{Ω(αn); αn ∈ Un

ad}. Since all Ω(αn) ∈ On are domains with a curved part of
the boundary, functions αn ∈ Un

ad will be replaced by their piecewise linear
approximations rhαn. Discrete state problems will be formulated and solved
in polygonal domains Ω(rhαn) whose shapes are still uniquely defined by
β ∈ ∆n. Starting from the design vector β ∈ ∆n we have the following
chain of mappings:

β 7→ Ω(αn) 7→ Ω(rhαn) 7→ uh(β) 7→ J(β),

where uh(β) is the solution of (Ph(rhαn)) and

J(β) =

∫

Γ̃
|uh2(β) − zD|2dS.

The discrete shape optimization problem then reads as follows:

Find β∗ ∈ ∆n such that J(β∗) ≤ J(β) ∀β ∈ ∆n. (Pn)

The minimization of J in (Pn) is realized by means of the student version
of the optimization software KNITRO, which uses the trust-region method
and the interior barier method for unconstrained, constrained optimization,
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Figure 12: Creation of the mesh from the template.

respectively. The trust-region algorithm needs the gradient of J . We approx-
imate it by the forward finite differences:

∂J(β)

∂βi
≈
J(β0, . . . , βi−1, βi + δ, βi+1, . . . , βn) − J(β)

δ
, δ > 0.

It is known that computations using this approach are sensitive with respect
to the choice of δ. On the other hand the algorithm can be easily parallelized.

In the model example we used the Bézier functions of the 8-th order.
The desired outlet velocity profile was chosen to be constant zD = −0.45
on the part of the boundary Γ̃ = [1.5, 8.5] × {0}, the bounds αmin = 0.09,
αmax = 1.2 and the parameter for the gradient computation δ = 10−3. The
constraint on the derivatives of αn was not used since

|α′
n| ≤

n

L2
(αmax − αmin) a.e. in [0, L] ∀αn ∈ Un

ad.

The computational mesh on the domain Ω(rhαn), αn ∈ On was created from
a template on the reference domain by stretching in the vertical direction (see
Figure 12). After 8 iterations the cost functional decreased from 3.98×10−2

to 1.12 × 10−3 (the convergence history is shown on Figure 15). Figure 13
shows the velocity profiles on Γout for the initial shape given by the linearly
tapering header and for the optimized shape. The initial and optimized
shape are depicted on Figure 14, where the vertical scale is 3× enlarged in
order to notice the difference better.
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Figure 13: The original and the optimized velocity profile.

Figure 14: The original and the optimized domain shape.

5 Conclusion

The work consists of three parts. The first one deals with the existence proof
for the generalised steady-state Navier–Stokes system. In the second part
the shape optimization problem with the Navier–Stokes system as a state
constraint is studied. Finally, the third part is devoted to the discretization
of previous problems and presents numerical results.

Due to an algebraic turbulence model the weak formulation of the state
problem involves the weighted Sobolev spaces. The existence and uniqueness
of a solution is proved for small data and with a constraint imposed on the
model parameters. The existence proof is based on energy estimates and the
Galerkin method.

The key result in the shape optimization part is the proof of the con-
tinuous dependence of solutions on boundary variations. This property is
proved under an additional assumption, namely that a limit function of a
minimizing sequence belongs to an appropriate space.

The numerical results revealed that even a small change of the geome-
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Figure 15: The convergence history.

try has a great influence on the fluid flow properties. This emphasizes the
importance of state problem computations as the numerical inaccuracy can
devalue the whole optimization process. The finite difference approximation
of the cost functional gradient turned out to provide sufficiently exact in-
formation for the optimization algorithm. However more efficient methods
may be used after performing the sensitivity analysis.
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A Auxiliary tools

By R we denote the field of real numbers.

Theorem A.1 (Young’s inequality). Let a, b ≥ 0, r, s > 1, 1
r + 1

s = 1.
Then

ab ≤
ar

r
+
bs

s
(A.1)

Theorem A.2 (Brouwer’s fixed-point theorem). Let B denote a closed
ball in R

d and P : B → B be a continuous mapping. Then there exists a
point x ∈ B such that P (x) = x.

Corollary A.3. Let P : R
d → R

d be continuous and let for some R > 0

P (x) · x > 0 ∀x ∈ R
d, |x| = R.

Then there exists a point x ∈ BR such that P (x) = 0, where BR is the closed
ball of radius R.

Theorem A.4 (Arzelà-Ascoli). Let (S, ρ) be a compact metric space and
C(S) the Banach space of real- or complex-valued continuous functions f in
S normed by ‖f‖ = sups∈S |f(s)|. Then a sequence {fn} ⊂ C(S) is relatively
compact in C(S) if the following two conditions are satisfied:

(i) fn is equibounded, i.e. supn≥1 sups∈S |fn(s)| <∞,

(ii) fn is equicontinuous, i.e.

lim
δ↘0

sup
n≥1

ρ(s,s′)<δ

|fn(s) − fn(s′)| = 0.

Proof. See [9], Chapter III.3.

Theorem A.5 (Mazur). Let X be a Banach space and xn ⇀ x (weakly)

in X. Then for every ε > 0 there exists a convex combination
∑n

j=1 a
(n)
j xj(

a
(n)
j ≥ 0,

∑n
j=1 a

(n)
j = 1

)
of xj’s such that ‖x−

∑n
j=1 a

(n)
j xj‖ ≤ ε.

Proof. See [9], Chapter V.1, Theorem 2.

B Properties of the Sobolev spaces

In what follows we assume that Ω is a bounded domain in R
d with the

Lipschitz boundary. We denote for k integer and r ∈ [1,∞) the Sobolev
space

W k,r(Ω) :=
{
v ∈ Lr(Ω); Dαv ∈ Lr(Ω), |α| ≤ k

}
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with the norm

‖v‖k,r,Ω :=

( ∑

|α|≤k

‖Dαv‖r
r,Ω

)1/r

,

where Lr(Ω) is the Lebesgue space endowed with the norm ‖ · ‖r,Ω.

Theorem B.1 (Hölder’s inequality). Let r, s ∈ (1,∞) such that 1
r + 1

s =
1, f ∈ Lr(Ω) and g ∈ Ls(Ω). Then fg ∈ L1(Ω) and

‖fg‖1,Ω ≤ ‖f‖r,Ω‖g‖s,Ω.

Theorem B.2 (Imbedding theorem). Let r ∈ (1, d) and s ∈ [1, dr
d−r ].

Then there exists a positive constant CImb := CImb(Ω, r, s) such that for all
v ∈W 1,r(Ω) it holds

‖v‖s,Ω ≤ CImb‖v‖1,r,Ω.

For s < dr
d−r this imbedding is compact.

We denote by Tr v the trace of v ∈W 1,r(Ω). The symbol Lr(∂Ω) stands for
the Lebesgue space of traces with the norm ‖ · ‖r,∂Ω.

Theorem B.3 (Properties of traces). Let r ∈ (1, d) and s ∈ [1, dr−r
d−r ].

Then there exists a positive constant CTr := CTr(Ω, r, s) such that for all
v ∈W 1,r(Ω) it holds

‖Tr v‖s,∂Ω ≤ CTr‖v‖1,r,Ω.

For s < dr−r
d−r the operator Tr : W 1,r(Ω) → Ls(∂Ω) is compact.

Theorem B.4 (Friedrichs’ inequality). Let r ∈ (1,∞) and Γ be a non-
empty and open part of ∂Ω. Then there exists a positive constant CFr :=
CFr(Ω,Γ, r) such that for all v ∈W 1,r(Ω) it holds

‖v‖1,r,Ω ≤ CFr (‖v‖r,Γ + ‖∇v‖r,Ω) .

Theorem B.5 (Green’s theorem). Let u ∈ W 1,r(Ω), v ∈ W 1,s(Ω), 1
r +

1
s = 1 and i ∈ {1, . . . , d}. Then

∫

Ω
u
∂v

∂xi
dx =

∫

∂Ω
u v νi dS −

∫

Ω

∂u

∂xi
v dx,

where νi denotes the i-th component of the unit outward normal vector to
∂Ω.

Theorem B.6 (Korn’s inequality). Let r ∈ [1,∞) and Γ be a non-
empty and open part of ∂Ω. Then there exists a positive constant CKorn :=
CKorn(Ω,Γ, r) > 0 such that

CKorn‖∇u‖r,Ω ≤ ‖ε(u)‖r,Ω (B.1)

for all u ∈
(
W 1,r(Ω)

)d
such that u|Γ = 0.
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Lemma B.7. Let u ∈
(
W 1,r(Ω)

)d
, r ∈ [1,∞). Then

‖ε(u)‖r,Ω ≤ ‖∇u‖r,Ω (B.2)

Proof. From the triangle inequality we obtain

∥∥εij(u)
∥∥

r,Ω
≤

1

2

(∥∥∥∥
∂ui

∂xj

∥∥∥∥
r,Ω

+

∥∥∥∥
∂uj

∂xi

∥∥∥∥
r,Ω

)

and therefore

∥∥ε(u)
∥∥

r,Ω
=


∑

i,j

‖εij(u)‖
r
r,Ω




1/r

≤
∑

i,j

‖εij(u)‖r,Ω ≤ ‖∇u‖r,Ω (B.3)
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