D. Medková Neumann problem for the Stokes system

In this paper we construct a solution $\mathbf{u} \in H^1(G)$, $p \in L^2(G)$ of the Neumann problem for the Stokes system

$$\Delta \mathbf{u} = \nabla p \quad \text{in} \quad G, \qquad \nabla \cdot \mathbf{u} = 0 \quad \text{in} \quad G, \tag{1}$$

$$T(\mathbf{u}, p)\mathbf{n}^G \equiv [\nabla \mathbf{u} + (\nabla \mathbf{u})^T]\mathbf{n}^G - p\mathbf{n}^G = \mathbf{g} \quad \text{on} \quad \partial G \tag{2}$$

using methods of hydrodynamical potential theory. Here G is a bounded domain with connected Lipschitz boundary in \mathbb{R}^m , \mathbf{n}^G is the outward unit normal vector of G, $\mathbf{u} = (u_1, \ldots, u_m)$ is a velocity field, p is a pressure.

For $\Psi = [\Psi_1, \dots, \Psi_m] \in H^{-1/2}(\partial G, R^m)$ denote by $E_G \Psi$ the hydrodynamical single layer potential with density Ψ and by $Q_G \Psi$ the corresponding pressure. Put

$$K'_{G}\Psi(\mathbf{x}) = \int_{\partial G} \frac{m(x_j - y_j)(x_k - y_k)(\mathbf{x} - \mathbf{y}) \cdot \mathbf{n}^{G}(\mathbf{x})}{\omega_m |\mathbf{x} - \mathbf{y}|^{m+2}} \ d\mathbf{y}.$$

Then $\mathbf{u} = E_G \Psi$, $p = Q_G \Psi$ is a weak solution of the Neumann problem for the Stokes system with the boundary condition \mathbf{g} if and only if $\frac{1}{2}\Psi - K'_G\Psi = \mathbf{g}$.

Denote $\mathcal{R}_m = \{\mathbf{f}(\mathbf{x}) = A\mathbf{x} + \mathbf{b}; \mathbf{b} \in \mathbb{R}^m, A \text{ is a skew symmetric matrix } (A^T = -A)\}$ the space of rigid body motions.

Theorem 1. Fix $\mathbf{g} \in H^{-1/2}(\partial G, \mathbb{R}^m)$. Then there is a weak solution of the Neumann problem for the Stokes system (1), (2) with the boundary condition \mathbf{g} if and only if

$$\langle \mathbf{g}, \mathbf{w} \rangle = 0 \quad \forall \mathbf{w} \in \mathcal{R}_m.$$
 (3)

Suppose now that **g** satisfies (3) and $\Psi_0 \in H^{-1/2}(\partial G, \mathbb{R}^m)$. For a nonnegative integer k put

$$\Psi_{k+1} = [(1/2)I + K'_G]\Psi_k + \mathbf{g}.$$
(4)

Then there is $\Psi \in H^{-1/2}(\partial G, \mathbb{R}^m)$ such that $\Psi_k \to \Psi$ in $H^{-1/2}(\partial G, \mathbb{R}^m)$ as $k \to \infty$. Moreover, there are constants 0 < q < 1, C > 0 depending only on G such that

$$\|\Psi_{k} - \Psi\|_{H^{-1/2}(\partial G, R^{m})} \le Cq^{k} \bigg(\|\mathbf{g}\|_{H^{-1/2}(\partial G, R^{m})} + \|\Psi_{0}\|_{H^{-1/2}(\partial G, R^{m})} \bigg).$$
(5)

If we put $\mathbf{u} = E_G \Psi$, $p = Q_G \Psi$ then \mathbf{u} , p is a weak solution of the problem (1), (2).

Let now $\mathbf{g} \in H^{-1/2}(\partial G, \mathbb{R}^m)$ be such that $\langle \mathbf{g}, \mathbf{w} \rangle = 0$ for all $\mathbf{w} \in \mathcal{R}_m$. Then there exists a solution $\mathbf{u} \in H^1(G, \mathbb{R}^m)$, $p \in L^2(G)$ of the problem (1), (2). Denote by $\tilde{\mathbf{u}}$ the trace of \mathbf{u} . Denote by $D_G \tilde{\mathbf{u}}$ the hydrodynamical double layer potential with density $\tilde{\mathbf{u}}$ and by $\Pi_G \tilde{\mathbf{u}}$ the corresponding pressure. Then

$$\mathbf{u}(\mathbf{x}) = E_G \mathbf{g}(\mathbf{x}) + D_G \tilde{\mathbf{u}}(\mathbf{x}),\tag{6}$$

$$p(\mathbf{x}) = Q_G \mathbf{g}(\mathbf{x}) + \Pi_G \tilde{\mathbf{u}}(\mathbf{x}).$$
(7)

If we denote by K_G the adjoint operator of K'_G then

$$\frac{1}{2}\tilde{\mathbf{u}} - K_G \tilde{\mathbf{u}} = E_G \mathbf{g} \quad \text{on } \partial G.$$
(8)

Theorem 2. Let $\mathbf{g} \in H^{-1/2}(\partial G, R^m)$ be such that $\langle \mathbf{g}, \mathbf{w} \rangle = 0$ for all $\mathbf{w} \in \mathcal{R}_m$. Fix $\tilde{\mathbf{u}}_0 \in H^{1/2}(\partial G, R^m)$. For a nonnegative integer k put

$$\tilde{\mathbf{u}}_{k+1} = [(1/2)I + K_G]\tilde{\mathbf{u}}_k + E_G \mathbf{g}.$$
(9)

Then there is $\tilde{\mathbf{u}} \in H^{1/2}(\partial G, \mathbb{R}^m)$ such that $\tilde{\mathbf{u}}_k \to \tilde{\mathbf{u}}$ in $H^{1/2}(\partial G, \mathbb{R}^m)$ as $k \to \infty$. Moreover, there are constants 0 < q < 1, C > 0 depending only on G such that

$$\|\tilde{\mathbf{u}}_{k} - \tilde{\mathbf{u}}\|_{H^{1/2}(\partial G, R^{m})} \le Cq^{k} \bigg(\|\mathbf{g}\|_{H^{-1/2}(\partial G, R^{m})} + \|\tilde{\mathbf{u}}_{0}\|_{H^{1/2}(\partial G, R^{m})} \bigg).$$
(10)

The function $\tilde{\mathbf{u}}$ is a solution of the equation (8). If \mathbf{u} , p are given by (6), (7) in G, then \mathbf{u} , p is a weak solution of the problem (1), (2) and $\tilde{\mathbf{u}}$ is the trace of \mathbf{u} on ∂G .

References

[1] D. Medková: Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system. Acta Applicandae Mathematicae, to appear