D. Medková

Neumann problem for the Stokes system

In this paper we construct a solution $\mathbf{u} \in H^{1}(G), p \in L^{2}(G)$ of the Neumann problem for the Stokes system

$$
\begin{gather*}
\Delta \mathbf{u}=\nabla p \quad \text { in } \quad G, \quad \nabla \cdot \mathbf{u}=0 \quad \text { in } \quad G, \tag{1}\\
T(\mathbf{u}, p) \mathbf{n}^{G} \equiv\left[\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right] \mathbf{n}^{G}-p \mathbf{n}^{G}=\mathbf{g} \quad \text { on } \quad \partial G \tag{2}
\end{gather*}
$$

using methods of hydrodynamical potential theory. Here G is a bounded domain with connected Lipschitz boundary in R^{m}, \mathbf{n}^{G} is the outward unit normal vector of $G, \mathbf{u}=\left(u_{1}, \ldots, u_{m}\right)$ is a velocity field, p is a pressure.

For $\boldsymbol{\Psi}=\left[\Psi_{1}, \ldots, \Psi_{m}\right] \in H^{-1 / 2}\left(\partial G, R^{m}\right)$ denote by $E_{G} \boldsymbol{\Psi}$ the hydrodynamical single layer potential with density $\boldsymbol{\Psi}$ and by $Q_{G} \boldsymbol{\Psi}$ the corresponding pressure.

Put

$$
K_{G}^{\prime} \boldsymbol{\Psi}(\mathbf{x})=\int_{\partial G} \frac{m\left(x_{j}-y_{j}\right)\left(x_{k}-y_{k}\right)(\mathbf{x}-\mathbf{y}) \cdot \mathbf{n}^{G}(\mathbf{x})}{\omega_{m}|\mathbf{x}-\mathbf{y}|^{m+2}} d \mathbf{y}
$$

Then $\mathbf{u}=E_{G} \boldsymbol{\Psi}, p=Q_{G} \boldsymbol{\Psi}$ is a weak solution of the Neumann problem for the Stokes system with the boundary condition \mathbf{g} if and only if $\frac{1}{2} \boldsymbol{\Psi}-K_{G}^{\prime} \Psi=\mathbf{g}$.

Denote $\mathcal{R}_{m}=\left\{\mathbf{f}(\mathbf{x})=A \mathbf{x}+\mathbf{b} ; \mathbf{b} \in R^{m}, A\right.$ is a skew symmetric matrix $\left.\left(A^{T}=-A\right)\right\}$ the space of rigid body motions.

Theorem 1. Fix $\mathbf{g} \in H^{-1 / 2}\left(\partial G, R^{m}\right)$. Then there is a weak solution of the Neumann problem for the Stokes system (1), (2) with the boundary condition \mathbf{g} if and only if

$$
\begin{equation*}
\langle\mathbf{g}, \mathbf{w}\rangle=0 \quad \forall \mathbf{w} \in \mathcal{R}_{m} \tag{3}
\end{equation*}
$$

Suppose now that \mathbf{g} satisfies (3) and $\mathbf{\Psi}_{0} \in H^{-1 / 2}\left(\partial G, R^{m}\right)$. For a nonnegative integer k put

$$
\begin{equation*}
\boldsymbol{\Psi}_{k+1}=\left[(1 / 2) I+K_{G}^{\prime}\right] \boldsymbol{\Psi}_{k}+\mathbf{g} . \tag{4}
\end{equation*}
$$

Then there is $\boldsymbol{\Psi} \in H^{-1 / 2}\left(\partial G, R^{m}\right)$ such that $\boldsymbol{\Psi}_{k} \rightarrow \boldsymbol{\Psi}$ in $H^{-1 / 2}\left(\partial G, R^{m}\right)$ as $k \rightarrow \infty$. Moreover, there are constants $0<q<1, C>0$ depending only on G such that

$$
\begin{equation*}
\left\|\boldsymbol{\Psi}_{k}-\boldsymbol{\Psi}\right\|_{H^{-1 / 2}\left(\partial G, R^{m}\right)} \leq C q^{k}\left(\|\mathbf{g}\|_{H^{-1 / 2}\left(\partial G, R^{m}\right)}+\left\|\boldsymbol{\Psi}_{0}\right\|_{H^{-1 / 2}\left(\partial G, R^{m}\right)}\right) \tag{5}
\end{equation*}
$$

If we put $\mathbf{u}=E_{G} \boldsymbol{\Psi}, p=Q_{G} \boldsymbol{\Psi}$ then \mathbf{u}, p is a weak solution of the problem (1), (2).

Let now $\mathbf{g} \in H^{-1 / 2}\left(\partial G, R^{m}\right)$ be such that $\langle\mathbf{g}, \mathbf{w}\rangle=0$ for all $\mathbf{w} \in \mathcal{R}_{m}$. Then there exists a solution $\mathbf{u} \in H^{1}\left(G, R^{m}\right), p \in L^{2}(G)$ of the problem (1), (2). Denote by $\tilde{\mathbf{u}}$ the trace of \mathbf{u}. Denote by $D_{G} \tilde{\mathbf{u}}$ the hydrodynamical double layer potential with density $\tilde{\mathbf{u}}$ and by $\Pi_{G} \tilde{\mathbf{u}}$ the corresponding pressure. Then

$$
\begin{equation*}
\mathbf{u}(\mathbf{x})=E_{G} \mathbf{g}(\mathbf{x})+D_{G} \tilde{\mathbf{u}}(\mathbf{x}) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
p(\mathbf{x})=Q_{G} \mathbf{g}(\mathbf{x})+\Pi_{G} \tilde{\mathbf{u}}(\mathbf{x}) \tag{7}
\end{equation*}
$$

If we denote by K_{G} the adjoint operator of K_{G}^{\prime} then

$$
\begin{equation*}
\frac{1}{2} \tilde{\mathbf{u}}-K_{G} \tilde{\mathbf{u}}=E_{G} \mathbf{g} \quad \text { on } \partial G \tag{8}
\end{equation*}
$$

Theorem 2. Let $\mathbf{g} \in H^{-1 / 2}\left(\partial G, R^{m}\right)$ be such that $\langle\mathbf{g}, \mathbf{w}\rangle=0$ for all $\mathbf{w} \in$ \mathcal{R}_{m}. Fix $\tilde{\mathbf{u}}_{0} \in H^{1 / 2}\left(\partial G, R^{m}\right)$. For a nonnegative integer k put

$$
\begin{equation*}
\tilde{\mathbf{u}}_{k+1}=\left[(1 / 2) I+K_{G}\right] \tilde{\mathbf{u}}_{k}+E_{G} \mathbf{g} . \tag{9}
\end{equation*}
$$

Then there is $\tilde{\mathbf{u}} \in H^{1 / 2}\left(\partial G, R^{m}\right)$ such that $\tilde{\mathbf{u}}_{k} \rightarrow \tilde{\mathbf{u}}$ in $H^{1 / 2}\left(\partial G, R^{m}\right)$ as $k \rightarrow \infty$. Moreover, there are constants $0<q<1, C>0$ depending only on G such that

$$
\begin{equation*}
\left\|\tilde{\mathbf{u}}_{k}-\tilde{\mathbf{u}}\right\|_{H^{1 / 2}\left(\partial G, R^{m}\right)} \leq C q^{k}\left(\|\mathbf{g}\|_{H^{-1 / 2}\left(\partial G, R^{m}\right)}+\left\|\tilde{\mathbf{u}}_{0}\right\|_{H^{1 / 2}\left(\partial G, R^{m}\right)}\right) \tag{10}
\end{equation*}
$$

The function $\tilde{\mathbf{u}}$ is a solution of the equation (8). If \mathbf{u}, p are given by (6), (7) in G, then \mathbf{u}, p is a weak solution of the problem (1), (2) and $\tilde{\mathbf{u}}$ is the trace of \mathbf{u} on ∂G.

References

[1] D. Medková: Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system. Acta Applicandae Mathematicae, to appear

