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Abstract. In the paper a Barenblatt-Biot consolidation model for flows in periodic porous
elastic media is derived by means of the two-scale convergence technique. Starting with the
fluid flow of a slightly compressible viscous fluid through a two-component poro-elastic
medium separated by a periodic interfacial barrier, described by the Biot model of consol-
idation with the Deresiewicz-Skalak interface boundary condition and assuming that the
period is too small compared with the size of the medium, the limiting behavior of the
coupled deformation-pressure is studied.
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1. Introduction

The concept of double porosity was introduced by Aifantis to consider diffusion

or infiltration processes in porous deformable media which are characterized by two

distinct families of diffusion or flow paths (usually pores and fissures). The derived

equations read as follows (see [10]):

−µ∆u− (λ+ µ)∇(div u) + α(1)∇p(1) + α(2)∇p(2) = f ,(1.1)

c(1)∂tp
(1) + α(1) div(∂tu) − k(1)∆p(1) + h(p(1) − p(2)) = g(1),(1.2)

c(2)∂tp
(2) + α(2) div(∂tu) − k(2)∆p(2) − h(p(1) − p(2)) = g(2).(1.3)

Here u is the displacement of the medium; the elastic constants λ and µ are

referred to as the dilation and shear moduli of elasticity, respectively; p(1) and p(2)

are the pressure of the fluid in the pores and fissures, respectively; c(m) (m = 1, 2) is

the compressibility, k(m) is the permeability and α(m) is the pressure-deformation;
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they are well-known in literature as the Biot-Willis parameters [6]. It is a measure of

changes of porosities in each phase m = 1, 2 due to applied volumetric strains. The

dilation α(m) div(∂tu) accounts then for the additional pore fluid content while the

term α(m)∇p(m) for the pressure stress of the pore fluid on the structure.

We observe that if we let the volume of fissures shrink to zero so that c(2), α(2),

k(2), h become negligible then the system (1.1)–(1.3) reduces to the Biot system with

single porosity [5]

−µ∆u − (λ+ µ)∇(div u) + α(1)∇p(1) = f ,(1.4)

c(1)∂tp
(1) + α(1) div(∂tu) − k(1)∆p(1) = g(1).(1.5)

On the other hand, by neglecting the deformation effects λ, µ and α(m) the system

(1.1)–(1.3) reduces to the Barenblatt-Zheltov-Kochina model with double porosity [4]

c(1)∂tp
(1) − k(1)∆p(1) + h(p(1) − p(2)) = g(1),(1.6)

c(2)∂tp
(2) − k(2)∆p(2) − h(p(1) − p(2)) = g(2).(1.7)

Aifantis’ theory of consolidation with the concept of double porosity unifies then

the proposed models (1.4)–(1.5) of Biot for consolidation of deformable porous media

with single porosity and (1.6)–(1.7) of Barenblatt for fluid flow through undeformable

porous media with double porosity.

It is the aim of this paper to derive a more general system in which, at the

microscale, the inhomogeneities are taken into account. More precisely, we consider

porous elastic inclusions periodically distributed and embedded in an extra porous

elastic matrix. The micro-model is based on Biot’s system for consolidation processes

with interfacial barrier formulation. The macro-model is then derived by means of

the two scale convergence technique and it reads as follows:

− divσ(u) + α(1)∇p(1) + α(2)∇p(2) = f ,(1.8)

(c̃(m)p(m) + tr(β(m)e(u))t − div[K(m)∇p(m)] − (−1)mh̃(p(1) − p(2)) = g(m)(1.9)

where σ, α(m), β(m) and K(m) are some effective tensors (see (3.10)–(3.11) for their

definition). It is then worth pointing out that the Aifantis model (1.1)–(1.3) can be

seen as a special case of the homogenized model (1.8)–(1.9) (β(m) = α(m) = α(m)In,

In is the identity matrix).

The outline of the paper is as follows: Section 2 is devoted to the problem setting

of the governing equations at the microscale for double-diffusion model in hetero-

geneous media. Section 3 is aimed towards deriving, via the two scale convergence
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technique, the Barenblatt-Biot model which is stated in the main result of the paper,

Theorem 3.1.

Throughout this paper, integration symbols dx, dy, dt, . . . will be omitted.

2. The micro-model

We consider a bounded domainΩ ⊂ R
n with a smooth boundary Γ. Let Y = [0, 1]

n

(n > 3) denote the generic cell of periodicity divided as Y := Y (1) ∪ Y (2) ∪ Σ where

Y (1), Y (2) are two open subsets and Σ := ∂Y (1)∩∂Y (2) is the interface that separates

them. We assume that the Y -periodic continuation of Y (m) defined as
⋃

k∈Zn

(k+Y (m))

is open and connected.

Let ε > 0 be a sufficiently small positive number. We define the inclusions

Ω(2)
ε :=

⋃

k∈Kε

(εk + εY (2))

where Kε = {k ∈ Z
n : εk + εY (2) ⊂ Ω}. Let

Ω(1)
ε := Ω \ Ω

(2)
ε

be the matrix part and

Σε := ∂Ω(1)
ε ∩ ∂Ω(2)

ε

the periodic interface between these two materials assumed to be sufficiently smooth.

We have then ∂Ω
(2)
ε ∩∂Ω = ∅. Note that other geometrical settings can be considered

without affecting the main result of the paper, see for example [8], [1].

We assume that the material Ω
(m)
ε (m = 1, 2) is saturated with a slightly com-

pressible and viscous fluid with pore-pressure denoted by p
(m)
ε and let

c(m)
ε (x) = c(m)

(x
ε

)
, K(m)

ε (x) =
(
k

(m)
ij

(x
ε

))
16i,j6n

denote respectively the combined compressibility-porosity and the permeability. We

assume that c(m) is a smooth and Y -periodic function such that c(m)(y) > C > 0

where (here and throughout this paper) C is any positive constant independent

of ε. We also assume that (k
(m)
ij (y))16i,j6n is smooth, Y -periodic and satisfies the

following symmetry and ellipticity conditions:

k
(m)
ij (y) = k

(m)
ij (y),

n∑

i,j=1

k
(m)
ij (y)ηjηi > C

n∑

i=1

ηiηi, ∀y ∈ Y (m), ∀η = (ηi) ∈ R
n.(2.1)
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Let the total stress tensor at any point in Ω
(m)
ε (m = 1, 2) be given by

σ(m)
ε = Aεe(uε) − α(m)p(m)

ε In in Ω(m)
ε

where uε denotes the displacement in Ω, e(·) is the linearized stain tensor and Aε =(
aijkl(x/ε)

)
16i,j,k,l6n

is the elasticity tensor of Ω where aijkl(y) are smooth, Y -

periodic and satisfy

aijkl(y) = ajikl(y) = aijlk(y) = aklij(y),(2.2)
n∑

i,j,k,l=1

aijkl(y)ηklηij > C
n∑

i,j=1

ηijηij , ∀y ∈ Y, ∀η = (ηij) ∈ R
n×n, ηij = ηji.

We shall include here the situation when the inertia effects are negligible both in

the matrix and inclusions materials. Let T > 0 and let t ∈ [0, T ] denote the time

variable. The micro-model for the Biot system with interfacial barrier formulation

reads as follows: for m = 1, 2,

− divσ(m)
ε = f in (0, T ) × Ω(m)

ε ,(2.3)

(c(m)
ε p(m)

ε + α(m)
ε div uε)t − div(K(m)

ε ∇p(m)
ε ) = 0 in (0, T ) × Ω(m)

ε ,(2.4)

[uε]Σε

= 0, [Aεe(uε)]Σε

· nε = 0 on (0, T )× Σε,(2.5)

(K(1)
ε ∇p(1)

ε ) · nε = −εh(
x

ε
)[p(m)

ε ]Σε
on (0, T ) × Σε,(2.6)

[K(m)
ε ∇p(m)

ε ]Σε
· nε = 0 on (0, T )× Σε,(2.7)

uε = 0 and p(1)
ε = 0 on (0, T )× Γ,(2.8)

uε(0, ·) = 0, p(m)
ε (0, ·) = 0 in Ω(m)

ε(2.9)

where f ∈ L
2(Ω) is the volume-distributed force in Ω, the subscript (·)t represents

the time derivative, [·]Σε

denotes the jump across Σε, nε stands for the unit normal

to Σε pointing out into Ω
(2)
ε and h(y) is the rescaled interface hydraulic permeability

function assumed to be smooth and Y -periodic on R
n such that h(y) > C > 0.

The interfacial barrier exchange formulation (2.6) is well-known in literature as the

Deresiewicz-Skalak boundary condition [7].

Let

Hε := [H1
0 (Ω)]n,Lε := L2(Ω(1)

ε ) × L2(Ω(2)
ε ),

V (1)
ε := {v ∈ H1(Ω(1)

ε ); v|Γ = 0}, V (2)
ε := H1(Ω(2)

ε )

and let us introduce the Hilbert space Vε := V
(1)
ε × V

(2)
ε equipped with the norm

‖p‖2
Vε

= ‖∇p(1)‖2

L2(Ω
(1)
ε )

+ ‖∇p(2)‖2

L2(Ω
(2)
ε )

+ ε‖ [p]Σε

‖2
L2(Σε), p = (p(1), p(2)).
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The variational formulation of (2.3)–(2.9) can be read as follows: Find (uε,pε) ∈

L∞(0, T ;Hε) × L2(0, T ;Vε), pε = (p
(1)
ε , p

(2)
ε ) such that

(c(m)
ε p(m)

ε + α(m)
ε div uε)t ∈ L2(0, T ; (V (m)

ε )∗),(2.10) ∫

Ω

Aεe(uε)e(v) −
∑

m

∫

Ω
(m)
ε

α(m)
ε p(m)

ε div v =

∫

Ω

fv for all v ∈ Hε,(2.11)

(2.12)
∑

m

(
〈(c(m)

ε p(m)
ε + α(m)

ε div uε)t, q
(m)〉

(V
(m)

ε
)∗,V

(m)
ε

+

∫

Ω
(m)
ε

K(m)
ε ∇p(m)

ε ∇q(m)

)

+ε

∫

Σε

hε [pε]Σε

[q]Σε

= 0 for all q = (q(1), q(2)) ∈ V (1)
ε × V (2)

ε ,

uε(0, ·) = 0, p(m)
ε (0, ·) = 0 in Ω(m)

ε (m = 1, 2).(2.13)

Theorem 2.1 (see [9]). For any sufficiently small ε > 0 there exists a solution

(uε,pε) ∈ L∞(0, T ;Hε) × L2(0, T ;Vε) of the system (2.10)–(2.13).

Next, we shall give uniform a priori estimates. By taking v = (uε)t in (2.11) and

q(m)(·) = p
(m)
ε (t, ·) (t ∈ [0, T ] and m = 1, 2) in (2.12), adding these two equations

and integrating over (0, t), we find

∫

Ω

Aεe(uε)e(uε) +
1

2

∑

m

∫

Ω
(m)
ε

α(m)
ε (p(m)

ε )2(2.14)

+
∑

m

∫ t

0

∫

Ω
(m)
ε

K(m)
ε ∇p(m)

ε ∇p(m)
ε + ε

∫ t

0

∫

Σε

hε([pε]Σε

)2 =

∫

Ω

fuε.

Now, using Korn’s and Poincaré’s inequalities on the right hand sides of (2.14) and

taking into account (2.1), (2.2) we get

(2.15) ‖uε‖L∞(0,T ;Hε) + ‖pε‖L2(0,T ;Vε) + ‖pε‖L∞(0,T ;Lε) 6 C.

In view of the estimate (2.15), one is led to study the limiting behaviour as ε→ 0

of the sequence (uε,pε). This is the scope of the next section.
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3. Homogenization procedure

The study of the limiting behaviour of (uε,pε) is performed by the two scale

convergence technique. For more details on this method, we refer the reader for

instance to [2], [3].

In view of the a priori estimate (2.15) and owing to [2, Theorem 2.9], [3, Proposi-

tion 2.6] there exist a subsequence still denoted (uε,pε) and u ∈ L∞(0, T ;H1
0(Ω)),

u1 ∈ L∞(0, T ;L2(Ω;H1
#(Y )/Rn)), p(m) ∈ L∞(0, T ;H1

0(Ω)), p
(m)
1 ∈ L2((0, T ) ×

Ω;H1
#(Y (m))/R) (m = 1, 2) such that for a.e. t ∈ (0, T ), for all Φ = (ϕij)16i,j6n,

ϕij = ϕji ∈ D(Ω; C∞(Y )), ψ ∈ D((0, T )×Ω; C∞(Y )) and ϕ ∈ D((0, T )×Ω; C∞(Y ))n,

the following two scale convergences hold:

lim
ε→0

∫

Ω

e(uε)Φε =

∫

Ω×Y

(e(u) + ey(u1))Φ,(3.1)

lim
ε→0

∫

Ω
(m)
ε

p(m)
ε ψε =

∫

Ω×Y (m)

p(m)ψ,(3.2)

lim
ε→0

∫ t

0

∫

Ω
(m)
ε

∇p(m)
ε ϕε =

∫ t

0

∫

Ω×Y (m)

(∇p(m) + ∇yp
(m)
1 )ϕ,(3.3)

lim
ε→0

∫ t

0

∫

Σε

ε(p(1)
ε − p(2)

ε )ψε =

∫ t

0

∫

Ω×Σ

(p(1) − p(2))ψ(3.4)

where Φε(x) = Φ(x, x/ε), ψε(t, x) = ψ(t, x, x/ε) and ϕε(t, x) = ϕ(t, x, x/ε).

Next we introduce the test functions: let

Ψε(x) = Ψ(x) + εΨ1

(
x,
x

ε

)

where Ψ ∈ D(Ω)n and Ψ1 ∈ D(Ω; C∞
# (Y ))n and let also

ψ(m)
ε (t, x) = ψ(m)(t, x) + εψ

(m)
1

(
t, x,

x

ε

)

(m = 1, 2) where ψ(m) ∈ D((0, T ) × Ω) and ψ
(m)
1 ∈ D((0, T ) × Ω; C∞

# (Y )). Taking

v = Ψε in (2.11) we have
∫

Ω

Aεe(uε)(e(Ψ) + εe(Ψ1) + ey(Ψ1))(3.5)

−
∑

m

∫

Ω
(m)
ε

α(m)
ε p(m)

ε (div Ψ + ε div Ψ1 + divy Ψ1) =

∫

Ω

f(Ψ + εΨ1).

According to (3.1), (3.2), letting ε→ 0 in (3.5) we obtain
∫

Ω×Y

A(e(u) + ey(u1))(e(Ψ) + ey(Ψ1))(3.6)

−
∑

m

∫

Ω×Y (m)

α(m)p(m)
ε (div Ψ + divy Ψ1) =

∫

Ω

fΨ.
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Similarly, we pass to the limit in (2.12) with t = T , q(m) = ψ
(m)
ε and taking into

account (3.1), (3.2) and (3.4) we find

−
∑

m

∫ T

0

∫

Ω×Y (m)

[(c(m)p(m) + α(m)(div u + divy u1))ψ
(m)
t(3.7)

+K(m)(∇p(m) + ∇yp
(m)
1 )(∇ψ(m) + ∇yψ

(m)
1 )]

+

∫ T

0

∫

Ω×Σ

h(p(1) − p(2))(ψ(1) − ψ(2)) = 0.

In view of the linearity of the equation (3.6) we can write

(3.8) u1(t, x, y) = −
n∑

k,h=1

∂uh

∂xk

(t, x)λkh(y) + c(x)

where for 1 6 k, h 6 n, λkh = (λkh
i )16i6n ∈ H1

#(Y )/Rn is the solution of the

microscopic problem

a(λkh − P kh,w) = 0, ∀w ∈ H1
#(Y )/Rn,

where P kh = (ykδhj)16j6n, δhj is the Krönecker symbol and

a(z,w) =

∫

Y

Aey(z)ey(w), z,w ∈ H1
#(Y )/Rn.

Similarly, we seek p
(m)
1 (m = 1, 2) in the form

(3.9) p
(m)
1 (t, x, y) = −

n∑

i=1

∂p(m)

∂xi

(t, x)ζ
(m)
i (y) + c1(x),

where ζ
(m)
i ∈ (H1(Y (m)))/R is a solution of the micro-pressure equation

− divy(K(m)(y)(∇ζ
(m)
i + ei)) = 0 in Y (m),

(∇ζ
(m)
i + ei) · n = 0 on Σ,

y 7−→ ζ
(m)
i (y) : Y -periodic

where ei is the ith vector of the canonical basis of R
n and n is the unit normal to Σ

pointing out into Y (2).
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Let

aijkl = a(λkh − P kh, λij − P ij), σij(u) =

n∑

i,j=1

aijklekl(u),(3.10)

(3.11)

K
(m)
ij =

∫

Y (m)

K
(m)
il (y)

(
δlj +

∂ζ
(m)
j

∂yl

)
, α

(m)
kh =

∫

Y (m)

(
α(m)

n∑

i=1

(
δikδih −

∂λkh
i

∂yi

))
,

β
(m)
ij =

∫

Y (m)

α(m)K(m)(y)(∇ζi − ei)(∇ζj − ej),(3.12)

c̃(m) =

∫

Y (m)

c(m)(y), h̃ =

∫

Σ

h(s).(3.13)

Finally, inserting (3.8), (3.9) into (3.6), (3.7) together with an integration by parts

we obtain the following homogenization result:

Theorem 3.1. The two scale limits (u, p(1), p(2)) (m = 1, 2) satisfy the homoge-

nized model

− div σ(u) + α(1)∇p(1) + α(2)∇p(2) = f , in (0, T ) × Ω,

(c̃(1)p(1) + tr(β(1)e(u))t − div[K(1)∇p(1)] + h̃(p(1) − p(2)) = 0 in (0, T ) × Ω,

(c̃(2)p(m) + tr(β(2)e(u))t − div[K(2)∇p(2)] − h̃(p(1) − p(2)) = 0 in (0, T )× Ω

u = 0, p(m) = 0 on (0, T )× Γ,

u(0, x) = 0, p(m)(0, x) = 0 in Ω.

We have thus shown that the “general” Aifantis model can be obtained with

help of the multiscale homogenization technique starting with a Biot micro-model

for a two component heterogeneous media with interfacial exchange barrier. An

interesting problem is to investigate the limiting behaviour of such media when the

flow potential in the inclusions is rescaled by ε2. This occurs especially when the

flow in the inclusions presents very high frequency spatial variations as a result of a

relatively very low permeability, for instance ε2K(2).
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