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1. Introduction

On the half-line R+ = [0, +∞[we consider the second-order linear delay differential

equation

(1.1) u′′(t) + p(t)u(τ(t)) = 0

where p : R+ → R+ is a locally integrable function and τ : R+ → R+ is a continuous

function such that

(1.2) τ(t) 6 t for t > 0, lim
t→+∞

τ(t) = +∞.

Oscillation theory for the linear second-order ordinary differential equation is

a widely studied and well-developed topic of the general theory of differential equa-

tions. As for the results which are closely related to the results of this paper, we
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and Sports of the Czech Republic, research plan MSM 0021630518 “Simulation modelling
of mechatronic systems”.

2 The research was supported by the Academy of Sciences of the Czech Republic, Institu-
tional Research Plan No. AV0Z10190503.

195



should mention, in particular, works of W.B.Fite, E.Hille, Z.Nehari, A.Wintner,

and P.Hartman (see, e.g., [1], [3], [4], [10], [19]). These classical results were suc-

cessfully extended to more general equations such as equations with p-Laplacian,

difference equations, or equations on time-scales (see, e.g., [2], [5], [11], [15]–[18] and

references therein). In this paper, some Wintner and Nehari type oscillation criteria

known for the ordinary differential equations are generalized to the delay equation

(1.1). We should also note that similar oscillation criteria for the differential equa-

tions with argument deviations and their systems can be found, e.g., in [6], [7], [9],

[12], [14].

The following definitions introduce notions of proper oscillatory and non-oscilla-

tory solutions of the equation (1.1) commonly used in literature.

Definition 1.1. Let t0 ∈ R+ and a0 = inf{τ(t) : t > t0}. A continuous function

u : [a0, +∞[→ R is said to be a proper solution of the equation (1.1) on the interval

[t0, +∞[ if it is absolutely continuous together with its first derivative on every com-

pact interval in [t0, +∞[, satisfies the equality (1.1) almost everywhere in [t0, +∞[,

and sup{|u(s)| : s > t} > 0 for t > t0.

Definition 1.2. A proper solution u of the equation (1.1) is said to be oscillatory

if it has a sequence of zeros tending to infinity, and non-oscillatory otherwise.

Oscillation criteria presented in this paper are proved by using the Riccati tech-

nique, which is well-developed in the case of ordinary differential equations. Having

a proper non-oscillatory solution u of the equation (1.1) and putting ̺(t) = u′(t)/u(t)

for t large enough, we get from the equality (1.1) that

̺′(t) = −p(t)
u(τ(t))

u(t)
− ̺2(t) for large t.

Therefore, in order to extend the Riccati technique to differential equations with

argument deviations we need to find suitable lower and upper bounds of the quantity

u(τ(t))/u(t), which is equal to 1 in the case of ordinary differential equations. One

of such estimates is given in Lemma 3.1 below.

2. Main results

It is known (see, e.g., [13, §3]) that if the integral
∫ +∞

0 τ(s)p(s) ds is convergent,

then the equation (1.1) has proper non-oscillatory solutions. Therefore, we will

assume in the sequel that

(2.1)

∫ +∞

0

τ(s)p(s) ds = +∞.
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Theorem 2.1. Let the condition (2.1) hold and

(2.2) lim sup
t→+∞

1

t

∫ t

0

sτ(s)p(s) ds > 1.

Then every proper solution of the equation (1.1) is oscillatory.

R em a r k 2.1. If the equation (1.1) is the ordinary one, i.e., if

(2.3) τ(t) = t for t > 0,

then the condition (2.2) is a particular case of the oscillation criterion proved by

Z.Nehari (see [10, Theorem III]).

Now let us put

(2.4) G∗ = lim inf
t→+∞

1

t

∫ t

0

sτ(s)p(s) ds.

In view of Theorem 2.1, it is natural to suppose in what follows that

(2.5) G∗ 6 1.

A Wintner type criterion is presented in the next theorem.

Theorem 2.2. Let the conditions (2.1) and (2.5) be fulfilled, and let

(2.6) lim inf
t→+∞

τ(t)

t
> 0.

Moreover, let there exist λ < 1 such that

(2.7)

∫ +∞

0

sλ

(τ(s)

s

)1−G∗

p(s) ds = +∞.

Then every proper solution of the equation (1.1) is oscillatory.

R em a r k 2.2. It is clear that if the condition (2.3) holds then the condition (2.6)

is satisfied and the criterion (2.7) coincides with the well-known results (see E.Hille

[4, Lemma 5]; see also A.Wintner [19] and W.B. Fite [1] for λ = 0).

Finally, we give an oscillation criterion which generalizes a result of E.Müller-

Pfeiffer proved for ordinary differential equations in the paper [8].
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Theorem 2.3. Let the conditions (2.1), (2.5), and (2.6) hold, and let

(2.8) lim sup
t→+∞

1

ln t

∫ t

0

s
(τ(s)

s

)1−G∗

p(s) ds >
1

4
.

Then every proper solution of the equation (1.1) is oscillatory.

R em a r k 2.3. The condition (2.6) in Theorems (2.2) and (2.3) is satisfied, in

particular, if τ is a proportional delay, i.e., in the case where the equation (1.1) has

the form

u′′(t) + p(t)u(αt) = 0

with 0 < α 6 1.

3. Auxilliary statements

The next lemma contains a certain a priori estimate of non-oscillatory solutions

of the equation (1.1), which plays a crucial role in the proofs of the main results.

Lemma 3.1. Let (2.1) hold and let the equation (1.1) have a solution u such that

(3.1) there exists tu > 0 such that u(t) > 0 for t > tu.

Then

(3.2) lim sup
t→+∞

1

t

∫ t

0

sτ(s)p(s) ds 6 1.

If, in addition, the inequality (2.6) holds then

(3.3) lim inf
t→+∞

( t

τ(t)

)1−G∗ u(τ(t))

u(t)
> 1,

where the number G∗ is defined by the relation (2.4).

P r o o f. It is not difficult to verify that the inequality u′(t) > 0 holds for

sufficiently large t. Since the equation (1.1) is homogeneous, we can assume without

loss of generality that u(t) > 1 for sufficiently large t. Consequently, in view of the

assumption (1.2), there exists t0 > tu such that

(3.4) u′(t) > 0, u(τ(t)) > 1 for t > t0.
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It is clear that

(tu′(t) − u(t))′ = −tp(t)u(τ(t)) for a.e. t > 0.

Integration of the latter inequality from t0 to t yields

(3.5) tu′(t) − u(t) = δ −

∫ t

t0

sp(s)u(τ(s)) ds for t > t0,

where δ = t0u
′(t0) − u(t0).

Let ε ∈ ]0, 1] be arbitrary but fixed. Then, in view of the assumption (2.1), there

exists t1(ε) > t0 such that

δ 6
ε

2

∫ t

t0

sp(s)u(τ(s)) ds for t > t1(ε).

Hence, it follows from the relation (3.5) that

(3.6) tu′(t) − u(t) 6 −
(

1 −
ε

2

)

∫ t

t0

sp(s)u(τ(s)) ds 6 0 for t > t1(ε).

Therefore,
(u(t)

t

)

′

=
1

t2
(tu′(t) − u(t)) 6 0 for t > t1(ε).

Using this inequality and the assumption (1.2) in the formula (3.6), we get the

existence of t2(ε) > t1(ε) such that

tu′(t) − u(t) 6 −
(

1 −
ε

2

)

∫ t

t2(ε)

sτ(s)p(s)
u(τ(s))

τ(s)
ds

6 −
(

1 −
ε

2

)u(t)

t

∫ t

t2(ε)

sτ(s)p(s) ds for t > t2(ε).

The last inequality implies, in particular, that

(3.7) tu′(t) 6 u(t)

[

1 −
(

1 −
ε

2

)1

t

∫ t

t2(ε)

sτ(s)p(s) ds

]

for t > t2(ε).

Hence, in view of (3.1) and (3.4), we get

1

t

∫ t

t2(ε)

sτ(s)p(s) ds 6
2

2 − ε
for t > t2(ε)
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and therefore

lim sup
t→+∞

1

t

∫ t

0

sτ(s)p(s) ds 6
2

2 − ε
.

Since ε ∈ ]0, 1] was arbitrary, the desired inequality (3.2) holds.

It remains to show the validity of the inequality (3.3). It follows from (2.4) that

there exists t3(ε) > t2(ε) such that

1

t

∫ t

t3(ε)

sτ(s)p(s) ds >

(

1 −
ε

2

)

G∗ for t > t3(ε).

By using this relation, from the inequality (3.7) we get

tu′(t) − u(t) 6 −
(

1 −
ε

2

)

u(t)
(

1 −
ε

2

)

G∗ 6 −(1 − ε)u(t)G∗ for t > t3(ε),

and thus we have

(3.8)
(u(t)

t

)

′

=
1

t2
(

tu′(t) − u(t)
)

6 −
(1 − ε)G∗

t

u(t)

t
for t > t3(ε).

Notice that, in view of (1.2), there exists t4(ε) > t3(ε) such that τ(t) > t3(ε) for

t > t4(ε). Consequently, from the inequality (3.8) we obtain

ln
u(t)/t

u(τ(t))/τ(t)
6 −(1 − ε)G∗ ln

t

τ(t)
for t > t4(ε).

On the other hand, by virtue of the assumption (2.6), there exists t5(ε) > t4(ε) such

that τ(t)/t > α > 0 for t > t5(ε) and therefore

( t

τ(t)

)1−G∗ u(τ(t))

u(t)
> αεG∗ for t > t5(ε).

Consequently, we have

lim inf
t→+∞

( t

τ(t)

)1−G∗ u(τ(t))

u(t)
> αεG∗ ,

which, due to the arbitrariness of ε ∈ ]0, 1], yields the validity of the desired inequality

(3.3). �
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Lemma 3.2. Let u be a solution of the equation (1.1) satisfying (3.1). Then

there exists a finite limit

lim
t→+∞

∫ t

tu

sλ
u(τ(s))

u(s)
p(s) ds

for all λ < 1. Furthermore,

(3.9) lim sup
t→+∞

1

ln t

∫ t

tu

s
u(τ(s))

u(s)
p(s) ds 6

1

4
.

P r o o f. Let us choose λ < 1 and put ̺(t) = u′(t)/u(t) for t > tu. Then the

equality (1.1) yields that

̺′(t) = −p(t)
u(τ(t))

u(t)
− ̺2(t) for t > tu.

Multiplying both sides of this equality by tλ and integrating it from tu to t, we get

tλ−1
[

t̺(t) −
λ

2

]

= δ1 −
λ(2 − λ)

4(1 − λ)

1

t1−λ
−

∫ t

tu

sλ u(τ(s))

u(s)
p(s) ds(3.10)

−

∫ t

tu

sλ−2
[

s̺(s) −
λ

2

]2

ds for t > tu,

where δ1 = tλu̺(tu) + 1
4λ2(1 − λ)−1tλ−1

u .

We first show that

(3.11)

∫ +∞

tu

sλ−2
[

s̺(s) −
λ

2

]2

ds < +∞.

Assume that, on the contrary, the integral in (3.11) is divergent. Then it follows

from the relation (3.11) that, for some t1 > tu, the inequality

(3.12) t̺(t) −
λ

2
6 −

1

2
t1−λ

∫ t

tu

sλ−2
[

s̺(s) −
λ

2

]2

ds < 0 for t > t1

holds. Let us denote

x(t) :=

∫ t

tu

sλ−2
[

s̺(s) −
λ

2

]2

ds for t > t1.

Then, using the relation (3.12), we get

x′(t) = tλ−2
[

t̺(t) −
λ

2

]2

>
1

4tλ
x2(t) for t > t1.
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Therefore, integration of the last inequality from t1 to t yields that 4(1 − λ)/x(t1) +

t1−λ

1 > t1−λ holds for t > t1, which is a contradiction. The contradiction obtained

proves the validity of the inequality (3.11).

Now the equality (3.10) can be rewritten to the form

∫ t

tu

sλ
u(τ(s))

u(s)
p(s) ds = δ2 − tλ̺(t) −

λ2

4(1 − λ)

1

t1−λ
(3.13)

+

∫ +∞

t

sλ−2
[

s̺(s) −
λ

2

]2

ds for t > tu,

where δ2 = δ1 −
∫ +∞

tu

sλ−2[s̺(s) − λ/2]2 ds. Consequently, we get

(3.14) −∞ < lim
t→+∞

∫ t

tu

sλ
u(τ(s))

u(s)
p(s) ds = δ2 < +∞

because, in view of the condition (3.6), the inequality ̺(t) 6 1/t holds for large t.

It remains to show the validity of the relation (3.9). Multiplying both sides of

the equality (3.13) by t−λ, integrating it from tu to t by parts, and using the above

proved relation (3.14), we get

∫ t

tu

s
u(τ(s))

u(s)
p(s) ds 6 δ3 +

λ(2 − λ)

4
ln t

+

∫ t

tu

1

s

(

s̺(s) −
λ

2

)(

1 − λ −
[

s̺(s) −
λ

2

])

ds for t > tu,

where δ3 is a suitable constant. Hence, in view of the relation 4x(1−λ−x) 6 (1−λ)2

for all x ∈ R, it follows that

∫ t

tu

s
u(τ(s)

u(s)
p(s) ds 6 δ3 +

1

4
ln t for t > tu,

and thus the desired condition (3.9) is satisfied. �

4. Proofs of the main results

P r o o f of Theorem 2.1. Suppose that the assertion of the theorem does not

hold. Then there exists a solution u of the equation (1.1) satisfying (3.1). According

to Lemma 3.1, the relation (3.2) holds, which contradicts the assumption (2.2). �
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P r o o f of Theorem 2.2. Suppose that the assertion of the theorem does not hold.

Then there exists a solution u of the equation (1.1) satisfying (3.1). Let ε ∈ ]0, 1[ be

arbitrary but fixed. According to Lemma 3.1, there exists t0 > tu such that

(4.1)
( t

τ(t)

)1−G∗ u(τ(t))

u(t)
> 1 − ε for t > t0,

and thus we have

∫ t

0

sλ

(τ(s)

s

)1−G∗

p(s) ds

6

∫ t0

0

sλ

(τ(s)

s

)1−G∗

p(s) ds +
1

1 − ε

∫ t

tu

sλ
u(τ(s))

u(s)
p(s) ds for t > t0.

Hence, it follows from Lemma 3.2 that

∫ +∞

0

sλ

(τ(s)

s

)1−G∗

p(s) ds < +∞,

which contradicts the assumption (2.7). �

P r o o f of Theorem 2.3. Suppose that, on the contrary, the assertion of the

theorem does not hold. Then there exists a solution u of the equation (1.1) satisfy-

ing (3.1). Let ε ∈ ]0, 1[ be arbitrary but fixed. According to Lemma 3.1, there exists

t0 > tu such that the relation (4.1) holds. It is easy to verify that

1

ln t

∫ t

0

s
(τ(s)

s

)1−G∗

p(s) ds

6
1

ln t

∫ t0

0

s
(τ(s)

s

)1−G∗

p(s) ds +
1

(1 − ε) ln t

∫ t

tu

s
u(τ(s))

u(s)
p(s) ds for t > t0.

Using the condition (3.9) of Lemma 3.2, we get

lim sup
t→+∞

1

ln t

∫ t

0

s
(τ(s)

s

)1−G∗

p(s) ds 6
1

4(1 − ε)
,

which, due to the arbitrariness of ε ∈ ]0, 1[, contradicts the assumption (2.8). �
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