136 (2011) MATHEMATICA BOHEMICA No. 3, 259-268
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Abstract. The aim of this work is to generalize lacunary statistical convergence to weak
lacunary statistical convergence and Z-convergence to weak Z-convergence. We start by
defining weak lacunary statistically convergent and weak lacunary Cauchy sequence. We
find a connection between weak lacunary statistical convergence and weak statistical con-
vergence.

Keywords: weak convergence, statistical convergence, lacunary sequence, lacunary sta-
tistical convergence

MSC 2010: 40A05, 46A25

1. INTRODUCTION

A number sequence (xy) is statistically convergent to L provided that for every

>0,
lim 2 [{k < n: |zp— L] > e} =0
non

where the vertical bars indicate the number of elements in the enclosed set [2], [11].

By a lacunary sequence we mean an increasing integer sequence 6 = (k) such that
ko =0 and h, := k. — k._1 — 00 as r — oo. Throughout this paper the intervals
determined by 6 will be denoted by I, := (k,_1, k.].

Let 6 be a lacunary sequence; the number sequence (xy) is lacunary statistically
convergent to L provided that for every ¢ > 0,

1
lim —|{kel: |zy—L| >€}|=0
L
(see [3]). The space Ny of Ny-convergent sequences is defined by

. 1
Ny = {(xk): for some L, hinh_,, sz: ley — L| = 0}-
€l,
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Let B be a Banach space, let (x1) be a B-valued sequence, and x € B.
1. The sequence (zy) is weakly C1-convergent to = provided that for any f in the
continuous dual B* of B,

- 1¢
hernE;f(a:k—x)—O.

2. The sequence (xy) is weakly convergent to = provided that for any f in the
continuous dual B* of B,
li;nf(xk —1z)=0.

In this case we write w-lim x, = .
3. The sequence (zj) is norm statistically convergent to = provided that

O({k: [lew —a] = e}) =0

where §(A) = lim, n ' [{k < n: k € A}|.

4. The sequence (x1) is weakly statistically convergent to = provided that for any
f in the continuous dual B* of B, the sequence (f(xy —x)) is statistically convergent
to 0 (see [1]).

2. WEAKLY LACUNARY STATISTICALLY CONVERGENT SEQUENCE

Definition 1. Let B be a Banach space, let (x1) be a B-valued sequence, 6 a la-
cunary sequence and x € B.
1. The sequence (xy) is norm lacunary statistically convergent to = provided that

or({k: |lox —zl = e}) =0

where 6,(A) = lim, h, Y |{k € I,: k€ A}|.

2. The sequence (z1) is weakly lacunary statistically convergent to x provided that
for any f in the continuous dual B* of B, the sequence (f(zx — x)) is lacunary
statistically convergent to 0.

3. The sequence (xy) is weakly Np-convergent to x provided that, for any f in the
continuous dual B* of B, the sequence (f(zr — z)) is Np-convergent to 0.

Let WS and WSy denote the sets of all weakly statistically convergent and weakly
lacunary statistically convergent sequences, respectively.

260



3. WEAK LACUNARY STATISTICALLY CAUCHY SEQUENCE

In [5], Fridy and Orhan defined the lacunary statistical Cauchy sequence for a
complex number sequence (xy) as follows:
Let 6 be a lacunary sequence. The sequence (zy) is said to be lacunary statisti-
cally Cauchy if there is a subsequence (x/(;y) of = such that &'(r) € I, for each r,
lim z(,y = x and for every € > 0

1
lim = {k € L+ |2k — 20| 2 €} = 0.
T T

Now we will give the definition of the weakly lacunary statistically Cauchy sequence
for a B-valued sequence (zy).

Definition 2. Let B be a Banach space, (x)) a B-valued sequence, 6 a lacunary
sequence and z € B. The sequence (xy) is weakly lacunary statistically Cauchy if
there is a subsequence (zy(,) of (21 ) such that k/(r) € I,. for each r, w-lim zy/(,y = z,
and for any f in the continuous dual B* of B and for every € > 0

o1
117{11 h—|{k‘ €L [f(zr — xpr(ry)| = €} = 0.

Theorem 3. A sequence (xy) is weakly lacunary statistically convergent if and
only if (z) is a weakly lacunary statistically Cauchy sequence.

Proof. Let (x) be a weakly lacunary statistically Cauchy sequence. Then for
every € > 0 we have

{k e Lr: |f(zr —z)] > €}

9 9
< er],; |f(@r — i ()| 2 5}‘ +H/‘5€Iri |f(@p ) — ) = 5}

)

hence we get that the sequence (zj) is weakly lacunary statistically convergent.
Let (zx) be weakly lacunary statistically convergent to x and write M; = {k €
N: |f(zr —x)| <1/j} for each j € N, M; O M,y and |M; N I.|/h, — 1 as r — oo.
Choose my such that r > m; implies |My N I.|/h, > 0, ie., My NI, # 0. Next
choose m1 < mo such that r» > my implies My N I,. # (). Then for each r satisfying
my < r < ma, choose K/(r) € I, such that k'(r) € I, N M;. In this way, choose
myy1 > my such that r > myyq implies Mji 1 N I, # (). Then for all r satisfying
my < 1 < myq1, choose k'(r) € I, N My, i.e.,

1
|f () — )| < T
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Hence we get k'(r) € I for every r, and w-lim x4/(,) = x. Also, we have, for every
e >0,

1
h—|{k €l |f(xr — ()| = €}l

(ke L S -l > T} + -

T

g
gh_,, {k;e]r: |f($k/(r)—3?)|>§}‘,

whence (z1) is a weakly lacunary statistically Cauchy sequence. (]

4. INCLUSION THEOREMS

In this section we first give a theorem that provides the relation between weak Np-
and weak lacunary statistical convergences. We also study the inclusions between
weak statistical convergence and weak lacunary statistical convergence.

Theorem 4. Let 0 be a lacunary sequence; then (i) is weakly Ny-convergent
to x if and only if (x1) is weakly lacunary statistically convergent to x.

Proof. Ife >0 and (zx) is weakly Np-convergent to x, we can write

T
" kel, kel

| (en—o)| e
zel{k el [f(zp —2)| = e},

tim o 3 Ifon - ) 2l ST |G- a)]

so () is weakly lacunary statistically convergent to x.

Conversely, suppose that (xj) is weakly lacunary statistically convergent to x.
Since f € B*, f is bounded, say |f(zx — )| < K for all k. Given € > 0, we get

S -l = Y el Y )

" kel r kel, T kel,
|f(zx—z)|2e |f(zp—m)|<e

K
< h—|{k€Ir1 |f(zr — 2)| > e}| +¢,

so (xy) is weakly Ny-convergent to x. O
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Theorem 5. For any lacunary sequence 0, WS-lim xj, = x implies WSp-lim xj, = x
if and only if iminf, k. /k,._1 > 1.

Proof. k,./k.—1 will be denoted by g,. If liminf ¢, > 1 there exist 7 > 0 such
that 1 + n < ¢, for all sufficiently large r, which implies that

heo

k.~ 1+n
If x5, — 2(WS), then for every € > 0 and for sufficiently large r we have
1 1
Lk < ket [flox—a)| 2 2} > —[{k € I | flan—a)] > <}
k. k.
_n_
ke I: —x)| = el
> Tk e s f(ox =) > el

this proves sufficiency. Conversely, if we suppose that liminf, g, = 1, then following
the idea in [4], we can find a sequence (z) such that (zj) ¢ WSy but (z) € WS. O

Theorem 6. For any lacunary sequence 68, WSy-lim xy, = x implies WS-lim zy, = =
if and only if limsup, ky/ky_1 < oco.

Proof. If limsup, ¢, < oo, then there is a K > 0 such that ¢, < K for all r.
Suppose that xp, — ©(WSp), and let M, = [{k € I,.: |f(zr — x)| > €}|. Since WSg-
limxy, = z, given € > 0, there is an rg € N such that M, /h, < e for all r > ry. Now
let M = max{M,: 1 < r < ro} and let n be any integer satisfying k,_1 < n < k..
Then we can write

itk < s |f (k-2 2 2} <

Ik < ke [f(on - o) > e}

1
=7 {Mi+ M+ ...+ M,y + Mpyi1+...+ M}

r—1

M 1 M, M,
—To+ T — {hroﬂ o1 +...+hr—}
h7"0+1 hr

N

//\

-1
<sup ) {hrog+1+ ...+ h.}

r>ro r

I
S 3
=L

_|_
-
P?‘

<

<

and the sufficiency follows immediately.
Conversely, if we suppose that lim sup,. g, = 0o, then following the idea in [4], we
can find a sequence (zy) such that (zx) ¢ WS but () € WSy. O
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Combining Theorems 5 and 6 we get

Theorem 7. Let 6 be a lacunary sequence; then WS = WSy if and only if
1 < liminf, &k, /k,—1 < limsup, k,/k,._1 < occ.

Theorem 8. If x € WS N WSy, then WSy-limz = WS-lim z.

Proof. Suppose WS-limz =z and WSy-limz =y and = # y. For ¢ < 1|z — |

we get
1
hyrbnﬁ|{k; <ne flze —y)| = e} =1

Consider the k,,th term of the weak statistical limit expression n~!|{k < n:
[f(ex —y)l = e} :

1) %er@f o =)l <}

m

_ ki STk €L |f(an—y)l = e}
r=1

1 m
= = hyty,
=T

where t, = h t|{k € I.: |f(zx — y)| = €}| — 0 because WSy-limz = y. Since 0 is
a lacunary sequence, (1) is a regular weighted mean transform of ¢,, and therefore
it, too, tends to zero as m — oo. Also, since this is a subsequence of {n=|{k <
n: |f(xg —y)| > €}|}, we infer that

.1
lim —[{k <n: [flox —y)| > e} # 1,

and this contradiction shows that we can’t have = # y. (]

5. WEAK STRONG ALMOST CONVERGENCE AND
WEAK LACUNARY STATISTICAL CONVERGENCE

The idea of almost convergence was introduced by Lorentz [9]. Later Maddox [10]
and (independently) Freedman at al. [6] introduced the notion of the strong almost
convergence. Now we will introduce the notions of weakly almost convergence and
weakly strong almost convergence for sequences in a Banach space.

Definition 9. Let B be a Banach space, (zx) be a B-valued sequence and let
f be in the continuous dual B* of B. Sequence (zj) is said to be weakly almost

convergent to x if
m+n

o1
hernE Z flz;—x)=0
i=m-+1
uniformly in m.
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Definition 10. Let B be a Banach space, (x}) be a B-valued sequence and let
f be in the continuous dual B* of B. Sequence (zy) is said to be weakly strongly
almost convergent to z if

1 m—+n

lim — Z |[f(zi—2x)] =0

n
1=m-+1
uniformly in m.

Let WNy, WSy, WAC and [WAC] denote the sets of all weakly Nyp-convergent, all
weakly statistically convergent, all weakly almost convergent and all weakly strongly
almost convergent sequences, respectively.

Lemma 11. [WAC] = [ WNg.
oL

Proof is similar to the proof of Theorem 3.1 in [6].
Theorem 12. If £ denotes the set of all lacunary sequences, then

[WAC] = (] WSe.
el

Proof. By Lemma 12 and Theorem 4, we have

[WAC] = (] WNp = (1] WS,.
oeL ocL

6. WEAK Z-CONVERGENCE

The concept of the Z-convergence is a generalization of statistical convergence and
is based on the notion of the ideal Z of subsets of the set N of positive integers. A
non-void class Z C 2V is called an ideal if 7 is additive (i.e., A,B €T = AUB € 1)
and hereditary (i.e., A€ Zand BC A= Be1).

An ideal 7 is said to be non-trivial if Z # 2V. A non-trivial ideal 7 is said to be
admissible if 7 contains every finite subset of N. For any ideal Z there is a filter F(Z)
corresponding to Z, given by

F(I)={K CN: N\ K € T}.
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Definition 13. Let B be a Banach space, let (z1) be a B-valued sequence, and
x € B. The sequence (x) is norm Z-convergent to x provided that

{keN: |z —z|| 2} eT.

Definition 14. Let B be a Banach space, let f be in the continuous dual B*
of B, let (x) be a B-valued sequence, and x € B. The sequence (zj) is weakly
Z-convergent to x provided that

{keN: |f(zr —2)| > e} € T.

If 7 = Zg, the ideal of all finite subsets of N, we have the usual weak convergence.
Denote by Zs the class of all K C N with
S(K) = lim ~[{k <n: ke K} =0,
n—oo N
then Zs is a non-trivial admissible ideal, and the Zs-convergence coincides with the
weak statistical convergence.
Denote by Zy the class of all K C N with

1
0-(K)= lim —|{kel: ke K}|=0,

T—00 hT’

then Zy is a non-trivial admissible ideal, Zy-convergence coincides with the weak
lacunary statistical convergence.

Definition 15. Let B be a Banach space, (zx) a B-valued sequence and let f
be in the continuous dual B* of B, and © € B. The sequence (zj) is weakly Z*-
convergent to x if and only if there exists a set M = {m; <mao < ... <mp < ...} C
N, M € F(Z) such that limy f(z,, —z) =0.

Let WZ and WI™* denote the sets of all weakly Z-convergent and all weakly Z*-
convergent sequences, respectively.

Theorem 16. Let 7 be an admissible ideal. If WI*-limzy = x, then WI-
limz, = .

Proof. By assumption there is a set L € 7 such that for M =N\ L = {m; <
mg < ...<my < ...} we have

(2) liin f(zk,, —x)=0.

Let € > 0. By (2), there exists kg € N such that |f(z,, — )| < € for each k > k.
Then since 7 is admissible, we get

{keN: |f(xm, —x)|Ze} CLU{mi <ma<...<my} €.
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Definition 17 (see [8]). An admissible ideal Z C 2V is said to satisfy the con-
dition (AP) if for every countable family of mutually disjoint sets {41, As,...} be-
longing to Z there exists a countable family of sets {B1, Ba, ...} such that A; A B;

is a finite set for j e N and B= |J B; € 7.
j=1

Theorem 18. Let T C 2" be an admissible ideal. If the ideal T has property (AP),
then for an arbitrary sequence (zy) € X, WI-lim(zy) = « implies WZ*-lim(z) = .

Proof. Suppose that Z satisfies condition (AP). Let WZ-lim(zy) = z. Then
{k e N: |f(zk,, —x)| =2 e} € Z fore > 0. Put Ay = {k € N: |f(zg,, — )| > 1}

m

and Ay = {k € N: 1/k < |f(zp,, — )] < 1/(k+ 1)} for k > 2, k € N. Obviously
A;NAj = ¢ for i # j. By condition (AP) there exists a sequence of sets (Bg)ken

such that A; A B; are finite sets for j € N and B = |J B; € Z. It is sufficient to
=1
prove that for M = N\ B we have

(3) klim flzr —x) =0.

keM

Let £ > 0. Choose k € N such that 1/(k+ 1) <. Then {k e N: |f(zr —z)| =&} C
n+1
U A;. Since A; ABj,j =1,2,...,n+1 are finite sets there exists ko € N such that
j=1

n+1 n+1
(4) UBin{keN: k>ko} =[] A;n{keN: k> k}.
j=1 j=1

n+1 n+1

Ifk>koandk ¢ B,thenk ¢ |J Bjandby (4), k¢ |J A,. But then |f(zy —2)| <
j=1 j=1

1/(k+1) < &; so (3) holds. O

7. WEAK Z-LIMIT POINTS AND WEAK Z-CLUSTER POINTS

Definition 19. Let B be a Banach space, (zx) a B-valued sequence, let f be in
the continuous dual B* of B and x € B.
(a) An element z € X is said to be a weak Z-limit point of (x) provided that
there exists a set M = {m; < ma < ... < my < ...} €N such that M ¢ 7 and

i =) =

(b) An element x € X is said to be a weak Z-cluster point of (z) if and only if for
each € > 0 we have {k e N: |f(zr, —2)| <e} ¢ T.
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Let WZ(A,) and WI(T';) denote the sets of all WZ-limit and WZ-cluster points
of x, respectively.

Theorem 20. Let Z be an admissible ideal. Then for each sequence (zj) € B we
have WI(A,) C WI(T,).

Proof. Let x € WI(A,;). Then there exists a set M = {m1 < may < ... <
my < ...} ¢ Z such that

(5) klingo f(zm, —x) =0.

Take ¥ > 0. According to (5) there exists kg € N such that for k¥ > ky we have
|f(@m, —x)|] < 9. Hence {k € N: |f(zr — )| < 9} D M\ {m1,ma,...,my,} and
{keN: |f(zr —z)| <9} ¢ Z, which means that x € WI(T',). O
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