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Abstract

This work is focused on the problem of identifying interactions between

complex dynamical oscillatory processes. Discovering relationships in com-

plex systems plays an important role in the process of understanding how

subsystems cooperate to create complicated behavior. There are two main

problems in interaction analysis: directionality analysis and synchronization

detection. Synchronization is a process of mutual alignment of rhythms of

two systems indicating a stronger form of cooperation. Directionality anal-

ysis is concerned with asymmetric interactions between systems and facili-

tates the discovery of drive-response relationships. Current frameworks for

detecting synchronization and directionality are recounted, their properties

are analyzed and new approaches to both problems are proposed. An exper-

imental dataset is analyzed with the goal of describing changes in the human

cardiorespiratory system between the waking state and general anesthesia.

The proposed methods can be used in the context of nonlinear dynamics to

investigate coupled biological, geological, meteorological, chemical and other

types of process.



Abstrakt

Tato práce se zaměřuje na problém hledáńı interakćı mezi komplexńımi

oscilačńımi procesy. Nalezeńı vnitřńıch souvislost́ı mezi jednotlivými pro-

cesy je d̊uležitým krokem k hlubš́ımu pochopeńı funkce složitých systémů.

Zde se soustřed́ıme na dva hlavńı problémy analýzy pár̊u dynamických pro-

ces̊u: určeńı směru p̊usobeńı a testováńı synchronizace. Ćılem analýzy směru

p̊usobeńı je odhaleńı ř́ıd́ıćıch vztah̊u mezi procesy. Zjǐstěńı synchronizace,

sladěńı rytmů dynamických proces̊u, ukazuje na užš́ı součinnost dvou pro-

ces̊u. Jsou popsány současné metody zpracováńı časových řad, které slouž́ı

k vyšetřováńı těchto jev̊u. Pomoćı detailńıch numerických experiment̊u jsou

analyzovány vlastnosti vybraných metod a jsou předloženy nové možnosti

řešeńı obou problémů. Závěrem práce je zpracována předběžná studie ex-

perimentálně źıskaných dat, která porovnává interakce v lidském kardiores-

piračńım systému v klidu při vědomı́ a během celkové anestézie. Navržené

metody lze využ́ıt v rámci aplikace teorie nelineárńı dynamiky k analýze

vzájemného ovlivňováńı biologických, meteorologických, chemických a daľśıch

systémů
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5.5 Agreement of BPSD results with previous results. . . . . . . . 55

6.1 Dependence of mean CMI index coupling strength. . . . . . . 57

6.2 Distributions of CMI indices for selected estimators. . . . . . . 59

6.3 Dependence of detection statistics on coupling strength, direc-

tionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



6.4 Distribution of CMI index for the k-NN estimator. . . . . . . . 62

6.5 Dependence of synch. detections on coupling strength, FT

surrogates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.6 Dependence of synch. detections on coupling strength, per-

mutation surrogates. . . . . . . . . . . . . . . . . . . . . . . . 67

6.7 Dependence of synch. detections on coupling strength, model

surrogates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 Raw time series measured from the patient 118 under general

anesthesia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 The heart rate variability (top) and respiratory rate variability

(bottom) for the patient 118 in the waking state (resting). . . 73

7.3 The heart rate variability (top) and respiratory rate variability

(bottom) for the patient 118 under general anesthesia. . . . . 74

7.4 BRACCIA: ECG/Resp. effort dependence analysis summary . 78

7.5 BRACCIA: ECG/Resp. effort directionality analysis summary 80



Chapter 1

Introduction

Recently, new approaches to understanding the behavior of complex systems

based on results of non-linear dynamics have come to the forefront of current

research. This tendency is becoming clearer as more and more problems

from geology, meteorology, physical, chemical and life sciences have been

more satisfactorily understood after reformulating them in the framework

of non-linear dynamics. Especially in biological and life sciences, important

components of physiological systems, such as the human body, have been

modeled as a set of coupled non-linear dynamical oscillators: the heart, the

brain and the lungs. When trying to understand complex systems, scientific

advances depend on developments in theoretical and experimental science

and on building links between hypothesized models and experimental results.

The present work “Quantifying interactions between complex oscillatory

systems: a topic in time series analysis” is focused on building links between

theoretical and practical aspects of complex systems modeling. The goal

of the work is the analysis, comparison and further development of selected

time series analysis algorithms aimed at uncovering interactions between cou-

pled oscillatory systems with a minimum of assumptions on the form of the

interactions.

This study is organized as follows: the Introduction continues with a

basic treatment of important concepts in non-linear dynamics and types of

interactions, Chapter 2 describes current methods of quantification of direc-

1



CHAPTER 1. INTRODUCTION 2

tionality, Chapter 3 introduces some methods for quantifying dependencies

between time series, Chapter 4 introduces the concept of significance test-

ing. Chapter 5 describes the original developments in the problem of de-

tecting directional influence and in the problem of detecting synchronized

states. Chapter 6 contains detailed numerical studies of the performance of

the methods. In Chapter 7 selected methods are applied to real data ob-

tained during in the course of a study of changes occurring in the human

cardiorespiratory system when under general anesthesia. Chapter 8 contains

a discussion of the results and describes planned further work.

1.1 Self-sustained non-linear oscillators

There are several assumptions about the investigated systems that are re-

quired by the subsequent theoretical analysis. In particular, it is assumed

that the systems are self-sustained non-linear oscillators. A self-sustained

oscillator is a dissipative dynamical system which generates oscillatory mo-

tion using energy obtained from an internal source. The characteristics of the

(quasi)oscillatory motion depend exclusively on the structure and parame-

ters of the system: one can thus think of the system as producing a natural

rhythmic activity. Linear oscillatory systems do not exhibit stable limit cy-

cles and their final trajectory depends on the initial conditions under which

the system was set into motion. Non-linear systems on the other hand may

have a non-trivial attractor region, such as a limit cycle. A majority of real

physical systems are necessarily dissipative, especially so in life sciences, and

if stable motion along a given trajectory is to be followed, an energy source

must be available to supply the energy lost in each cycle. The non-linearity

serves to establish a stable intensity of oscillation [2]. Some systems that

have bee investigated in the framework of the above constraints are the hu-

man heart [3], the brain [4, 5], weather systems [6, 7] and geological activity

[7]. Alternatively the framework can be applied to systems the motion of

which is constrained to a strange attractor. This is characteristic of systems

exhibiting complex behavior known as deterministic chaos.

In Fig. 1.1 the limit cycle of the well known Van der Pol oscillator is
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Figure 1.1: The limit cycle of the Van der Pol oscillator. The plot shows
the points (x1, x2) = (x, ẋ) resulting from integrating the equation (1.1) with
µ = 0.2.

shown as an example of a nonlinear dynamical system exhibiting a stable

limit cycle. The Van der Pol system is given by the differential equation

ẍ− µ(1− x2)ẋ+ ω2x = 0, (1.1)

where ω controls the frequency of the Van der Pol system and µ controls

the shape of the limit cycle (for µ = 0 the system is an undamped harmonic

oscillator).

1.2 Amplitude and phase

The motion of systems satisfying the criteria laid out in the above paragraph

can be decomposed into two primary variables: amplitude and phase. The

amplitude of the limit cycle represents the intensity of the oscillations and is

stable as seen in Fig. 1.1, where the trajectories starting from points outside
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of the limit cycle return to it after a transient period. Phase represents the

position of the system along the limit cycle and is free: it is neither stable

nor unstable. Phase is an observable of the system that characterizes its

motion along the attractor (in the direction of the zero Lyapunov exponent).

Phase is required to be a monotonic function of time and it must grow by a

fixed amount (usually 2π) when a cycle is completed. Phase grows without

bound but values of phase which differ by a multiple of 2π represent the same

physical state.

If the motion of the system is perturbed by a weak external force, the

variations in amplitude decay in time and the system returns to the limit

cycle. However if the perturbation also shifted the system in the direction of

the limit cycle, changing its phase, then that change of phase is preserved.

Phase can thus be affected by very weak forces. The supposition that the

forces acting on the system are weak is important to ensure that the motion

of the system can be decomposed into an independent amplitude and phase

and that the system does not qualitatively change its behavior [2].

1.3 Time series analysis

A time series is a record of the values of an observable at a sequence of time

instants. A time series is different from a general set of data because a total

ordering by time is imposed on the samples. Also, in the case of dynamical

systems successive samples tend to be highly correlated unless the system

is undersampled. In the following, it is always assumed that a pair of time

series measured at the same time from both systems is available as a source of

information about their activity. I has been previously shown [8, 9, 10] that

under some conditions, it is possible to recover the topology of the attractor

from a univariate time series measured from a dynamical system using the

technique of time-delay embedding. A univariate time series thus contains

a wealth of information about the behavior of the underlying deterministic

processes.

A univariate time series exhibiting oscillatory behavior may be used to

obtain a phase time series describing the motion of the dynamical system
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along its attractor. Many different methods can be applied to extract a

phase signal but not all methods are suitable for all situations. One of the

approaches involves finding a two-dimensional projection of the attractor set

that rotates around a fixed point. This point is then selected as a center

of rotation and the angle from the horizontal axis to the line connecting

the center of rotation with the instantaneous position of the system on the

projection defines the phase. A two-dimensional projection can be obtained

by either using a time-delay embedding [8, 9], using difference coordinates or

by finding a general projection formula.

Figure 1.2: Time series obtained from the Van der Pol oscillator (solid line),
phase extracted using the Hilbert transform (dashed line) and phase ex-
tracted using the marked events method by detecting the peaks (dash-dot
line). Signals have been rescaled and shifted vertically for presentation pur-
poses.

More commonly used approaches are based on the analytical signal con-

cept [11]. In these methods, the imaginary part of the original real signal

is constructed. The time series then consists of complex values having a

unique amplitude and phase, which is then simply taken as the phase of the



CHAPTER 1. INTRODUCTION 6

oscillation. There are two main frequently used methods of obtaining the

imaginary part: the Hilbert transform and the wavelet transform. Refer-

ence [12] has shown that in many circumstances the methods give similar

results. It is recommended that the source time series is bandpass filtered

to create a narrow-band series if there is no clear oscillation frequency. This

approach is however not without its dangers as narrow band filtering might

attenuate or partially obscure the activity of a process the main frequency

of which exhibits substantial fluctuations. The Hilbert transform has been

applied to broadband EEG signals (e.g. [13]) but the physical meaning of

the phase time series computed in this way is unclear [12].

An example is shown in Fig. 1.2 where phase was extracted from the

time series of the Van der Pol system by computing the imaginary part of

the signal using the Hilbert transform. Phase acts as an indicator of the

evolution and history of the system. When the phase signal conforms to

the standard definition above it is sometimes termed “unwrapped” phase.

At times it is advantageous to subtract 2π from the phase signal upon the

completion of each cycle. The resulting signal thus has range [0, 2π) and

and there is a one-to-one mapping between phases and physical states. This

is sometimes termed “wrapped” phase as the transformation corresponds

to “wrapping” the phase signal around a unit circle. The phase signal in

Fig. 1.2 follows the definition of a “wrapped phase”. This is useful when

trying to estimate the probability density function of the phase time series.

The problem setting can be understood by reviewing the schema in Fig. 1.3.

An alternate technique for extracting so called marked-events phase is to

find an event that occurs once in every cycle of the investigated system at a

fixed time. A good example is the occurrence of the R-peak of the electrocar-

diogram (ECG) signal. In the time interval between two successive events the

phase must (by definition) increase by 2π. The phase is interpolated linearly

between the two events. This technique is useful if the signal is difficult to

treat with other methods (this is the case of the ECG signal) or excessively

noisy but with well-identifiable events.
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Figure 1.3: Schematic depiction of the process of observing possibly coupled
systems, measuring time series and obtaining a phase.

1.4 Weak interactions

Weak interactions between systems are interactions that do not qualitatively

affect the behavior of either coupled system. It is in general difficult to

precisely discriminate between weak and strong coupling. A coupling that

is too strong binds the systems together so that their behavior is no longer

decomposable into two separate processes. The investigated coupling should

not be so strong as to deprive the systems of their individuality [2].

When investigating how two systems interact together, two main ques-

tions arise. The first question concerns the strength of the coupling: if the

coupling is strong enough it causes the two systems to synchronize, or mu-

tually align their rhythms. Multiple forms of synchronization have been

discovered since the first known description of identical synchronization in

pendulum clocks by Christiaan Huygens in 1673 [14]. If the coupling is weak

enough so that the systems do not yet synchronize, it is possible to investi-

gate the directionality of coupling, in other words the asymmetric properties

of the coupling.
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1.4.1 Directionality analysis

An important problem arising from the analysis of coupled systems is the

detection of directionality of coupling. In general when analyzing only two

systems, four distinct situations can arise: the systems are uncoupled, they

are unidirectionally coupled (two possibilities) or they are bidirectionally

coupled. Directionality analysis can also be applied to systems that have

dissimilar dynamics, where coupling strength is an ill-defined notion [15].

Analysis of directionality is an important problem as it reveals drive-response

relationships in complex systems composed of multiple subsystems.

Asymmetric interactions have been studied for example in the human

cardio-respiratory system [16] or in EEG signals [17]. However directionality

analysis in non-linear oscillatory processes is a relatively new discipline and

methods of analysis must be sufficiently evolved before they can be confi-

dently applied to experimental data. There are many competing approaches

and problem formulations that must be thoroughly investigated and com-

pared on model problems so that their properties are understood.

One of the main problems facing an experimenter today is the apparent

lack of standardized testing procedures. These “testing protocols” would

allow one to compare the multitude of methods of quantifying interactions

between systems. It is common practice that newly proposed methods are

tested on a very simple model system and then directly applied to a complex

experimental problem which is obviously much more difficult than the model

system. In this work, adequate testing of methods is highly emphasized

before applying them to experimental data.

1.4.2 Synchronization

The second problem on which this work focuses is the detection of synchro-

nized states. Synchronization has recently attracted considerable interest

from theoreticians as well as experimentalists (e.g. the monograph [2]), since

synchronization and related phenomena have been observed in systems stud-

ied not only in physics, but also in natural and social sciences, medicine and

technology. Examples include cardio-respiratory interaction [3, 18, 19], syn-



CHAPTER 1. INTRODUCTION 9

chronization of neural signals [20, 21, 22, 23] or episodes of synchronization

between meteorological variables reflecting interactions in the climate system

[6, 7].

The strongest definition of synchronization requires that the difference

between states of synchronized systems asymptotically vanishes. This defi-

nition is called identical synchronization [24], while the notion of generalized

synchronization requires that states of coupled systems are (asymptotically)

related by some function [25, 26]. Even weak couplings can result in phase

synchronization, which relates the instantaneous phases of the systems, while

their amplitudes can be uncorrelated [1].

1.5 Example model systems

In this section, some frequently used model systems are introduced and their

typical behavior and phase extraction mechanisms are described.

1.5.1 Lorenz system

The Lorenz system is a three-dimensional deterministic dynamical system

named after its constructor Edward Lorenz in 1963 [27] and is a heavily

simplified model of the convection rolls in the atmosphere. The model was

shown to exhibit a sensitive dependence on initial conditions. The equations

of two coupled Lorenz systems with coupling in the x variable are shown

below
ẋ1,2 = σ(y1,2 − x1,2) + ε1,2(x2,1 − x1,2)

ẏ1,2 = x(ρ− z1,2)− y1,2

ż1,2 = xy − bz,
(1.2)

with σ being the Prandtl number and ρ the Rayleigh number. The parame-

ters ε1,2 represent the strength of coupling from one system to the other and

are not part of the original model. The system exhibits chaotic behavior for

ρ = 28 but has periodic orbits for other values of this parameter

Since the system is able to generate chaotic behavior, it’s dimension must

be greater than 2 and is less than or equal to 3 as that is the number of
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differential equations. The Hausdorff dimension of the (strange) attractor of

this model was estimated by Grassberger and Procaccia [28] in 1983 to be

2.06± 0.01.

Figure 1.4: The Lorenz attractor (ρ = 28, σ = 10 and b = 8/3). Integrated
using Runge-Kutta 4th order scheme with dt = 0.005, 16384 points shown.

The trajectory of the Lorenz system in the phase space is very well-known

and has the shape of a butterfly (cf. Fig. 1.4).

1.5.2 Rössler system

Another paradigmatic system exhibiting chaotic behavior is the Rössler os-

cillator which was proposed by Otto Rössler [29] and grew out of his thinking

about the Lorenz attractor. Later the equations have been found to model

some types of chemical reactions. The equations characterizing two coupled

Rössler oscillators are given as:

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε1,2(x2,1 − x1,2)

ẏ1,2 = ω1,2x1,2 + a1,2y1,2

ż1,2 = b1,2 + z1,2(x1,2 − c1,2),

(1.3)

The correlation dimension of the Rössler attractor (a = 0.15, b = 0.2,

c = 5.7) is ≈ 2.014 [30]. The Rössler attractor has a characteristic shape
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which is shown on Fig. 1.5. As is usual for chaotic oscillators the behavior of

the system is very sensitive to the parameters used. The parameters of the

Rössler system can be adjusted so that the system rotates around a center in

the x-y plane and phase can then be simply extracted. For some parameter

settings however, the Rössler system has a “funnel” attractor where no such

center around which the motion proceeds can be found. In this case, other

ways of extracting phase such as the method of Osipov et al. [31] must be

used. These methods allow the extraction of phase from curves (trajectories)

with positive curvature.

Figure 1.5: The Rössler attractor (a1,2 = 0.15, b1,2 = 2, c1,2 = 10). Integrated
using the Runge-Kutta 4th order scheme with dt=0.01, 16384 points shown.



Chapter 2

Quantifying directional

influence

Quantifying asymmetric properties of the coupling between systems from

time series is a problem that involves making several assumptions about

the investigated system pair. In the analysis framework, it is assumed that

interdependencies in the time series arise from coupling between the two

systems. Most importantly it is assumed that there is no third system driving

both of the analyzed systems, possibly with different delays. If there is

knowledge of such a third system and its time series can be obtained, it

is sometimes possible to eliminate its influence on the system pair under

scrutiny, however this is difficult at present and the issue becomes much

more difficult if the systems are different in dynamics.

The first step in detecting directional influence is developing an index

which reacts to the strength of directional coupling. The introduction of sev-

eral such indices will be the subject of this Chapter. However it is important

to note that such an index does not as of itself constitute a complete method

of detecting coupling directionality. When processing experimental data the

situation is quite complicated. Measurement noise and limited length of ex-

perimental time series can be sources of considerable additional variance in

the estimates. Different statistical and dynamical properties (stochasticity,

dominant frequencies) of the two underlying systems can cause severe bias

12
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in estimates of directionality indices. We show how it is possible to alleviate

these effects to a large extent by testing the computed indices using sets of

surrogate data [32, 33].

2.1 Approaches to quantifying directionality

At present there are three main approaches to detecting directionality in

bivariate time series. The first approach is based on state-space reconstruc-

tion or mutual prediction, the second approach is based on modeling func-

tional relationships of phases and the third approach involves estimating

information-theoretic functionals.

State space methods include various cross-prediction methods and meth-

ods based on statistics of nearest neighbors. Cross-prediction methods at-

tempt to directly exploit Granger’s ideas on mutual forecasting of series gen-

erated by coupled linear systems [34]. Generally the attractor in state space

is reconstructed by means of a time-delay embedding [35, 8, 9]. However

opposite opinions exist on how to interpret the cross prediction accuracy,

e.g. in Ref. [20] the authors hypothesize that the average cross-prediction

error is smaller in the driving system while in [21] it is suggested that the

cross-prediction error should be smaller when predicting the driven system.

Alternative methods exploit statistics based on nearest neighbor distances

[36], however in Ref. [37] the authors assert that other factors such as the

effective dimension at typical neighborhood sizes may influence the result of

the previously published algorithms.

The second group involves estimating functional relationships between

phases of the systems. In Ref. [38] the authors try to estimate the Fourier

coefficients of the coupling function and subsequently compute a norm based

on a subset of the coefficients indicating the directionality. However this

approach was found to be accurate only for long time series [15]. The method

has been improved with a bias correcting term and an estimate of significance

of the directionality by Smirnov and Bezruchko [39].

The last group of methods consists of algorithms based on information

theory. Here, Schreiber [40] proposes to compute the transfer entropy, based
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on the Kullback-Leibler entropy measuring the deviation of the transition

probability density function (PDF) from the generalized Markov property.

Paluš [41] has applied information theoretic functionals to phases to detect

“net flow of information” between processes. This approach will be detailed

in the following section. Recently it has been shown that the method of

Schreiber can be identified with the method of Paluš for a certain set of

parameters [42].

2.2 Information theoretic approaches

Quantities based on information theoretic functionals have enjoyed an im-

portant position in detecting relationships between complex systems partly

due to their non-parametric nature which makes them widely applicable.

The presented method involves estimating a well-known information theo-

retic functional — the conditional mutual information (CMI) [43]. There

is a multitude of ways to estimate the CMI [42]. Some of the estimation

methods are presented here and their characteristics are described.

Consider discrete random variables X and Y with sets of values Ξ and

Υ respectively and probability distribution functions (PDFs) p(x), p(y) and

the joint PDF p(x, y). The Shannon entropy H(X) is defined as

H(X) = −
∑
x∈Ξ

p(x) log p(x), (2.1)

The joint entropy H(X, Y ) of X and Y is

H(X, Y ) = −
∑
x∈Ξ

∑
y∈Υ

p(x, y) log p(x, y) (2.2)

for discrete sets Ξ, Υ. It is straightforward to extend the definition to more

than two variables. Conditional entropy H(Y |X) of Y given X is

H(Y |X) = −
∑
x∈Ξ

∑
y∈Υ

p(x, y) log p(y|x).
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The average amount of common information contained in the variables X

and Y is quantified by the mutual information I(X;Y ) defined as

I(X;Y ) = H(X) +H(Y )−H(X, Y ). (2.3)

The conditional mutual information I(X;Y |Z) of the variables X, Y given

the variable Z is given as

I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X, Y |Z), (2.4)

= I(X;Y ;Z)− I(X;Z)− I(Y ;Z), (2.5)

= H(X,Z) +H(Y, Z)−H(Z)−H(X, Y, Z),

(2.6)

all of which are theoretically equivalent. However, depending on the method

used to compute entropy or mutual information, some of the above formulae

will be more appropriate than others in particular situations. Entropy and

mutual information are measured in bits if the base of the logarithms in their

definitions is 2. In this work the natural logarithm is used and therefore the

estimates are given in nats unless the unit is explicitly indicated.

A generalized version of the Granger causality concept [34] is that if

the time series generated by one process provides us with information on

the time series generated by another process at some point in the future,

the first process influences the second process. If only two processes are

involved and coupling is detected exclusively in one direction it is inferred

that the first process causally influences the second process. Granger has

applied his principle to coupled linear models [34]. In Ref. [44] it has been

demonstrated that using changes in cross-prediction errors to indicate the

directionality of coupling is not trivially extensible to non-linear systems. On

the other hand methods based on information theory have been shown to be

widely applicable, especially when the estimators of the relevant information

theoretic functionals are non-parametric and thus independent of the form

of the probability density distribution (usually under some mild technical

assumptions).
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Let X and Y denote two stationary ergodic processes and x(t), y(t) their

time-series. The presented method of detecting coupling directionality uses

conditional mutual information as an indicator of the presence of net infor-

mation flow [41] between the two analyzed systems characterized by their

respective time series. The net information flow I(X; ∆τY |Y ), where ∆τY

is an observable derived from the state of the process Y in the future (τ

denotes the time difference), is defined as the mutual information between

X, Y and ∆τY that is not a result of the action of the history of process

Y on itself, i.e. excluding I(Y ; ∆τY ) and is also not the result of common

history of the two processes captured by I(X;Y ). A statistically significant

information flow thus indicates that information is being transferred between

the process X and the process Y at some later point in time. This can be

readily interpreted as an influence of the process X on the process Y in the

future. The detection criterion is based on two indices

iX→Y =
1

N

N∑
τ=1

I
(
x(t); ∆τy(t)

∣∣∣y(t)
)
, (2.7)

iY→X =
1

N

N∑
τ=1

I
(
y(t); ∆τx(t)

∣∣∣x(t)
)
, (2.8)

where the notation

I
(
x(t); ∆τy(t)

∣∣∣y(t)
)

denotes mutual information between x(t) and ∆τy(t) conditioned on y(t).

The operator ∆τ represents for example the difference

∆τx(t) = x(t+ τ)− x(t).

The series x(t), y(t) can contain the values generated by the respective sys-

tems or values which have been derived from the original time series. In

general, each of the time-series x(t), y(t) should be considered multivalued.

This is the case if state space reconstruction techniques [8] are applied prior
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to computing the information theoretic functionals [44].

In the following sections different types of estimators of entropy or mutual

information will be thoroughly investigated.

2.2.1 Binning methods

Binning methods are frequently applied to estimating information-theoretic

functionals. Binning methods discretize the space of the signal samples into

bins or boxes inside which the probability density function (PDF) is assumed

to be constant. Binning methods thus estimate a coarse profile of the PDF

over the entire sample space.

Classical methods involve histogram binning, also referred to as equidis-

tant binning. This estimator of multidimensional entropy of time series and

its bias has been investigated by Moddemeijer [45], who derived the necessary

bias correction terms. Fraser and Swinney [46] have proposed an adaptive

spatial subdivision scheme for automatically estimating the optimal parti-

tion for computing mutual information. Darbellay et al. [47, 48, 49] have

improved on this scheme by supplying a stopping condition of the subdivi-

sion scheme. The stopping condition is based on Dobrushin’s information

theorem [50].

Pompe has proposed computing generalized mutual information (based on

Rényi’s second order entropy [51]) from ranked time series [52]. Computing

statistics from ranked time series has the advantage of being invariant with

respect to smooth transformations of coordinates.

Paluš [18, 23, 41, 7, 44] has used equiquantal binning, where each time

series is partitioned so that there is an approximately equal amount of sam-

ples in each bin. The width of each bin thus adjusts to the density of samples

in each region — dense regions contain small bins and sparse regions contain

large bins. Additionally, an estimator constructed in this way can be viewed

as the estimator that maximizes all marginal entropies during the estimation

(keeping all parameter values fixed).

Recent efforts include a an estimator of entropy based on B-splines [53]

by Daub et al. [54]. The algorithm however runs in O(NM3) time, which
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is exceptionally slow for a binning algorithm. Here N denotes the number

of points in a time series and M the number of bins. Estimation of mul-

tidimensional entropies constitutes sufficient means to indirectly compute

mutual information with (2.3) and also the conditional mutual information

using (2.6). In classical binning approaches to computing mutual informa-

tion, data points close to bin boundaries can cross over to a neighboring bin

due to noise or fluctuations, thus introducing additional variance into the

computed estimate. To overcome this problem, Daub et al. have proposed

a generalized binning method, which makes use of B-Spline functions to as-

sign data points to bins. The sample space is divided into equally sized bins

as in equidistant binning. A major difference between classical binning and

generalized binning is that in generalized binning, a data point is assigned to

multiple bins simultaneously with weights given by (implicitly normalized)

B-Spline functions. The shape of the B-Spline functions is determined by

their order k, which is a parameter of the method. With B-Spline order 1,

each point is assigned to exactly one bin and the method is equivalent to

simple equidistant binning. The proposed method is thus a fixed binning

scheme extended with a preprocessing step designed to reduce the variance.

A B-Spline function is defined with the help of a knot vector

ti =


0 i < k

i− k + 1 k ≤ i ≤M − 1

M − 1− k + 2 i > M − 1

,

where M is the total number of bins and i is an index into the knot vector.

B-spline functions are defined (and evaluated) recursively [53] by

Bi,1(z) =

{
1 ti < z < ti+1

0 otherwise
,

Bi,k(z) = Bi,k−1(z)
z − ti

ti+k−1 − ti
+Bi+1,k−1

ti+k − z
ti+k − ti+1

.
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The standard definition of computing entropy (2.1) is used with

p(xi) =
1

N

N∑
j=1

Bi,k(fM,k(xj)), (2.9)

where fM,k(x) is a linear transformation which maps the values of x onto the

domain of the B-Spline functions [54]. In two dimensions it is necessary to

compute the joint PDF [54]

p(xi, yj) =
1

N

N∑
l=1

Bi,k(fx(xl))×Bj,k(fy(yl)). (2.10)

This procedure can be readily generalized to three dimensions

p(xi, yj, zl) =
1

N

N∑
m=1

Bi,k(fx(xm))×

×Bj,k(fy(ym))×Bl,k(fz(zm)).

(2.11)

The computation of I(X;Y |Z) can thus be written as

IM,k(X;Y |Z) = HM,k(X,Z)+

+HM,k(Y, Z)−HM,k(Z)−HM,k(X, Y, Z),

and each of the terms may be computed using the formulae (2.9), (2.10)

and (2.11) together with (2.1) and (2.2). The notation IM,k(X;Y |Z) and

HM,k(X, Y ) indicates that the method has two parameters M — the number

of bins and k — the order of the B-Spline. For further analysis, the order of

the B-Splines is fixed at k = 3 as this was order employed in Ref. [54].

2.2.2 Metric methods

Metric methods depend on the notion of distance in a space. These meth-

ods are sensitive to the distribution of samples and to the distribution of

their distances. Metric methods generally compute a local approximation of

density for each sample in the series and use these estimates to determine



CHAPTER 2. QUANTIFYING DIRECTIONAL INFLUENCE 20

the entropy of the set of samples. Alternatives are available where entropy

is estimated directly from various sample statistics instead of estimating the

probability density function (PDF) of the time series first.

There are two main possibilities in determining the approximate PDF in a

region close to a given reference point. In the first method, a volume around

the point is fixed (usually a hypersphere) and the number of points inside

that volume is counted. The other possibility is to fix a number of points to

find and search for the minimal bounding hypersphere which contains that

number of points closest to the reference point. In both cases the value of the

PDF is then approximated as a constant function inside this hypersphere:

the number of points is divided by the volume to obtain a density estimate.

The term redundancy is frequently used as a synonym for multidimen-

sional mutual information in the context of dynamical systems. Redundan-

cies based on correlation integrals (CI) use a fixed volume approach to esti-

mating the local PDF. The connection between the correlation integral and

local probability densities is elucidated in [55]. The correlation integral has

been introduced by Grassberger and Procaccia [28] in the context of estimat-

ing the correlation dimension of strange attractors. The correlation integral

is given by

C(x, ε) =
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

Θ(ε− ||xi − xj||),

where || · || represents the selected metric, Θ(·) is the Heaviside function and ε

is the radius of the hypersphere in which neighbors are sought. Savit et al. [56]

show how the conditional redundancy R(x1;xm|x2, ..., xm−1, ε) may be com-

puted. The conditional redundancy quantifies the dependency between x1

and xm conditioned on x2, ...xm−1.

R(x1;xm|x2, ..., xm−1, ε) =

= − log
C(x1, ..., xm−1, ε)C(x2, ..., xm, ε)

C(x1, ..., xm, ε)C(x2, ..., xm−1, ε)
,

Inspired by this approach, Prichard and Theiler [55] have extended the con-
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cept of conditional redundancies to multiple variables and propose computing

the time-lagged mutual information between two time series with

I(x; y, l, ε) = H(x(t), ε) +H(y(t− l), ε)
− H(x(t), y(t− l), ε)

where the Shannon entropy H(x, ε) ≈ − log[C(x, ε)]. In this work, the con-

ditional mutual information is estimated using the formula

I(x; yτ |y, τ, ε) = I(x(t); ∆τy(t)|y(t), ε) =

= − log
C(x(t), y(t), ε)C(∆τy(t), y(t), ε)

C(x(t),∆τy(t), y(t), ε)C(y(t), ε)
.

It has been shown that the estimate of the mutual information using corre-

lation integrals converges if ε → 0 [55]. However in data sets of finite size,

small sample effects are observed which disrupt the convergence behavior of

the estimator.

2.2.3 Kernel methods

Kernel methods are more restrictive than metric methods and require not

only distances to be defined but also a space in which samples are assigned

coordinates. Due to the numerical nature of most time series this is not

a stringent restriction. Mutual information from bivariate time series was

first estimated using a kernel estimate of local density by Moon et al. [57].

According to Steuer et al. [58] this method was found to be superior to the

classical histogram (binning) methods.

Kernel density estimator introduced by Silverman [59] in one dimensional

space is defined as

f(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
(2.12)

where h is the kernel width parameter. The kernel function K(x) is required

to be a probability density function. It follows that also f itself is a prob-

ability density. The selection of h is crucial but most methods for selection
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thereof are usually computationally intensive. Silverman suggests using h

which minimizes the mean integrated square error, assuming the underlying

distribution is Gaussian. Steuer et al. [58] objected against a straightforward

introduction of a kernel density estimator into the logarithmic formula of

mutual information. The discretization of the (x, y)-plane into infinitesimal

bins corresponds to the continuous form of mutual information.

I(X, Y ) =

∫∫
(X,Y )

f(x, y) log
f(x, y)

f(x)f(y)
dxdy. (2.13)

But such a correspondence does not hold for the individual entropies used

in the formula I(X, Y ) = H(X) +H(Y )−H(X, Y ) [42]. The discretization

introduced by numerical integration for computing the above integral does

not correspond to the partition of data. It has been shown [58] that the

estimated mutual information is much less sensitive than the probability

density itself.

2.3 Example results

In this section, the characteristics of a selection of the estimators are shown

on a linear model, where the conditional mutual information functional can

be computed analytically. The selected model is a pair of two unidirectionally

coupled linear parts of the Barnes sunspot model [60]

z
[1]
i = α1z

[1]
i−1 + α2z

[1]
i−2 + a

[1]
i − β1a

[1]
i−1 − β2a

[1]
i−2

z
[2]
i = α1

[
εz

[1]
i−1 + (1− ε)z[2]

i−1

]
+ α2z

[2]
i−2 + a

[2]
i − β1a

[2]
i−1 − β2a

[2]
i−2,

where α1 = 1.90693, α2 = −0.98751, β1 = 0.78512, β2 = −0.40662 and a
[j]
i

are independent and identically distributed Gaussian random variables with

zero mean and standard deviation 0.4. The conditional mutual information

I(z[1]; z
[2]
T |z[2]) and I(z[2]; z

[1]
T |z[1]) (z

[i]
T denotes the time series z[i] shifted by

T samples into the future) can be computed analytically [61]. For a set

of variables X1, X2, ..., Xn having zero mean, unit variance and correlation
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matrix C, their mutual information can be computed as

I(X1, X2, ..., XN) = −1

2

N∑
i=1

log(σi),

where σi are eigenvalues of the correlation matrix C. The conditional mutual

information can be computed using mutual information according to (2.5).

Long time series (> 106 samples) were used to compute the analytical esti-

mates ensuring that they have a negligible bias and variance with respect to

the non-parametric methods.

In Fig. 2.1 the convergence behavior with respect to the free parameter of

the method is shown as a variable dependent on the amount of data provided

as input to the method. It should be noted that the raw (normalized) time

series were processed as the properties of the estimators are under investiga-

tion in this test. While the B-spline estimate is severely negatively biased for

the selected bin counts, the bias of the Equiquantal estimator changes from

positive to negative as the amount of supplied data increases. It should be

noted that the B-spline estimator is very expensive in terms of computational

effort so higher B-spline curve orders or bin counts take a very long time to

compute. The cross-redundancy estimator, which is metric based, converges

to a value dependent on the size of the neighborhood, it is ease to see that

larger neighborhoods introduce more negative bias into the estimation.

From the above results, it is clear that none of the supplied methods can

be relied upon to provide an estimate of the true value of the conditional

mutual information functional, much less so for short time series. Except

time series length, estimator type and free parameter setting, the estimates of

conditional mutual information are also dependent on the amount of noise in

the source time series, the complexity of the dynamical systems, their relative

parameters and structure. It is thus difficult to decide on the directionality

from the values of the indices alone except under favorable circumstances

where strong assumptions about the individual dynamics and character of

the time series can be made. Tests on model systems indicate that when

the systems are very similar in structure and parameters, the indices may be
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Figure 2.1: Convergence behavior of CMI estimators vs. length of input series
with respect to their free parameter on the Barnes model using the B-spline
method (top left), using the Equiquantal estimator (top right), the cross-
redundancy estimator (bottom left) and the classical histogram estimator
(bottom right). The horizontal full line indicates the analytically computed
conditional mutual information.

directly used as an indicator of the asymmetry of coupling.



Chapter 3

Quantifying dependent states

Quantification of various synchronization types is a much more intensively

studied problem than the detection or quantification of directionality. One

of the most important types of synchronization studied in oscillatory sys-

tems is phase synchronization which is a process of mutual attunement of

rhythms of two oscillating systems. Phase synchronization can occur under

very weak coupling and has been found in stochastic systems and even in

systems exhibiting deterministic chaos [1].

The only method to verify without doubt that a pair of systems exhibits

phase synchronization is to perform an active experiment. If two systems

are apparently oscillating in synchrony, a disturbance should be introduced

in the behavior of at least one of the systems. If the systems thereafter

resume their synchronous motion (after a transient period), then it can be

asserted that phase synchronization is taking place. Frequently, an active

experiment cannot be performed, either because there is no feasible way to

disturb the systems, it is unethical (e.g. in health care) or the experiment

has been performed in the past and only a record in the form of time series

is available. At this point, specialized techniques of time-series analysis are

required to handle the problem.

The situation is further complicated by the fact that multiple paths to

synchronization have been discovered. The same systems with slightly dif-

ferent parameters can exhibit markedly different behavior when coupling is

25
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increased. For example the Rössler chaotic oscillator has been investigated

by Rosenblum et al. [1] and Fig. 3.1 summarizes their findings about paths

to synchronization for a pair of symmetrically coupled Rössler systems

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε1,2(x2,1 − x1,2)

ẏ1,2 = ω1,2x1,2 + 0.15y1,2

ż1,2 = 0.2 + z1,2(x1,2 − 10)

, (3.1)

where ε1,2 is the coupling strength.

Figure 3.1: The relative phase velocity of two slightly detuned symmetrically
coupled Rössler systems (3.1). The coupling strength is represented by C =
ε1,2 and ∆ω is the frequency detuning ω1,2 = 1 ± ∆ω. When the systems
are phase synchronized, the difference in phase velocities is 0. Note that
for different detuning parameters, the transition is either abrupt or gradual.
[Image from Rosenblum et al. [1], used with permission.]

In Fig. 3.1 the (symmetric) coupling strength is represented by C = ε1,2

and ∆ω is the detuning ω1,2 = 1 ± ∆ω. The Rössler systems in the config-

uration described above exhibit either a gradual or an abrupt transition to

synchronization with respect to changing coupling strength. This depends on

the original detuning of their natural frequencies ω1,2 — for small detuning,
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the transition is gradual, while for higher detuning, the transition occurs at

a higher coupling strength but is more abrupt. In general however there is

a threshold of synchronization for each pair of systems and set of parame-

ters (if the systems do synchronize). The situation with respect to changing

coupling strength if all other parameters are fixed is depicted in Fig. 3.2.

Figure 3.2: A depiction of a typical transition to synchronization. With no
coupling (whether uni- or bidirectional), the systems are independent. As the
coupling strength is increased, the systems become more dependent. When
a threshold is passed, the systems align their rhythms and synchronize.

3.1 Definitions of phase synchronization

There is a certain dichotomy surrounding the concept of phase synchroniza-

tion. In theory [62, 2], mathematical definitions exist to describe synchro-

nized systems and the effect of synchronization on their states. In time series

analysis, however, synchronization is often interpreted as a statistical phe-

nomenon, leading to the quantification of a “degree of synchronization”.

The criteria of synchronization that follow make use of the definition of

the generalized phase difference

ψmn = mφ1 − nφ2, (3.2)

where φ1,2 are the instantaneous phases describing the motion of the two

systems, ψmn is the generalized phase difference and m:n is the locking ratio.

Where appropriate, the subscripts m and n are dropped to simplify the
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notation. The wrapped phase difference is defined as

Ψmn = ψmn mod 2π. (3.3)

The condition for phase synchronization is usually given in the form [2]

|ψmn| < const. (3.4)

This condition is only applicable to infinite time series and is not easily

tested in practice as any finite time series will exhibit some maximum differ-

ence whether the two systems synchronize or not. There have however been

attempts to derive upper bounds on the phase difference for synchronized

systems [63]. Another definition given in [2] is denoted frequency locking

and is slightly weaker than the bounded phase difference condition. The

condition can be stated as

m〈φ̇1〉 = n〈φ̇2〉, (3.5)

where 〈·〉 denotes the time average. The condition can also be rewritten as

〈ψ̇mn〉 = 0. (3.6)

When analyzing experimental data, indices quantifying the degree of syn-

chronization [13, 22, 64, 61] are often applied to the time series. It should be

noted that although these indices quantify the dependence between the two

systems, they are generally not connected to either of the above definitions of

phase synchronization. The name synchronization index is thus misleading

and a better-suited name would be ‘dependence index’. If the index grows

monotonically with the strength of coupling (degree of dependence) between

the systems then there exists for a particular pair of systems and a specific

set of conditions a critical value of the index. If the index computed for a

given pair of time series exceeds this value, the systems are synchronized.

However, this critical value depends on practically all the system parame-

ters. Thus a procedure to compute the critical value for a given setting is
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needed to turn a dependence index into a robust detector of synchronized

states. Up to date there have been some attempts to automatically find such

a threshold using the well-established method of surrogate data [33, 32, 65],

which will be elaborated in the next Chapter.

In the following, a selection of phase dependence indices will be briefly

described and their behavior will be elucidated on a pair of Rössler oscillators

which exhibit deterministic chaos.

3.2 Indices of phase dependence

In the following, various indices of phase dependence are introduced and

briefly described. It is again noted that none of these ’dependence indices’

has been derived from either of the definitions of phase synchronization (3.5)

or (3.6). The indices typically reflect the existence of a relationship between

the distributions of the phases. Each of the subsequent methods is effectively

a non-directional index of interdependence.

3.2.1 Conditional probability

Tass et al. [22] have proposed an index based on conditional probability which

characterizes the dependency of the distributions of the phases of both ana-

lyzed systems. The wrapped phase interval 〈0, 2π) is divided into M subin-

tervals — bins. For each subinterval 1 ≤ j ≤M the index

rj =
1

Nj

∑
k,φ1(k)∈bj

eiφ2(k), (3.7)

is computed, where bj denotes the bin corresponding to the j-th subinterval

and Nj is the number of points φ1(k) belonging to bj. As the dependency

grows stronger |rj| → 1, for vanishing dependencies |rj| → 0. The average

value of rj over all the bins bj results in the index

λ =
1

M

M∑
j=1

|rj|. (3.8)
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The number of bins used to quantize the input phase series is a free parameter

of the conditional probability index.

3.2.2 Mean phase coherence

Mean phase coherence has been proposed in Ref. [64] and was based on a

complex order parameter defined by Kuramoto [66] to characterize ensembles

of oscillators. The index has been applied to broadband electroencephalo-

graphic data in [13]. Later it was linked to circular variance [67] by Allefeld

and Kurths [68]. The index is defined as

R =
1

N

∣∣∣ N∑
j=1

exp iψmn(j)
∣∣∣ = 1− CV, (3.9)

where CV denotes the circular variance. The index is related to the spread

of the distribution of phase differences on the space 〈0, 2π) with circular

topology. If the distribution is narrow, then the circular variance is small

and the index R→ 1. For a wide nearly-uniform distribution R→ 0. Mean

phase coherence is computed from the phase differences of unwrapped phases

and has no free parameters.

3.2.3 Mutual information

Mutual information [69] is an established measure of non-linear dependency

between ensembles of data. There is a number of methods to estimate mu-

tual information from time-series. The classical binning (boxing) approach

and its various modifications [45, 46, 61] are still widely applied due to their

robustness, simplicity and performance (cf. Sec. 2.2.1). These binning ap-

proaches map the data points into a discrete sets of values Ξ,Υ, from which

mutual information can be computed using

I(X;Y ) = H(X) +H(Y )−H(X, Y ), (3.10)
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where H(X), H(Y ) are entropies of the time series X and Y respectively and

H(X, Y ) is their joint entropy

H(X) = −
∑
x∈Ξ

p(x) log p(x)

H(Y ) = −
∑
y∈Υ

p(y) log p(y)

H(X, Y ) = −
∑

x∈Ξ,y∈Υ

p(x, y) log p(x, y)

(3.11)

The most basic histogram approach divides the space into M intervals of

the same length and assigns each point to the bin representing the interval

to which it belongs. This approach (equidistant binning) and its theoretical

properties have been investigated by Moddemeijer [45]. A modification of

the above approach exhibiting better statistical properties is the method of

equiquantal binning which splits the dataset into intervals (bins) so that each

bin contains the same amount of points [61]. This method is included in the

subsequent numerical study. The number of bins M is a free parameter of

the method.

Recently a new approach to estimate mutual information based on nearest

neighbor distances was proposed by Kraskov et al. [70] based on the previous

work of Kozachenko and Leonenko [71]. Here mutual information is estimated

directly, without recourse to entropies or the probability density function

using

I(X;Y ) = ψ(k)− 〈ψ(nx + 1) + ψ(ny + 1)〉+ ψ(N), (3.12)

where ψ denotes the digamma function and 〈·〉 denotes the sample average.

To estimate mutual information, each point is used as a reference point and

its k-th nearest neighbor is found in the joint space (X, Y ). Its distance from

the reference point is used to define a hypersphere around the projection

of the reference point into the subspaces X and Y . The numbers nx and

ny denote the number of points in the hyperspheres in the subspaces X

and Y respectively. The authors of [70] have also proposed an alternative
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estimator of mutual information based on hyper rectangles. The estimator

(3.12) is included in the numerical study in this work. The number of nearest

neighbors k used to estimate mutual information is a free parameter of the

estimator.

3.2.4 Shannon entropy of the phase differences

Shannon entropy of the phase differences was proposed by Tass et al. [22] and

requires that the entropy of the generalized phase differences is estimated.

The index is computed as

ρ̃nm =
Smax − S
Smax

(3.13)

where

S = −
∑
i

pi log pi

and Smax = logM , where M is the number of bins and pi denotes the prob-

ability of the wrapped phase difference Ψmn falling into the i-th bin. The

index ρmn is constrained to the range 〈0, 1〉. The value 0 is associated with

a uniform distribution of the phase differences and 1 corresponds to all of

the phase differences being assigned to the same bin. The more peaked the

distribution of phase differences is, the more constrained the wrapped phase

differences are and this should correspond to the phases being more depen-

dent. The number of bins M is a free parameter of the method.

3.3 Example results

Detailed numerical experiments have been performed on coupled Rössler sys-

tems to test how the above methods react to increasing strength of coupling.

The equations for the linearly coupled Rössler pair have already been given

(3.1). In this example, the x coordinate was selected as the observable from

which phase was derived. A Runge-Kutta 4th order scheme was used to in-

tegrate the oscillators with a time step of 0.01 s, the resulting time series
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was sub-sampled by a factor of 10 to yield a time series with ≈ 60 points per

period.

Phase was extracted by constructing a two dimensional time-delay em-

bedding from the x coordinate. This is similar to using a projection of the

attractor into a plane spanned by two selected coordinates and taking the

angle of the line from the origin to the current position of the system state

in this plane as the instantaneous phase [72].

A selection of computational results is in Fig. 3.3. It is clear that all

the indices exhibit a monotonous dependence on the strength of coupling

(up to some small fluctuations). This is a desirable property. Ideally, the

(normalized) index should stay close to zero for couplings smaller than the

synchronization threshold and very quickly rise to its maximum value just

after the synchronization threshold. Some of the indices conform to this ideal

characteristic more, some less as can be seen in Fig. 3.3.



CHAPTER 3. QUANTIFYING DEPENDENT STATES 34

Figure 3.3: Index value vs. coupling strength for different time series lengths:
conditional probability with 16 bins (top left), entropy of phase differences
with 16 bins (top right), Kraskov et al.’s estimator of mutual information
using 1st neighbor (center left), 16th neighbor (center right), mean phase
coherence (bottom left) and binned mutual information (bottom right). Syn-
chronization threshold is approximately at strength of coupling ε1,2 = 0.027.



Chapter 4

Testing the significance

In Chapter 2 different methods to quantify directional interactions have been

discussed and in Chapter 3 methods estimating the amount of statistical

dependence between two time series have been introduced. However these

values may be biased by estimator properties, by the amount of noise in the

time series, by the complexity and characteristics of individual dynamics of

each system. The absolute values of the results of the above algorithms thus

have no clear interpretation except in special circumstances.

Additional algorithms must be supplied to test whether the obtained value

of an index is a significant indication of directional coupling or dependence. A

frequently used approach to the verification of significance of an index value

is the method of surrogate data [33]. Surrogate data in this context are time

series which preserve all the properties of the original time series except the

one which is being tested. In both cases (directionality and synchronization),

the tested property is coupling. Surrogate time series would thus ideally be

series measured from the same systems when it is known that they are not

coupled.

In this Chapter we will concentrate on the standard passive experiment

where only the time series of two systems are available. In this case, sur-

rogates conforming to the above criteria are very difficult to construct from

a single pair of time series with limited length. Let us suppose that the

underlying model of both of the observed dynamical systems is known and

35
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available. Given a fixed coupling strength, if two pairs of time series from

random initial conditions are generated and the first time series is taken from

the first pair and the second time series from the second pair, the resulting

pair of time series has the same dynamics as a pair at the given coupling

strength but each system is fully independent of the other system. The dy-

namics are thus replicated exactly and there is clearly no coupling between

the systems. These surrogates have been called equation-based surrogates

[73].

Testing directionality or dependence algorithms is performed on known

models and the above “ideal” surrogates can be readily constructed. These

surrogate series shall be considered a benchmark or ideal surrogates against

which other surrogate generation algorithms will be compared. If the models

Figure 4.1: Schema of the process of generating surrogates.

of the underlying systems are not available, as is the case with experimental

data, there are a some algorithms that can be used to construct surrogate

time series. These algorithms are the subject of ongoing research and none

of them are close to the best possible surrogates described above or are very

difficult to apply in practice. The input of these algorithms is the original

time series and the output is the desired number of surrogates as shown in

Fig. 4.1.
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4.1 Hypothesis testing

Assuming that applicable surrogates are available, a standard one sided hy-

pothesis test can be constructed to check whether an index value is sig-

nificant. The hypothesis test is understood as a Neyman-Pearson decision

problem [74]: directionality should be detected as often as possible (high

true positive rate) under the condition that the false positive rate (detected

coupling when there is none) is less than a given fraction, usually 5%.

The null hypothesis is that the two systems are not coupled in the di-

rection in which directionality is being investigated. Based on the evidence

in the time series an attempt is made to reject this hypothesis. Assuming

that a bivariate time series is available, the test is performed as follows: the

indices iX→Y and iY→X are evaluated on a predetermined number of surro-

gate datasets generated from the bivariate time series, whence an estimate of

the cumulative distribution function (CDF) of each index can be obtained.

This distribution represents the variability of the directionality indices iX→Y

and iY→X for “independent” systems (i.e. under the null hypothesis). For

an apriori selected level of significance, typically 5%, it is possible to obtain

critical values for the indices from both of the CDFs. If the value of the index

obtained from the original (possibly coupled) bivariate time series is higher

than the associated critical value, it is significant at the chosen significance

level and directional influence in the direction corresponding to the index has

been detected. If the value of the index is not significant then the evidence in

the time series does not support rejecting the null hypothesis of no coupling

in the given direction.

If the generating systems do not vary with time, it is possible to pre-

compute thresholds from the surrogates which ensure detection of directional

influence at given levels of significance. Some frequently used surrogate gen-

eration methods are described in the following paragraphs.
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4.2 Techniques for creating surrogate data

4.2.1 Fourier transform surrogates

Fourier transform surrogates are constructed by computing the Fourier trans-

form of each time series, randomizing the phase of each frequency compo-

nent (except the component corresponding to frequency 0, which must have

0 phase) and then taking the inverse transform. In practice this is accom-

plished by computing the Fast Fourier Transform (FFT) [75] of the time

series and there are many software packages available that provide required

procedures. The autocorrelation function and spectrum are preserved but

the distribution of amplitudes is usually slightly flattened [33]. Further im-

provements on the basic method try to iteratively converge upon surrogates

that more accurately match the original frequency spectrum and the original

amplitude distribution at the same time [32].

4.2.2 Permutation surrogates

Permutation surrogates have been previously applied to phase time series

obtained using the marked events method [76, 77]. The sequence of durations

(intervals) of each cycle of the time series is first extracted. The intervals are

then randomly reordered and a new phase time series is constructed based

on the reordered sequence. The process is repeated until the desired number

of surrogate time series is obtained.

For instantaneous phase, essentially the same procedure applies but care

must be taken to preserve the intra-period information in the signal. The

signal is first divided into periods and all the periods except the first and last

are shuffled randomly. The first and last period are not displaced because this

would create discontinuities in the surrogate signal as usually only a part of

the first and last period is available. The distribution of phases is preserved

when this method is applied. The procedure is illustrated in Fig. 4.2

This procedure has been applied in the present work as the comparison

includes methods which are dependent on the distances between data points

whence it is important to preserve the distribution of phases as accurately
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Figure 4.2: The procedure of shuffling individual cycles in a wrapped phase
signal.

as possible. We note that permutation surrogates differ from the ‘white

noise’ or ‘scrambled’ surrogates where the time-series samples are simply

reshuffled randomly yielding a time-series which preserves the distribution

but completely destroys any structure in the time series.

4.2.3 Twin surrogates

Recently the technique of analyzing non-linear dynamical systems using re-

currence plots [78, 79] has gained some popularity. Recurrence plots (RPs)

indicate instances of time when the trajectory of the dynamical system passes

close to a point it has visited previously. A recurrence plot of a process can

be used to construct twin surrogates [73] by exploiting special points which

are equivalent with respect to the recurrence plot. A twin surrogate is a

time series which is constructed by reordering segments of the original time

series so that the reordering does not alter the recurrence plot. Since sev-

eral important quantities are derivable from recurrence plots, the equivalence

of recurrence plots ensures that these quantities remain unchanged between
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the original data and the surrogate (up to a precision dependent on the res-

olution of the recurrence plot and the amount of data). The application of

recurrence plots to univariate time-series however requires that a state-space

reconstruction technique such as time-delay embedding [8] is applied prior to

the construction of an RP.

4.3 The complete method

A summary of the current method of processing time series attempting to

detect the investigated interactions is shown in Fig. 4.3.

Figure 4.3: The processing pipeline from raw data to the inference on direc-
tionality/dependence. If raw data is needed for surrogate generation (as with
e.g. FFT surrogates), branch 1 is selected. For surrogates requiring phase

time series, branch 2 is used, this is the case with permutation surrogates.

The raw data (pair of time series of observables) must be processed to

obtain phase signals, this process is briefly touched upon in the introduction

1. The phase is then analyzed using the selected index and estimation method

as described in Chapters 2 and 3. A fixed number of surrogates is generated to
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estimate the distribution of the index under the null hypothesis as described

in this Chapter. Depending on the result of the hypothesis test, a final

inference is made. If the index resulting from the experimental time series

was found significantly different from the distribution of indices under the null

hypothesis, the result is significant and coupling in the given direction has

been detected. The test is repeated for the opposite direction. As a result

of this construction, two independent decisions indicating the existence of

coupling in either direction are available.



Chapter 5

Original contributions

In this Chapter, the original contributions to both detection problems are

presented.

5.1 Directionality analysis

Based on previous work of Kozachenko and Leonenko [71] on entropy esti-

mates from nearest neighbor distances, Kraskov et al. [70] have derived an

estimator of mutual information from k-th nearest neighbor distances. Re-

cently, Goria et al. [80] has shown that entropy estimators based on k-th

nearest neighbor distances are consistent. The derivation of a k-th nearest

neighbor (k-NN) estimator of mutual information in [70] based on the work

[71] is introduced because the same rationale has been applied to deriving a

conditional mutual information estimator.

The developments follow [70] and are based on [71, 81, 82]. Assuming that

there are two processes X and Y which have been measured and a record of

their activity is in time series with the sample space X and Y respectively.

A metric needs to be defined in each sample space. The space (X, Y ) is the

joint sample space for which a metric must be available. In the development

of the algorithm, the max norm || · ||inf was used in all cases but the form of

the algorithm does not depend on the metric.

42
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The Shannon (differential entropy) is defined as

H(X) = −
∫
µ(x) log µ(x)dx, (5.1)

where µ(x) is the probability density function on the sample space X. The

formula (5.1) can be understood as an average of the quantity log(µ(x)).

If it would be possible to construct an estimator ̂log(µ(x)), we could then

estimate the Shannon entropy as

H(X) =
1

N

N∑
i=1

̂log(µ(xi)), (5.2)

where N is the number of samples available and xi denotes the i-th sample

(vector). The derivation of the ̂log(µ(x)) estimator is based on the probability

Pk(ε) for the distance between the reference point xi and its k-th neighbor.

Let the probability pi(ε) be the mass of the ε ball centered at xi

pi(ε) =

∫
||ξ−xi||<ε/2

µ(ξ)dξ. (5.3)

The probability Pk(ε)dε corresponds to the probability that there is exactly

one point in the range [ε/2, ε/2 + dε/2] and that there are k− 1 points closer

to xi and N − k − 1 points farther from xi. With the help of pi(ε) this

probability can be expressed as

Pk(ε) =
(N − 1)!

1!(k − 1)!(N − k − 1)!

dpi
dε
× pk−1

i × (1− pi)N−k−1, (5.4)

which is the multinomial formula applied to the above problem. This can be

simplified to

Pk(ε) = k

(
N − 1

k

)
dpi
dε
× pk−1

i × (1− pi)N−k−1. (5.5)
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The expectation value of log pi(ε) is then computed as

E[log pi] =

∫ ∞
0

Pk(ε) log pi(ε)dε

= k

(
N − 1

k

)∫ 1

0

pk−1(1− p)N−k−1 log p dp

= ψ(k)− ψ(N),

(5.6)

where the expectation is computed with respect to a fixed reference point xi.

A simplifying assumption is now made that µ(x) is constant over the entire

ε ball. Then

pi(ε) ≈ cdε
dµ(xi), (5.7)

where d is the dimension of x and cd is the volume of the d-dimensional unit

ball. Now the estimator of log µ(xi) can be written as

log µ(xi) ≈ ψ(k)− ψ(N)− dE[log ε]− log(cd), (5.8)

whence Shannon entropy can be estimated

Ĥ(X) = −ψ(k) + ψ(N) + log cd +
d

N

N∑
i=1

log ε(i) (5.9)

It is clear that this estimate is biased by the assumption that µ(xi) is constant

in the entire ε ball.

To derive the mutual information estimator

I(1)(X, Y ) = H(X) +H(Y )−H(X, Y ). (5.10)

of Kraskov et al. [70] the logic of the above estimate is further manipulated

to reduce its bias. It would be indeed possible to apply the entropy estimate

(5.9) to each term and compose the final result. However the biases in the

individual terms would not cancel because in general the distances to k-

th neighbors in the joint space (X, Y ) would be higher than that in the

subspaces X and Y . The non-uniformity of the probability density function

in the subspaces X, Y and in the joint space (X, Y ) would therefore be
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different and cannot be expected to cancel.

To circumvent this problem, Kraskov et al. have noticed that (5.8) holds

for any value of k and that it is not necessary to select the same value of k

for all reference points xi. The same value of k was used in deriving (5.9)

but it is also possible to estimate the entropy using

Ĥ(X) = − 1

N

N∑
i=1

ψ(nx(i) + 1) + ψ(N) + log cd +
d

N

N∑
i=1

log ε(i), (5.11)

where nx(i) is the number of points inside the hypersphere which intersects

the k-th neighbor and ε is the diameter of the ball which contains all k points.

This can be directly exploited in computing mutual information. The joint

entropy is estimated using (5.9) as

Ĥ(X, Y ) = −ψ(k) + ψ(N) + log(cdX
cdY

) +
dX + dY

N

N∑
i=1

log ε(i), (5.12)

with cdX
, cdY

volumes of unit balls in the X and Y space, dX , dY the di-

mensionalities of said spaces and ε(i)/2 the distance to the k-th neighbor in

the joint space (X, Y ). The idea for reducing the bias in estimating mutual

information is to use the same length scale obtained in the joint space to

estimate the densities in the subspaces µ(xi) and µ(yi).

The entire algorithm then requires that the distance to the k-th nearest

neighbor from the reference point (xi, yi) is found in the joint space (X, Y ).

This distance ε(i)/2 is the used to find the number of nearest neighbor points

in the subspaces X (to obtain nx(i) points) and Y (to obtain ny(i) points)

which are closer than ε(i)/2. Both neighbor counts should be higher than

or equal to k. When these neighbor counts are used in (5.11) by inserting

the appropriate neighbor count found, one can directly insert all terms into

(5.10). Most of the terms will cancel and the final form of the estimator can

be written as

I(1)(X, Y ) = ψ(k)− 〈ψ(nx(i) + 1) + ψ(ny(i) + 1)〉+ ψ(N), (5.13)
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where 〈· · · 〉 is the mean over all reference points (xi, yi).

Although it would be possible to compute the functional I(X, Y |Z) using

the decomposition into multiple mutual information computations as detailed

in the introduction (formula repeated here for clarity)

I(X, Y |Z) = I(X, Y, Z)− I(X,Z)− I(Y, Z), (5.14)

also in this case biases due to the use of different length scales do not cancel.

Our contribution goes further and extends the above reasoning to construct a

direct computation of the functional I(X, Y |Z) which requires consideration

of distances in the space (X, Y, Z). The computation of conditional mutual

information between X and Y , which is conditioned on Z can be split into

multiple entropy estimations (2.6).

Following a similar pattern, we shall determine ε(i)/2, the distance to the

k-th nearest neighbor in the joint (X, Y, Z) space. The same distance scale is

then used to find the number of neighbors in the (now multidimensional) sub-

spaces X, (X,Z) and (Y, Z). These nearest neighbor counts will be denoted

nz(i), nxz(i) and nyz(i) respectively. The multidimensional subspaces can be

treated in the same way as single dimensional subspaces as only the distances

are relevant to the computation. Assuming that the formula (5.11) is used to

estimate the individual entropies, the decomposition into multidimensional

entropies can be written as

I(X, Y |Z) = H(X,Z) +H(Y, Z)−H(Z)−H(X, Y, Z)

= 〈ψ(nz(i) + 1)〉+ ψ(N) + log(cdZ
) +

dZ
N

N∑
i=1

log ε(i)

+ ψ(k) + ψ(N) + log(cdX
cdY

cdZ
) +

dX + dY + dZ
N

N∑
i=1

log ε(i)−
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− 〈ψ(nxz(i) + 1)〉 − ψ(N)− log(cdX
cdZ

)− dX + dZ
N

N∑
i=1

log ε(i)

− 〈ψ(nyz(i) + 1)〉 − ψ(N)− log(cdY
cdZ

)− dY + dZ
N

N∑
i=1

log ε(i)

= ψ(k)− 〈ψ(nxz(i) + 1) + ψ(nyz(i) + 1)− ψ(nz(i) + 1)〉.

(5.15)

Please note that there is no ψ(N) term as it has been canceled out. The

estimation of this functional requires a more sophisticated processing system

as fast methods for satisfying fixed mass hypersphere queries (finding the k-

th nearest neighbor) and fixed range queries (finding all points inside a given

hypersphere) must be used. The metric d∞(x, y) = ||x−y||∞ = maxi |xi−yi|
is used in this work as it is the simplest to work with and the results seem

to converge quicker [70]. Also k-D trees [83] and box indexing algorithms

[84] for fast multi-dimensional nearest neighbor search are suited to work

with the above metric. Methods for this purpose have been tested on high-

dimensional spaces with samples drawn from different distributions and the

results have been published in [85].

Figure 5.1: Convergence behavior of CMI estimates vs. length of input series
with respect to the free parameter on the Barnes model using k-NN method.
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The estimator has been tested on the same Barnes model as the methods

described in Chapter 2. The estimator of conditional mutual information is

based on the theory of k-NN estimation of entropy, which has been shown

to be consistent by Goria et al. [80]. It is thus expected that this functional

will also be a consistent estimator of conditional mutual information. The

numerical study supports this assumption as seen in Fig. 5.1 and clearly

shows that the method seems to converge for many different values of the

free parameter k. This is a unique behavior not seen in any of the previous

methods (cf. Fig. 2.1).

5.2 Synchronization analysis

In this section we present an algorithm for detecting phase synchronized

states. We show that the frequency locking condition (3.6) for phase synchro-

nization is equivalent to the condition that linear regression of the generalized

phase difference has a gradient of zero. This implies that the detection of

synchronization from experimental time series reduces to showing that the

value of the gradient calculated from linear regression is not significantly

different from zero. Determining the significance of the resulting gradient

directly would require a knowledge of the statistical properties of the time

series and underlying systems which we generally do not possess, therefore

we present an alternative technique for determining the significance of the

estimated gradient.

In least squares linear regression we write

ψ(i) = at(i) + b+ ε(i) (5.16)

where a and b are chosen to minimize χ2 =
∑N

i=1 ε(i)
2 [86, 87]. As a corollary

to this we have that mean ε(i) is zero. Subtracting the equations for ψ(i)

from the equation for ψ(i+ 1) and rearranging gives

ψ(i+ 1)− ψ(i)

t(i+ 1)− t(i)
= a+

ε(i+ 1)− ε(i)
t(i+ 1)− t(i)

(5.17)
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Averaging over all samples and taking the limit t(i+1)− t(i) = ∆t→ 0 gives

〈ψ̇〉 = a (5.18)

We note that the the above shows that no matter what the actual evolution

of the phase difference is, a linear trend will be present if the systems are

unsynchronized. The frequency locking condition (3.6) can be restated as

a = 0. In real time series, noise and fluctuations will invariably cause the

value of a to be slightly different from zero. The question is whether the

gradient a is significantly non-zero.

The key difficulty with this approach is that the statistical properties of

the time series are not known. Phase synchronization detection methods

are often applied to complex systems whose physics are poorly understood.

Often the only statistical information available is that contained within the

time series themselves. Standard methods for calculating the error in linear

regression fitting parameters rely on the assumption that the ε(i)’s are inde-

pendent and normally distributed: this assumption is unlikely to be correct.

This leads us to the idea of a bootstrap method.

A horizontal line is fitted to the time series using the same approach as

previously. The equation for a horizontal line is simply

ψ(i) = c+ η(i), (5.19)

where η(i) are the fit errors. The least squares fit is just the arithmetic

average c = 〈ψ(i)〉. Using a least squares fit ensures that 〈η(i)〉 = 0. At this

point we would like to stress that it is not critical that least squares regression

is used. We only require the estimator to guarantee that 〈ε(i)〉 = 0, otherwise

the gradient estimate will be biased.

If the two time series are synchronized then there is no real gradient and

the value of a extracted from the linear fit is just a random fluctuation. This

means that the datasets {ψ(i)− c} and {ψ(i)− (at(i) + b)} are drawn from

the same distribution and, because of the non-zero value of a, one of the

datasets is slightly perturbed. On the other hand, if there is a significant

gradient in the {ψ(i)} then the datasets {ψ(i)− c} and {ψ(i)− (at(i) + b)}
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will belong to different distributions.

There is a standard test to verify if two datasets have been drawn from the

same distribution—the Kolmogorov-Smirnov test [86, 88]. The test computes

the probability that the maximum difference in the cumulative distribution

functions estimated from two series will be observed, assuming that they

are drawn from the same probability distribution [86]. The test makes no

assumptions about the nature of the underlying distribution and is invariant

under a reparameterization of the data. In this work we characterize a time

series as unsynchronized if the Kolmogorov-Smirnov test gives a probability

of less than 5% that the series {ψ(i)− c} and {ψ(i)− (at(i) + b)} are taken

from the same probability distribution.

One disadvantage of the least squares linear regression approach we used

is that the calculated parameters can be biased by outliers due to non-

gaussian deviations from the linear trend [89, 90]. We expect such outliers to

occur in our time series due to the non-linear or chaotic dynamics of the sys-

tems and also due to errors in the phase extraction. Long-term correlations

(comparable to the length of the time series) also cause spurious rejections

of the null hypothesis as sometimes they are detected as a trend. In appli-

cations to experimental data, it is likely that measurement error will be a

further source of fluctuations. While one option to solve this problem is to

try to use a robust estimator, we preferred to use a different approach in

which we have inserted an extra step before carrying out the least-squares

regression: time indices are sorted by the magnitude of the associated phase

difference values. This step leads to a significant reduction in the frequency

of false negatives.

If the phase difference series contains a linear trend, the sort will entail

“local” mixing only and the autocorrelation function of the phase difference

time series is not appreciably changed as shown in Fig. 5.2. If, on the other

hand, there is no long-term trend, the series is “globally” mixed thereby

significantly changing the autocorrelation function. The most prominent

change is that the autocorrelation function drops to zero much quicker than

before the mixing. This is exactly what is required to reduce the influence

of the correlations on the quality of the LS fit. The effect is clearly seen in
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Figure 5.2: Unsynchronized 1:1 Van der Pol oscillators — effect of sorting
the time indices by the phase differences.

Fig. 5.3. This procedure causes slightly higher false positives when very noisy

series are presented — with intense noise the trend in the phase difference

time series becomes obscure and difficult to detect. However, the amount of

data required for accurate detection is dramatically reduced and the method

becomes highly effective.

To show the effectiveness of the proposed method the same synchroniza-

tion detection experiment as in section 6.4 was performed using the Bootstrap
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Figure 5.3: Synchronized 1:1 Van der Pol oscillators — effect of sorting the
time indices by the phase differences.

phase synchronization detector. The results of the test are shown in Fig. 5.4.

No externally generated surrogates are required for the method. The results

of the BPSD (Bootstrap phase synchronization detector) method can be com-

pared to those of the previously presented methods by relating Fig. 5.4 to

Figs. 6.5, 6.6 and 6.7. Even for short time series, the results of the BPSD

method compare favorably to the results of any of the indices coupled with

external surrogates. This is due to the fact that a specific definition of syn-
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chronization is tested and the null hypothesis is restricted. Indeed, the crucial

point is that the BPSD test assumes that the systems are synchronized and

uses the evidence in the time series to try to reject it. This turns out to be

much easier than the opposite way around, hence the efficacy of the test.

Figure 5.4: Detection rates vs. coupling strength for the symmetrically cou-
pled Rössler pair (3.1) for different amounts of data using the BPSD (boot-
strap phase synchronization detector). The synchronization threshold is at
ε1,2 ≈ 0.027. Clearly, supplying a longer time series results in an improve-
ment of the detection rates which is not the case in the construction of the
synchronization test using a dependence index coupled with a surrogate test.
The BPSD detector has very good results even for short time series.

To further explore the properties of the BPSD method previous results

of Rosenblum et al. [1] have been replicated. In Fig. 3.1, the behavior of the

symmetrically coupled Rössler system pair has been shown. The figure is re-

peated here for reference and comparison in Fig. 5.5 together with the results

of detection of synchronization from a time series of length 1024 points. The

results of synchronization detection using the BPSD test are in excellent

agreement with the results previously published in [1]. In each parameter

combination, 512 independent tests were run to estimate the detection rate

reliably. In regions with zero relative phase velocity, the detection rate should

ideally be 100% and in regions with non-zero relative phase velocity, the de-
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tection rate should be 0% as the systems are not synchronized. It is clear

that the actual detection rates are very close to these requirements.
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(a)

(b)

Figure 5.5: Comparison of BPSD test results with previously published
results, length of time series was 1024 points (≈ 18 periods). “Coupling
strength” corresponds to C and “frequency mismatch” to ∆ω. On the left,
relative phase velocities for each parameter combination have been computed
from long time series. When the systems are synchronized, the relative phase
velocity is 0, image from [1], used with permission. On the right, results of the
BSPD test for the same system parameters. The tests are in clear agreement
with the previously published results.



Chapter 6

Numerical studies

In this section we describe detailed numerical studies using a pair of unidirec-

tionally and bidirectionally coupled Rössler systems [29]. The Rössler system

is a paradigmatic low-dimensional dynamical system exhibiting determinis-

tic chaos. It is particularly well suited for model experiments because of it’s

low chaoticity and narrow-band quasi-periodic behavior for some parameter

combinations. A coupled pair of Rössler oscillators can be described by the

differential equations (3.1).

The basic and well-investigated experimental choice of parameters [1, 41]

will be used to investigate several aspects of significance detection. Problems

arising in practice will be elucidated using several plots. In the first part,

the problem of detecting directionality will be investigated and in the sec-

ond part, synchronization detection will be treated in detail with respect to

surrogate generation methods.

6.1 Directionality: Coupling strength

An index of directionality should increase when the strength of coupling

increases. The problem of assigning an absolute strength of coupling be-

tween systems which are different in structure or parameters is ill-defined.

In the special case of two very similar systems (approximately equal main

frequencies, noise levels, dynamics), it is possible to compare the indices of

56
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directionality in both directions. However the behavior of a directionality

index can be tested using a pair of model systems as in this case: the index

of directionality should increase if the coupling strength represented by ε1,2

in the equations 3.1 is increased. This behavior is clearly seen in Fig. 6.1.

Figure 6.1: Mean conditional mutual information estimates and standard
deviations for different estimators: classical histogram with 8 bins (top left),
the equiquantal estimator with 8 bins (top right), the k-NN estimator using
the 4-th neighbor (bottom left) and using the 16-th neighbor (bottom right).
Please note the stability of the reverse direction index for the k-NN method.
The length of the supplied time series was 1024 samples.

All the estimators display monotonously increasing values of the CMI index

as the coupling strength (ε2 in (3.1)) grows. Around the coupling strength

ε2 ≈ 0.1 the indices decrease sharply as the systems become synchronized

and directionality cannot be reliably estimated anymore. Generalized syn-

chronization sets in at ε = 0.12 [23]. There is no clear direction in the flow of

information between the systems and this is reflected in the sharp decrease

of the CMI index.
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6.2 Directionality: Index variability

The observables of the measured processes are random variables and thus

each realization of a process as recorded by a time series is different, even

under the same set of conditions. For different realizations of the processes,

the index of directionality will vary. In this experiment some example dis-

tributions will be shown for uncoupled systems and progressively stronger

unidirectional coupling on the equiquantal estimator and on the k-NN esti-

mator of conduitional mutual information proposed in this work.

To be able to test the significance of an index obtained from experimental

data, where usually only a single time series is available, surrogate testing

is applied as described in Chapter 4. Under ideal conditions, the distribu-

tions obtained would be identical to those obtained for the ideal surrogates

(or equation-based surrogates) described in Chapter 4. We will numerically

show how the directionality indices are distributed for permutation surro-

gates. Moreover, the shape of the distribution is dependent on the strength

of coupling, which will be made clear by comparing surrogate histograms

from different coupling strengths.

In Fig. 6.2 the (smoothed) histograms for various situations are shown.

The left column contains the histograms for the estimates of conditional

mutual information from the time series generated from the models (data)

the right column contains CMI estimates from permutation surrogates. In

each image there are four histograms, for four different values of ε2 (with

ε1 = 0 in all cases). Ideally, only the distribution for the CMI index in the

direction of coupling computed from the model time series data should react

to changing coupling strength. In the other three cases (reverse direction

from data, both directions from surrogates), the histograms should not vary

with increasing strength of coupling. This ideal behavior is very difficult to

reach in practice.

For a positive detection in the direction of coupling, the distributions of

CMI indices from data should be located at higher values than the corre-

sponding distributions from surrogates. For a correct rejection in the oppo-

site direction, the histograms should be positioned so that the 95% quantile
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of the surrogate distribution is higher than the samples in the distribution

on the data. In this way the hypothesis test will be negative which is the

correct behavior. In Fig. 6.2, it is clearly seen that permutation surrogates

provide surrogate time series from which the estimates in the reverse direc-

tion are slightly higher than those from the model time series (second and

fourth row, compare left and right columns). This is not ideal (sensitivity

may be lower for very small couplings) but neither does this behavior cause

additional false positive detections.

Figure 6.2: Distributions of the conditional mutual information estimates
for selected estimators. Estimates from data (original time series) are on
the left, from permutation surrogates on the right. The top half shows the
results of the equiquantal estimator with 8 bins (upper half) and the bottom
half shows the results of the k-NN estimator using the 16-th neighbor. The
length of the supplied time series was 2048 samples.



CHAPTER 6. NUMERICAL STUDIES 60

6.3 Directionality: Detection statistics

For analysis of experimentally obtained data, the most important aspect of

a method is its ability to discriminate between coupled and uncoupled states

in either direction. In the following tests, a selection of detection methods

is tested on a unidirectionally coupled Rössler 1:1 system. Surrogates were

generated using the permutation scheme. The coupling term ε1 = 0 and ε2

was varied between 0 and 0.1. For each coupling, 128 realizations and 128

surrogates were generated. Using the standard hypothesis test described in

Chapter 4 at the significance level of 5%, the methods satisfy the require-

ments of the test if the true positive rate (positive detection if coupling is

present in the given direction) is above 95% and the false positive rate (pos-

itive detection if there is no coupling in the given direction) is less than 5%.

These requirements are not necessarily satisfied for time series which are too

short to provide a reliable estimate of the conditional mutual information

index.

This experiment shows how selected methods behave depending on the

coupling strength and amount of supplied data. In Fig. 6.3 the curves clearly

indicate that true positives are increased for weaker couplings when more

data is supplied to the method. However false positives also increase. This

may be due to the fact that (as has been explained in Chapter 4) permutation

surrogates do not preserve long-term correlations that are important in long

time series. This causes a lower variance in the estimates of the conditional

mutual information index from the surrogates as seen in Fig. 6.4 and the false

positive rate rises above the acceptable 5% level. Permutation surrogates are

thus adequate for use when shorter time series of less than 400 periods (here

8192 points with the ≈ 20 points per period sampling rate).
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Figure 6.3: Rössler systems 1:1, detection statistics vs. coupling strength
for different time series lengths. The equiquantal estimator (8 bins) is on
top and the k-NN estimator (16 neighbors) is at the bottom. Left column
shows the number of the true positives (positive detections when coupling is
present) and the right column shows the number of false positives (positive
detections when no coupling is present).
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Figure 6.4: Distributions of the CMI index on the data and surrogates in the
forward and reverse direction, Rössler systems 1:1. Please note the scale on
the horizontal axis indicating that the reverse direction index distribution for
the direction against coupling is clearly wider in the model time series (left)
than in the surrogate time series (right). The number of samples in the time
series is 16384.
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6.4 Synchronization: Detection statistics

The established method of detecting phase-synchronized states is using one

of the phase indices presented in Chapter 3 with an appropriated surrogate

generation method and constructing a hypothesis test in the spirit of Chap-

ter 4. Here we would like to show how this approach fares on model systems

where the synchronization threshold is known.

The situation becomes clear if one considers the schematic in Fig. 3.2

depicting a typical transition to synchronization. A correct test for synchro-

nization would classify any pair of systems under given conditions into one of

two possible classes { synchronized, unsynchronized }. In the schematic, this

corresponds to the grouping { synchronized, dependent or independent }.
Any of the surrogates (including the “ideal” model surrogates) described

above represent only the null hypothesis of independent systems. A hypoth-

esis test based on the above null hypothesis is in fact classifying into the

two classes { independent, dependent or synchronized }. However for small

amounts of data, the test using standard surrogates has low power and often

does not detect weakly dependent systems but detects synchronized systems

(this is easier to separate from independent systems because the coupling

is stronger) thus conveying the illusion of correctly separating synchronized

states from unsynchronized states.

Detailed testing for different amounts of data provided to the algorithms

as input clearly shows this effect and moreover shows that as more data

is provided to the methods, they converge to a classifier into two states

{ independent, dependent or synchronized }. This is true for all of the

indices listed and all of the surrogates considered. In the following we supply

test results from which the convergence behavior becomes clear. We note

that ideally, the synchronization test should yield no positive detections for

coupling weaker than the threshold (ε1,2 ≈ 0.027) and should detect all cases

as synchronized for coupling strengths above the synchronization threshold.

Also the efficacy of detection should improve as more data is supplied to the

methods.

In Fig. 6.5 the synchronization detection results from the same indices
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as in Fig. 3.3 for the same coupling strength range are shown with the null

hypothesis distribution generated using Fourier transform surrogates. Please

note that the entropy of phase differences has consistently high false positive

rates even for independent systems, this indicates that simply estimating the

entropy of phase differences may not be sufficient means to separate between

even independent and dependent systems. The k-NN mutual information

estimator of phase dependence also has a high number of false positives.

This is due to the fact that the estimator is based on distances between

samples and Fourier transform surrogates significantly affect the distribution

of the samples of the time series and thus also the distribution of distances

between samples is deformed. An alternate (binning) estimator of mutual

information has been tested which does not suffer from this problem. All

the plots display the same convergence behavior: as longer time series are

made available to the algorithm, systems connected with weaker and weaker

coupling are classified as synchronized. This is unsatisfactory as more data

should allow for a more precise discrimination between synchronized and

unsynchronized states.

In Fig. 6.6 again the same indices have been tested, this time using per-

mutation surrogates. Permutation surrogates cause a very slight deformation

in the distribution of distances compared to the Fourier transform surrogates.

It is clearly seen from the figure that the distance-based estimator of mutual

information has low false positives for both parameter settings (1-st neighbor

and 16-th neighbor used to estimate local probability densities). In long time

series, the permutation surrogates do not adequately represent the null hy-

pothesis because long-term dependencies are not preserved in the surrogates.

Permutation surrogates only preserve the waveform inside a single period and

there is no dependency modeling across period boundaries. If the original

time series contain long-term dependencies, their destruction causes a bias

in the distribution of the index under the null hypothesis and the hypothesis

test becomes unbalanced. This is seen for longer time series especially in the

k-th nearest neighbor estimator (middle row). Qualitatively, all of the tested

indices behave exactly like with Fourier transform surrogates. It is clear that

once again, the methods actually discriminate between independent and de-
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pendent (or synchronized) states but for short time series, the test has low

power and thus it seems that the methods seem to separate synchronized

states from unsynchronized states.

There are many possible modifications to the above surrogate generation

schemes and an opponent could always state that surrogates used in the above

tests are not sufficiently sophisticated and that better surrogates would yield

different and satisfactory results. This is why the “ideal” equation-based sur-

rogates which represent the theoretical limit of all practical surrogate genera-

tion schemes have been used to test the indices as well. These surrogates are

independent of any surrogate generation algorithm (or modification) because

they are generated directly from the underlying models. Fig. 6.7 summarizes

the results of the test with model based ideal surrogates. Please note that

the horizontal range of coupling strengths ε1,2 ∈ 〈0, 0.1〉 is different from the

above tests (ε1,2 ∈ 〈0, 0.04〉) because the overall sensitivity is smaller. The

qualitative behavior of successively weaker couplings classified as synchro-

nized as longer time series are supplied to the systems is preserved.

The above tests summarize that in practice as well as in theory the cur-

rently applied synchronization detection techniques are not suitable for de-

tecting phase synchronized states. We would like to note here that this

behavior has been found due to large scale testing of indices using computer

clusters. Large scale testing is not standard practice in the community devel-

oping algorithms for testing synchronization and directionality. Publications

in impacted journals do not usually contain plots of detection rates and it is

difficult to understand how effective the proposed methods are.
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Figure 6.5: Detection rates vs. coupling strength for the symmetrically cou-
pled Rössler pair (3.1) for different amounts of data: conditional probability
with 16 bins (top left), entropy of phase differences with 16 bins (top right),
Kraskov et al.’s estimator of mutual information using 1st neighbor (center
left), 16th neighbor (center right), mean phase coherence (bottom left) and
binned mutual information (bottom right). The synchronization threshold
is at ε1,2 ≈ 0.027. In all of the methods there is a clear tendency to de-
tect weaker and weaker couplings when more data is supplied. The Fourier
transform method was applied to generate surrogate time series.
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Figure 6.6: Detection rates vs. coupling strength for the symmetrically cou-
pled Rössler pair (3.1) for different amounts of data: conditional probability
with 16 bins (top left), entropy of phase differences with 16 bins (top right),
Kraskov et al.’s estimator of mutual information using 1st neighbor (center
left), 16th neighbor (center right), mean phase coherence (bottom left) and
binned mutual information (bottom right). The synchronization threshold
is at ε1,2 ≈ 0.027. In all of the methods there is a clear tendency to detect
weaker and weaker couplings when more data is supplied. The permutation
strategy was applied to generate surrogate time series.
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Figure 6.7: Detection rates vs. coupling strength for the symmetrically cou-
pled Rössler pair (3.1) for different amounts of data: conditional probability
with 16 bins (top left), entropy of phase differences with 16 bins (top right),
Kraskov et al.’s estimator of mutual information using 1st neighbor (center
left), 16th neighbor (center right), mean phase coherence (bottom left) and
binned mutual information (bottom right). The synchronization threshold
is at ε1,2 ≈ 0.027. In all of the methods there is a clear tendency to de-
tect weaker and weaker couplings when more data is supplied. The “ideal”
model surrogates have been generated to supply the distribution under the
null hypothesis. Please note that the horizontal axis range is different from
the previous two plot groups.



Chapter 7

Experimental data study

One of the aims of the BRACCIA project is to apply recent findings in

the analysis of coupling from time series to data recorded in the waking

state and under general anesthesia and to discover factors differentiating

between these two states. Methods developed in the framework of non-linear

dynamics were applied to experimental data acquired from human volunteers

and on an animal model of general anesthesia. The underlying assumption is

that the subsystems in the human cardiorespiratory system behave like noisy

dynamical systems and can be analyzed as a set of weakly coupled non-linear

oscillators. The central problem is then the detection of changes in coupling

between respiratory, cardiac and cortical oscillations.

The data from human volunteers was acquired in a clinical setting in

the Ulleval Hospital in Oslo and in the Royal Lancaster Infirmary under

the supervision of qualified anesthesiologists. The ethical committee had

reviewed the procedures and allowed the experiment to proceed. In this

study, 25 patients were included (17 from the Ulleval Hospital and 8 from

the Lancaster Infirmary).

In this Chapter, interactions between the cardiac and respiratory oscil-

lators are investigated in the data obtained from human volunteers. In the

next sections, the full measurement protocol is recounted, the preprocessing

procedure is described and the results of the preliminary study involving the

cardiac and the respiratory systems are presented.
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7.1 Protocol

Measurements were carried out in the waking state and under general anes-

thesia for spontaneous and controlled respiration depending on the choice of

anesthetic for the subject. The aim was to obtain a record of about 20–30

minutes of the activity of the human organism in each state. In this first

study only patients with no neurological or degenerative diseases and with

no cardiovascular complications were included. Patients that have agreed to

provide data to the project were lying still while the recording in the waking

state took place. Then general anesthesia was induced using a method which

was randomly selected beforehand. One possibility was the use of Sevoflu-

rane (inhalatory anesthetic) together with a muscle relaxant (cisatracurium

— trade name Nimbex) after the administration of which the patient was

provided with an artificial breathing apparatus. The other possibility is

Propofol (short-acting intravenous anesthetic) where no muscle relaxant was

administered and the patient continued breathing on his/her own. A total

of 10 time series from each patient were measured at a sampling rate of 1024

Hz. For our purposes ECG and the Respiratory signal are most important

and will be described in detail.

EEG (electroencephalogram) was measured with 4 channels (EEG1 – EEG4)

using BIS (Bispectral index) electrodes. The BIS electrodes are mounted on

a strip with 3 electrodes. One of these electrodes is placed near the eye socket

and is referenced as the ground electrode. The two remaining electrodes pro-

vide a signal that indicates the voltage between themselves and the reference

electrode. In analysis the pairs of channels EEG1/2 and EEG3/4 are then

again subtracted from each other (i.e. EEG2-EEG1 and EEG4-EEG3) to ob-

tain a “bipolar” montage resulting in two EEG channels available for further

processing.

ECG (electrocardiogram) was measured using three electrodes adjusted to

obtain well-defined R-peaks: one electrode was placed on the left shoulder,

another electrode on the right shoulder and the third electrode was placed
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on the lowest rib on the left side of the subject. The ECG signal condi-

tioning channel consists of input protection circuitry, input lowpass filtering,

an instrumentation amplifier, a gain amplifier, an active lowpass filter and a

reference (virtual ground) driver. The signal is digitized by a 24-bit ∆Σ A/D

converter and filtered digitally through LP FIR filter. Finally it is fed through an

isolator to the digital part of the system. Input signals are filtered first by low-

pass filters: normal mode filter with a cutoff frequency of approximately

3.2kHz and commonmode filter with a cutoff frequency of ≈ 50kHz. The fil-

ters are implemented to reduce the influence of RF (radio frequency) noise.

The ECG signal conditioning channel does not contain a notch filter to elim-

inate the influence of the mains frequency (50Hz/60Hz) so that the phase in-

tegrity of the ECG signal is not compromised.

Blood pressure was measured using a piezoelectric transducer attached

to the right first finger.

Respiratory effort was measured using a TSD102 Respiratory effort trans-

ducer. It is a piezoelectric sensor which is equipped with a silicon rubber

strain assembly to measure the change in the thoracic circumference [91]. An

elastic belt was tied around the patients chest and adjusted for optimal data

acquisition. This was especially difficult as the inspiration/expiration pattern

has changed during general anesthesia and it was important to prevent the

belt from being slack or being too tight and exceeding the maximum sensor

range of the piezoelectric transducer. The signal conditioning channel of the

piezoelectric transducer has an input protection, a transconductance am-

plifier and an active lowpass filter with cutoff frequency of 16kHz. Fi-

nally the signal is digitized by a 24-bit ∆Σ A/D converter and digitally fil-

tered through a lowpass FIR (finite impulse response) filter with a cutoff fre-

quency 4.9 kHz.

Skin conductivity was measured with two electrodes, the first on the ball

of the right thumb, and the other between the first and second joint. Both

electrodes were treated with electrical conductivity gel before the attachment.
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Figure 7.1: Raw time series measured from the patient 118 under general
anesthesia.

Temperature was measured with two channels. The first channel origi-

nated on an electrode on inside right ankle (medial malleolus) bone, the sec-

ond channel on inside right wrist (radical styloid) bone. The analog-digital

converter was of the ∆Σ type with resolution of 24 bits.

The actual number of effective bits in each sample was of course lower

than 24 bits due to effects such as thermal noise and patient motion artifacts.

7.2 Preprocessing

The two time series relevant for further analysis are the ECG and the Res-

piratory effort time series. Because of the way the respiratory effort was

measured (using an elastic belt), the time series contained artefacts in the

form of spikes whenever a heartbeat occurred. This effect was created by

a mechanical perturbation of the lungs in response to a contraction of the

heart muscles. This effect was mitigated by the use of a 1.45s moving average

window to smooth the signal. An example of the measured time series is in

Fig. 7.1. Phase from the ECG series was extracted by detecting the R-peaks

of the signal and linearly interpolating between these events (cf. Sec. 1.3) to

obtain marked-events phase. The respiratory effort signal was treated in a

similar way - the peaks of the signal were detected and marked. To ensure
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Figure 7.2: The heart rate variability (top) and respiratory rate variability
(bottom) for the patient 118 in the waking state (resting).

that local maxima arising from the action of noise (as opposed to those aris-

ing from the dynamics) did not contaminate the results, an extra condition

was imposed on the peaks - the local maximum must be maximal in some

neighborhood (usually about 1/4 of the signal period which was confirmed

visually) 1. Marked-events phase was obtained by interpolating between the

obtained event times. In Fig. 7.2, the intervals between successive R peaks of

the ECG series (the heart rate variability or HRV) and the intervals between

the peaks of the respiratory signal (the respiratory rate variability or RRV)

are shown. The HRV and RRV is shown for the same patient under general

anesthesia in Fig. 7.3. In this case the breathing became shallower and the

heart rate increased. This is however not a general effect.

Finally the series were subsampled by a factor of 40 to obtain approxi-

mately 25 samples per period. This ensures that for even for heart rates of

1.3Hz about 20 samples per period are still available. Most patients have their

heart rate under this threshold which was selected to balance the amount of

samples per period for all patients. Tests on models have previously shown

1Thanks are due to David Kenwright of the Lancaster University who has performed
the above preprocessing procedure
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Figure 7.3: The heart rate variability (top) and respiratory rate variability
(bottom) for the patient 118 under general anesthesia.

that about 20 points per period are suited for directionality and synchroniza-

tion analysis using the methods described in this work.

7.3 Analysis

The ECG phase and Respiration phase time series were analyzed using an

overlapping moving window strategy with windows of length 8192 points (i.e.

about 320s) with 25% overlap (80s). In each window the relevant index was

computed and 200 surrogates were generated. The significance of the result

was tested in each window independently at the significance level 5% and the

resulting indicator was the proportion of significant detections of the index

to the total number of windows analyzed in the investigated time series.

This indicator is more stable than using the time course of the index to

find regions with higher or lower values of the index as these changes may

be brought about by other effects than changing coupling. Such effects can

be less noise in the measurements, changed heart rate variability, etc. The

indices will of course react to any such dynamical changes with a variation

in the resulting value. Another alternative to the selected procedure would
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be to test a standardized value for each index

K =
i(X)− i(S)

σ(i(S))
, (7.1)

where i(X) is the value of the index on the data, i(S) is the average value of

the index on the surrogate data set and σ(i(S)) is the standard deviation of

the index on the surrogate data set. The value K is sometimes identified with

the Z-score but this step contains a hidden assumption that the distribution

of the index on the surrogates is approximately normal. This index may also

give misleading results if the shape of the distribution of the index on the

surrogate data set is not stable throughout the entire experiment. The dis-

tribution on the surrogate data set is a distribution under the null hypothesis

of uncoupled systems and may change independently of the distribution of

the index on the actual data set. The above arguments suggest that the pro-

portion of windows with significant results for a given index seems the most

robust indicator of changes in the coupling of the cardiorespiratory system

given the fact that other changes are expected to occur (e.g. changes in mean

frequency of the subsystems).

In the analysis, three indices were computed using a selection of estima-

tors:

• dr→c average conditional mutual information from the respiratory os-

cillator to the cardiac oscillator,

• dc→r average conditional mutual information from the cardiac oscillator

to the respiratory oscillator,

• s dependency index between the cardiac and the respiratory oscillators.

The directionality indices dr→c and dc→r were computed with three dif-

ferent methods to test if the results largely depend on the method:

• k-NN, the k-nearest neighbor estimator suggested in this work (Sec. 5),

• CINT, the cross-redundancy estimator using the correlation integral

(Sec. 2.2.2),
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• EQQ, the equiquantal estimator (Sec. 2.2.1).

The motivation behind applying different methods is to examine how the

results of the analysis are affected by concentrating on different features of

the signal (e.g. distances between samples — k-NN and CINT, relationships

between discretized series - EQQ) when computing the same functional: con-

ditional mutual information. The absolute values of the proportion of sig-

nificant values are expected to vary but all the methods should react in a

consistent manner to the state of consciousness of the subject (waking or

under general anesthesia) if the effect of the change of state is stable.

Multiple dependency indices s were also considered

• CPR, the conditional probability (Sec. 3.2.1),

• k-NN, mutual information estimated using the method of Kraskov et al.

(Sec. 3.2.3),

• QNT, mutual information estimated using the equiquantal approach

(Sec. 3.2.3).

It is known that dependency of the cardiac and respiratory subsystems in-

creases during anesthesia [76]. It is expected that the present analysis will

be consistent with these results. The computational results summarized in

Figs. 3.3, 6.5, 6.6 clearly indicate that each method of computing the statis-

tical dependency between signals gives quite different results for a wide set

of coupling strengths from non-existent couplings to a phase-synchronized

state. Here we investigate what sort of variability will there be between the

methods on a real dataset. Usually in experimental works, investigators only

use one method of quantifying the dependence or directionality and then the

variability with respect to the method used is not immediately apparent.

7.4 Results

The dependence indices paint a consistent picture of what is happening

within the cardiorespiratory system: all of the presented indices increase
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when the patient is in the anesthetized state. The absolute values of the in-

dices are quite different and are sensitive to the choice of parameters (Fig. 7.4

for the k-NN estimator k = 32 and k = 8). Please note that the k-NN index

is biased negatively on short time series for large k parameters and that is

why the index acquires negative values in some cases. This does not affect the

surrogate test because the estimators have identical bias on the surrogates.

The distributions of the significant results compared all results are slightly

different across methods, however the median values of the distributions are

very similar across all methods and parameters (not all analyzed methods

shown here). The shift between the distributions is also consistent across all

analysis methods — clearly in the anesthetized state, the proportion of sig-

nificant detections grows considerably (to approximately twice the amount

of the significant detections in the waking state). The k-NN estimator with

k = 32 neighbors even exhibits an opposite change of the magnitude of the

index itself (cf. top right image in Fig. 7.4) but the results of the surrogate

tests is again in agreement with the rest of the methods.

No compensation has been done for the different frequencies of the two

systems and therefore the mean phase coherence method was not used in

the analysis as it requires that the frequency ratio is taken into account in

the generalized phase difference. Since the ratio of frequencies is not stable

during the measurement of a single patient this might introduce difficulties

as the ratio would have to be adjusted in each analysis window. This may

compromise the consistency of the measurements. Since methods based on

mutual information and on conditional probability do not require such cor-

rections unless they are applied in the regime of small sample sizes, they may

be easier to use in practice.

The analysis of directionality reveals another clear effect of general anes-

thesia on the cardiorespiratory system: the directional influence from the

lungs to the heart is reduced and the opposite influence is increased. This is

consistent with a shift in directionality in the cardiorespiratory system. In

the waking state, directional influence is usually present from the lungs to-

wards the heart, so called “Respiratory sinus arrhythmia” or variation of the

heart rate according to the inspiration/expiration cycle of the lungs. This
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Figure 7.4: Box plots (distribution summaries) for selected dependence in-
dices: conditional probability CPR with 16 bins (top left), k-nearest neigh-
bors k-NN with 32 neighbors (top right), the same with 8 neighbors (bottom
left) and mutual information QNT estimated using the equiquantal estimator
with 16 bins (bottom right).
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fact is consistent with the summary in Fig. 7.5, where the box plots show

that in the waking state, the proportion of significant directionality results

is well above 60% for all methods. Under general anesthesia, this influence is

greatly reduced. On the other hand, directional influence from the heart to

the lungs is not clear in the waking state but the detected significant results

are much higher in the anesthetized state for all methods and parameters

with the exception of the CINT/0.3 method (Cross-redundancy, ε = 0.3).

Cross-redundancy methods use a fixed-volume approach to estimating the

local PDFs of the time series and do not adapt to data like, for example the

k-NN method which adjusts the size of the neighborhood to the local density.

An inadequate neighborhood size may be the reason that cross-redundancy

does not behave the same for different parameters ε.

Observing the results from different methods and parameter settings, it is

clear that there is some variation between the methods and even with respect

to the parameters within one method. The medians of the distribution (in-

dicated by a thick line in Fig. 7.5) are however very stable across parameter

choices and even across different methods. There is also a clear agreement be-

tween the methods in the change of the indicator between general anesthesia

and the waking state for both directionalities.
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Figure 7.5: Summary of the results from the analysis of directional influ-
ence obtained from the preliminary BRACCIA dataset. Each method has
different distributions of the computed metric (proportion of significant re-
sults) but the methods agree on the median of the distribution and on the
effect that general anesthesia has on the cardiorespiratory system interac-
tions: the directional influence from the lungs to the heart is decreased and
the directional influence from the heart to the lungs is increased. Estima-
tors: cross-redundancy with ε = 0.1 (top left), the same with ε = 0.3 (top
right), equiquantal estimator with 8 bins (middle row left), simple histogram
estimator with 8 bins (middle row right), k-nearest neighbors estimator with
4 neighbors (bottom left) and the same with 16 neighbors (bottom right).



Chapter 8

Conclusion

In this work the framework for analyzing systems of self-sustained non-linear

oscillators was presented and the necessary concepts were introduced. The

conditions for the application of the phase dynamics approach and it’s ad-

vantages were described. The concept of weak interactions was presented

and the problem of quantification of weak interactions was divided into two

classes: synchronization detection and directionality analysis.

The core problem studied in this work is the problem of analyzing the

full range of weak interactions in a pair of non-linear oscillators. The effect

of coupling strength on synchronization properties was investigated and nu-

merical experiments showing how synchronized states can be detected in the

paradigmatic pair of Rössler oscillators were performed. Methods of quanti-

fying strength of directional coupling have been introduced and information-

theoretic methods have been studied in detail. Conditional mutual informa-

tion was introduced and explained as the functional of choice for estimating

the “net flow of information” [41]. Selected estimation procedures based on

different concepts were theoretically investigated and numerically tested and

their behavior depending on their free parameter (if any) was analyzed. A

new estimator based on [70, 71] converging to the true value of conditional

mutual information independently of the value of its free parameter has been

derived. The estimator has been empirically shown to have the properties

that have been theoretically expected. Although the estimator has favorable

81
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properties, caution is advised when applying the estimator to real data as

noise and deformations of the measured signal can perturb the metric rela-

tionships in the sample space. Binning estimators seem to be less sensitive

to the influence of measurement noise and signal deformations.

The current methodology for detecting phase synchronization was ana-

lyzed and it was ascertained that frequently applied methods detect phase

synchronization in the weaker sense. This means that the tendency to syn-

chronize is detected rather than phase-synchronized states. The currently

employed methods results in marking any dependent states as synchronized

even if the coupling is not strong enough to actually cause the systems

to enter a phase-synchronized state. Large scale testing was conducted to

verify this phenomenon for a selection of frequently applied methods. A

new approach to detecting synchronized states using the null hypothesis of

the phase-synchronized state was introduced and shown to detect phase-

synchronized states satisfactorily. The effectiveness of the detector was again

shown using detailed numerical studies.

The bias and variance of the estimators of conditional mutual information

have been investigated for a pair of unidirectionally linearly coupled ARMA

(Autoregressive, Moving Average) processes, where the conditional mutual

information can be estimated analytically from the correlation matrix. Since

it is not in general possible to use the absolute values of the directionality

indices to analyze experimental data, the significance of an obtained direc-

tionality index value must be verified using a hypothesis test. The method of

surrogate data was introduced as a possible solution to this problem. Various

methods of generating surrogate data with different properties have been re-

counted. Numerical experiments using a pair of similar Rössler systems have

been performed to analyze the efficacy of various estimators with respect to

the permutation surrogate generation method.

A selection of dependence analysis methods and directionality detection

methods were applied to electrocardiogram and respiratory effort time series

obtained within the project BRACCIA. Time series originating from 25 pa-

tients were analyzed with the goal of finding differences in the functioning

of the cardiorespiratory system between the waking state and under general
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anesthesia. Previous findings on stronger overall coupling between the two

subsystems were confirmed by the present analysis. It was found that in

the preliminary study there were clear changes of directional influence: in

the waking state, the respiratory system affected the cardiac oscillator more

than under general anesthesia and vice-versa for the influence of the cardiac

system on the respiratory system. The indication of directional influence was

stable even when the free parameter of some methods was changed to test

the stability of the results.

Further work will concentrate on generalizing the above framework to a

system of many coupled oscillators instead of studying the reduced situation

of a single pair of systems. This situation arises for example when measuring

the activity of the human brain. If for example magnetic resonance imaging

(MRI) is used to obtain a multivariate signal from the brain, the resulting

data contains tens of thousands of time series, with each characterizing brain

activity at a high spatial resolution using a BOLD (blood oxygen level depen-

dent) signal. Another avenue of research consists in trying to derive an index

capturing directional influence between systems that would be robust with

respect to deformations of the time series which are theoretically difficult to

analyze. Enormously helpful in practice would be an algorithm that would

include an internal significance test thus eliminating the need for a separate

surrogate generation algorithm.
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aspects of synergetic processes in the auditory cortex as revealed by the

magnetoencephalogram. In E. Basar and Th. Bullock, editors, Dynamics

of cognitive and sensory processing in the brain, pages 84–105, Berlin,

Heidelberg, New York, 1988. Springer.
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