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Abstract: Using the integral equation method we study solutions of bound-
ary value problems for the Stokes system in Sobolev space H1(G) in a bounded
Lipschitz domain G with connected boundary. A solution of the second problem
with the boundary condition ∂u/∂n − pn = g is studied both by the indirect
and the direct boundary integral equation method. It is shown that we can
obtain a solution of the corresponding integral equation using the successive
approximation method. Nevertheless, the integral equation is not uniquely solv-
able. To overcome this problem we modify this integral equation. We obtain
a uniquely solvable integral equation on the boundary of the domain. If the
second problem for the Stokes system is solvable then the solution of the modi-
fied integral equation is a solution of the original integral equation. Moreover,
the modified integral equation has a form f + Sf = g, where S is a contractive
operator. So, the modified integral equation can be solved by the successive
approximation. Then we study the first problem for the Stokes system by the
direct integral equation method. We obtain an integral equation with an un-
known g = ∂u/∂n − pn. But this integral equation is not uniquely solvable.
We construct another uniquely solvable integral equation such that the solution
of the new eqution is a solution of the original integral equation provided the
first problem has a solution. Moreover, the new integral equation has a form
g + S̃g = f , where S̃ is a contractive operator, and we can solve it by the
successive approximation.
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1 Introduction.

The most important problems for the Stokes system are the first problem

∆u = ∇p in G, ∇ · u = 0 in G, (1)

u = g on ∂G (2)

and the second boundary value problems. There are two relevant second bound-
ary value problems for the Stokes system (1): One with the boundary condition

∂u
∂n

− pn = g on ∂G (3)

and the second one with the boundary condition

T (u, p)nG = g on ∂G. (4)
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Here n = nG is the outward unit normal vector of G, u = (u1, . . . , um) is a
velocity field, p is a pressure and

T (u, p) = 2∇̂u− pI (5)

is the corresponding stress tensor. Here I denotes the identity matrix and

∇̂u =
1
2
[∇u + (∇u)T ] (6)

is the strain tensor, with (∇u)T as the matrix transposed to ∇u = (∂juk),
(k, j = 1, . . . ,m). Remark that ∇ · u = ∂1u1 + . . .+ ∂mum is the divergence of
u.

We shall suppose that G is a bounded domain with connected Lipschitz
boundary in Rm. Many authors have studied the second problem with the
boundary condition (4) by the integral equation method. It is a starting point
for the boundary element method ([7], [16]). M. Kohr studied classical solutions
of this problem on domains with smooth boundary (see [8]). B. E. J. Dahlberg,
C. Kenig and G. C. Verchota studied this problem with a boundary condition
g ∈ L2(∂G) on domains with Lipschitz boundary ([2]). D. Medková studied
in [12] a weak solution in H1(G). A solution was looked for in the form of a
hydrodynamical potential with an unknown density from H−1/2(∂G). It was
proved that a solution of the corresponding integral equation can be approxi-
mated using the successive approximation method. Then the similar result was
proved also for the direct integral equation method.

In this paper we shall prove the same results for the second problem with
the boundary condition (3). Then the first problem for the Stokes system (so
called Stokes problem) is studied by the direct integral equation method, i.e. a
solution of the Stokes problem with the boundary condition f is expressed in
the form

u(x) = EGg(x) +WGf(x), p(x) = QGg(x) +RGf(x) x ∈ G,

where g = ∂u/∂nG−pnG, EGg is the hydrodynamical single layer potential with
the density g, QGg is the corresponding pressure, WGf is the hydrodynamical
double layer potential corresponding to the boundary condition (3) and RGf is
the corresponding pressure. It is shown that g = ∂u/∂nG − pnG is a solution
of a uniquely solvable integral equation and this equation can be solved by the
successive approximation method.

2 Weak solution of the second problem

If A,B ∈ Rm×m are matrices with A = (Aij), B = (Bij) denote

A : B =
3∑

i,j=1

AijBij .
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If X(M) is a vector space of real functions (or distributions) on a set
M denote by X(M,C) its complexification, i.e. X(M,C) = {v1 + iv2; v1 ∈
X(M,R) = X(M), v2 ∈ X(M)}. If K = R or K = C and k ∈ N , we denote
X(M,Kk) = {u = (u1, . . . , uk);uj ∈ X(M,K) for j = 1, . . . , k}.

In the entire article suppose that G is a bounded domain with connected
Lipschitz boundary in Rm. We shall study the second boundary value problem
in the Sobolev space H1(G;Rm). We denote by Hs(G) the Sobolev-Slobodetski
space of order s. Remark that H0(G) = L2(G) and H1(G) = {f ∈ L2(G);∇f ∈
L2(G;Rm)} is equipped with the norm

‖f‖H1(G) =
{∫

G

[
f2 + |∇f |2

]
dx

}1/2

.

If ϕ is a Lipschitz function on Rm−1 and S = {[x, ϕ(x)];x ∈ Rm−1} we say
that f ∈ Hs(S) if f(x, ϕ(x)) ∈ Hs(Rm−1). Since G has Lipschitz boundary
there are bounded open sets U1, . . . , Uk and Lipschitz functions ϕ1, . . . , ϕk such
that ∂G ⊂ U1 ∪ . . . ∪ Uk and for each j ∈ {1, . . . , k} there is a coordinate
system such that Uj ∩ ∂G = Uj ∩ Sj with Sj = {[x, ϕj(x)];x ∈ Rm−1}. Choose
ωj ∈ C∞(Rm) supported in Uj with 0 ≤ ωj ≤ 1 for j = 1, . . . , k such that
ω1 + ω2 + . . . ωk = 1 on a neighborhood of ∂G. We say that f ∈ Hs(∂G) if
ωjf ∈ Hs(Sj) for j = 1, . . . , k.

Recall that H1/2(∂G) is the space of traces of H1(G) endowed with the norm

‖v‖H1/2(∂G) = inf{‖u‖H1(G);u ∈ H1(G), v = u|∂G} (7)

and H−1/2(∂G) is the dual space of H1/2(∂G).
If (u, p) is a classical solution of the second problem for the Stokes system

(1), (3) and v ∈ C2(Rm, Rm), then the Green formula yields∫
∂G

g ·v dy =
∫

∂G

[
∂u
∂n

− pn
]
·v dy =

∫
G

[∇u : ∇v +v ·∆u−v · ∇p− p(∇ ·v)] dy

=
∫
G

[∇u : ∇v − p(∇ · v)] dy.

We formulate a weak solution of the problem (1), (3) as follows:
Let g ∈ H−1/2(∂G,Rm). We say that u ∈ H1(G,Rm), p ∈ L2(G,R1) is a

weak solution of the problem (1), (3) if ∇u = 0 in G and∫
G

∇u : ∇v dy −
∫
G

p(∇ · v) dy = 〈g,v〉 (8)

for each v ∈ H1(G,Rm).
It is well known that if u ∈ H1(G,Rm), p ∈ L2(G,R1), ∇u = 0 in G and∫

G

∇u : ∇v dy −
∫
G

p(∇ · v) dy = 0
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for each v ∈ C∞(G;Rm) with compact support in G, then u ∈ C∞(G;Rm),
p ∈ C∞(G;R1) satisfy Stokes system (1).

Remark that if g ∈ H−1/2(∂G,Rm) and u ∈ H1(G,Rm), p ∈ L2(G,R1) is a
weak solution of the problem (1), (3) then∫

G

∇u : ∇w dy = 〈g,w〉 ∀w ∈ H1(G,Rm),∇ ·w = 0. (9)

First we study the problem of uniqueness of a solution.
Lemma 2.1. If g ∈ H−1/2(∂G,Rm) and u ∈ H1(G,Rm), p ∈ L2(G,R1) is

a weak solution of the second boundary value problem (1), (3), then 〈g, c〉 = 0
for each constant vector function c (i.e.

∫
g = 0). If v, q is another weak

solution of the problem (1), (3), then p = q and u− v is constant.
Proof. If c is a constant function then (9) gives that 〈g, c〉 = 0.
u−v, p− q is a weak solution of the second boundary value problem for the

Stokes system with zero boundary condition. Putting w = u − v we get from
(9) ∫

G

|∇(u− v)|2 dy = 0.

Thus u−v is constant. Since u−v, p−q is a solution of the Stokes system then
∇(p − q) = ∆(u − v) = 0. Thus there exists a constant b such that p − q = 0.
From the boundary condition 0 = ∂(u− v)/∂n− pn = −bn. Hence b = 0.

3 Hydrodynamical single layer potential

We shall look for a solution of the second boundary value problem for the Stokes
system in the form of a hydrodynamical single layer potential. The aim of this
section is to assemble some basic facts on this potential.

Let Ω ⊂ Rm be an open set with compact Lipschitz boundary ∂Ω. Denote
Ωe := Rm \ cl Ω its complement with ∂Ωe = ∂Ω. Here cl Ω denotes the closure
of Ω and ∂Ω the boundary of Ω.

Denote by ωm the surface of the unit sphere in Rm. For x ∈ Rm and
j, k = 1, . . . ,m define

Ejk(x) =


1

2ωm

[
δjk

|x|2−m

m−2 + xjxk

|x|m

]
, m > 2,

1
4π

[
δjk ln 1

|x| + xjxk

|x|2

]
, m = 2,

(10)

Qk(x) =
xk

ωm|x|m
. (11)

For Ψ = [Ψ1, . . . ,Ψm] ∈ H−1/2(∂Ω, Rm) define the hydrodynamical single
layer potential with density Ψ by

(EΩΨ)(x) =
∫

∂Ω

E(x− y)Ψ(y) dy (12)
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whenever it makes sense and the corresponding pressure

(QΩΨ)(x) =
∫

∂Ω

Q(x− y)Ψ(y) dy, x ∈ Rm \ ∂Ω. (13)

Then EΩΨ ∈ C∞(Rm \∂Ω, Rm), QΩΨ ∈ C∞(Rm \∂Ω, R1), ∇QΩΨ−∆EΩΨ =
0, ∇ ·EΩΨ = 0 in Rm \ ∂Ω. We have the following decay behavior as |x| → ∞:

EΩΨ(x) = O(|x|2−m), m > 2,

EΩΨ(x) = O(ln |x|), m = 2,

QΩΨ(x), |(∇EΩΨ)(x)| = O(|x|1−m).

If m = 2 and 〈Ψ, 1〉 = 0 then

EΩΨ(x) = O(|x|−1), |∇EΩΨ(x)| = O(|x|−2).

If Ω is bounded then EΩ : Ψ 7→ EΩΨ represents a bounded linear operator
from H−1/2(∂Ω, Rm) to H1(Ω, Rm) and QG : Ψ 7→ QQΨ is a continuous linear
operator from H−1/2(∂Ω, Rm) to L2(Ω, R1) (see [9], Theorem 4.4). If Ψ ∈
H−1/2(∂Ω, Rm) then EΩΨ is the trace of EΩΨ on ∂Ω. Moreover, EΩ : Ψ 7→
EΩΨ is a bounded linear operator from H−1/2(∂Ω;Rm) to H1/2(∂Ω;Rm) (see
[9], Proposition 4.5).

Fix y ∈ ∂Ω such that there is the unit outward normal nΩ(y) of Ω at y. For
x ∈ Rm \ {y}, j, k ∈ {1, . . . ,m} set

K̃Ω
jk(x,y) =

1
2Hm−1(∂B(0; 1))

[
δjk

(y − x) · nΩ(y)
|y − x|m

+m
(yj − xj)(yk − xk)(y − x) · nΩ(y)

|y − x|m+2
−

(yk − xk)nΩ
j (y)

|y − x|m
+

(yj − xj)nΩ
k (y)

|y − x|m

]
.

Then K̃Ω
jk(x,y) = −nΩ(y)·∇yEjk(y−x)+Qj(y−x)nΩ

k (y). For Ψ ∈ L2(∂Ω, Rm),
x ∈ ∂Ω define

K̃ ′
ΩΨ(x) = lim

δ↘0

∫
∂Ω\B(x;δ)

K̃Ω(y,x)Ψ(y) dy

whenever this integral exists. The operator K ′
Ω is a bounded linear operator on

L2(∂Ω, Rm) (see [4], [2], [9]; compare also [1]).
If x ∈ ∂Ω, a > 0 denote the non-tangential approach regions of opening a at

the point x by

Γa(x) := {y ∈ Ω; |x− y| < (1 + a) dist(y, ∂Ω)}.

Denote
Γe

a(x) := {y ∈ Ωe; |x− y| < (1 + a) dist(y, ∂Ωe)}
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the non-tangential approach regions of opening a at the point x corresponding
to Ωe = Rm \ cl Ω. We fix a > 0 large enough such that x ∈ cl Γa(x) ∩ cl Γe

a for
every x ∈ ∂Ω. We shall write Γ(x) = Γa(x), Γe(x) = Γe

a(x). If now v is a vector
function defined in Ω and x ∈ ∂Ω then the non-tangential maximal function of
v is defined by

v∗(x) = sup
y∈Γ(x)

|v(y)|

and
v+(x) = lim

y → x
y ∈ Γ(x)

v(y)

is the non-tangential limit of v at x with respect to Ω. Similarly, if v is a vector
function defined in Ωe and x ∈ ∂Ω then

v−(x) = lim
y → x

y ∈ Γe(x)

v(y)

If Ω is bounded and Ψ ∈ L2(∂Ω, Rm) then (∇EΩΨ)∗, (QΩΨ)∗ ∈ L2(∂Ω) and

[∂EΩΨ/∂n− (QΩΨ)nΩ]+ =
1
2
Ψ− K̃ ′

ΩΨ, (14)

[∂EΩΨ/∂n− (QΩΨ)nΩ]− = −1
2
Ψ− K̃ ′

ΩΨ (15)

(see [4], [2], [9]; compare also [1]).

Lemma 3.1. If Ω ⊂ Rm is a bounded open set with Lipschitz boundary then
there is a sequence of C∞ domains Ωj with following properties:

• cl Ωj ⊂ Ω.

• There are a > 0 and homeomorphisms Λj : ∂Ω → ∂Ωj, such that Λj(y) ∈
Γa(y) for each j and each y ∈ ∂Ω and sup{|y − Λj(y)|;y ∈ ∂Ω} → 0 as
j →∞.

• There are positive functions ωj on ∂Ω bounded away from zero and infinity
uniformly in j such that for any measurable set E ⊂ ∂Ω,∫

E

ωj dy =
∫

Λj(E)

1 dy,

and so that ωj → 1 pointwise a.e. and in L2(∂Ω, R1).

• The normal vectors to Ωj, n(Λj(y)), converge pointwise a.e. and in
L2(∂Ω, Rm) to n(y).
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(For the proof see [17], Theorem 1.12.)

Proposition 3.2. Let Ω ⊂ Rm be a bounded open set with Lipschitz bound-
ary. Then K̃ ′

Ω can be extended as a bounded linear operator on H−1/2(∂Ω, Rm).
If Ψ ∈ H−1/2(∂Ω, Rm) then [∂EΩΨ/∂n − (QΩΨ)nΩ]+ = 1

2Ψ − K̃ ′
ΩΨ, i.e.

u = EΩΨ, p = QΩΨ is a weak solution of the problem (1), (3) if and only if
1
2Ψ− K̃ ′

ΩΨ = g.
Proof. Since EΩ is a bounded linear operator from H−1/2(∂Ω, Rm) into

H1(Ω, Rm) and QΩ is a bounded linear operator from H−1/2(∂Ω, Rm) into
L2(Ω), we infer that Ψ 7→ ∂EΩΨ/∂n−QΩΨn is a bounded linear operator on
H−1/2(∂Ω, Rm). If Ψ ∈ L2(∂Ω, Rm) and v ∈ C∞(Rm, Rm) then Lemma 3.1
and Green’s formula yield

〈[∂EΩΨ/∂n−(QΩΨ)nΩ]+,v〉 = 〈1
2
Ψ−K̃ ′

ΩΨ,v〉 =
∫
Ω

[∇EΩΨ : ∇v−QΩΨ(∇·v)].

Since C∞(Rm, Rm) is a dense subset of H1(Ω, Rm), this relation holds for arbi-
trary v ∈ H1(Ω, Rm). The continuity argument gives this relation for arbitrary
Ψ ∈ H−1/2(∂Ω, Rm).

Lemma 3.3. If Ω ⊂ Rm is a bounded domain with Lipschitz boundary and
nΩ is the unit outward normal of Ω then EΩnG = 0, QGnG = −1 in G.

(See [12]. )

Lemma 3.4. Let G ⊂ Rm be a bounded domain with connected compact
Lipschitz boundary, m ≥ 2. Let Ψ ∈ H−1/2(∂G,Cm). If m = 2 suppose
moreover that

∫
Ψ = 0. If 〈Ψ, EGΨ〉 = 0 then EGΨ = 0 in Rm and there is a

constant c such that Ψ = cnG. (Here Ψ denotes the complex conjugate of Ψ).
(See [12], Corollary 4.4.)

4 Spectral properties of the operator K̃ ′
Ω

We shall look for a solution of the problem (1), (3) in the form of a hydrodynam-
ical single layer potential u = EGΨ, p = QGΨ with a density Ψ ∈ H−1/2(∂G).
For this reason we shall study the spectrum of the operator 1

2I − K̃
′
G. We show

that σ( 1
2I − K̃ ′

G) ⊂ 〈0, 1〉 and 1
2I − K̃ ′

G is a Fredholm operator of index 0. Our
approach is a modification of the method used in [12] for the integral operator
K ′

G corresponding to the boundary value problem (1), (4).

Proposition 4.1. Let Ω ⊂ Rm be an open set with compact Lipschitz
boundary, m ≥ 2. Let Ψ1,Ψ2 ∈ H−1/2(∂Ω, Rm). If m = 2 and Ω is unbounded
suppose moreover that

∫
Ψ1 =

∫
Ψ2 = 0. Then〈

1
2
Ψ1 − K̃ ′

ΩΨ1, EΩΨ2

〉
=

∫
Ω

(∇EGΨ1) : (∇EΩΨ2) dy. (16)
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Put Ψ = Ψ1 + iΨ2 where i is the imaginary unit. Denote Ψ = Ψ1 − iΨ2 the
conjugate of Ψ. Then〈

1
2
Ψ− K̃ ′

ΩΨ, EΩΨ
〉

=
∫
Ω

(|∇EΩΨ1|2 + |∇EΩΨ2|2) dy ≥ 0. (17)

Proof. We show (16). Suppose first that Ω is bounded. Proposition 2.2
gives that u = EΩΨ1, p = QΩΨ1 is a weak solution of the problem (1), (3) with
g = 1

2Ψ1 − K̃ ′
ΩΨ1. Since v = EΩΨ2 ∈ H1(Ω;Rm) and ∇ · EΩΨ2 = 0 in Ω, we

obtain (16) from (8).
Let now Ω be unbounded. Fix R > 0 such that ∂Ω ⊂ B(0;R) and denote

Ω(R) = Ω ∩B(0;R). Put Ψ1 = 0 = Ψ2 on ∂B(0;R). Then∫
Ω(R)

(∇EΩΨ1) : (∇EΩΨ2) dy =
〈

1
2
Ψ1 − K̃ ′

Ω(R)Ψ1, EΩΨ2

〉

=
〈

1
2
Ψ1 − K̃ ′

ΩΨ1, EΩΨ2

〉
+

∫
∂B(0;R)

[
∂EΩΨ1

∂n
+ (QΩΨ1)n

]
· EΩΨ2 dy.

If R→∞ then the decay properties of hydrodynamical potentials give (16).
Using (16) we get〈
1
2
Ψ− K̃ ′

ΩΨ, EΩΨ
〉

=
〈

1
2
Ψ1 − K̃ ′

ΩΨ1, EΩΨ1

〉
+

〈
1
2
Ψ2 − K̃ ′

ΩΨ2, EΩΨ2

〉

−i
〈

1
2
Ψ1 − K̃ ′

ΩΨ1, EΩΨ2

〉
+ i

〈
1
2
Ψ2 − K̃ ′

ΩΨ2, EΩΨ1

〉
=

∫
Ω

|∇EΩΨ1|2 dy

+
∫
Ω

|∇EΩΨ2|2 dy − i

∫
Ω

(∇EΩΨ1) : (∇EΩΨ2) dy

+i
∫
Ω

(∇EΩΨ1) : (∇EΩΨ2) dy =
∫
Ω

[|∇EΩΨ1|2 + |∇EΩΨ2|2] dy ≥ 0.

Corollary 4.2. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary,
m ≥ 2. Let Ψ ∈ H−1/2(∂Ω, Cm). If m = 2 suppose moreover that

∫
Ψ = 0.

Then
〈Ψ, EΩΨ〉 =

∫
Rm\∂Ω

|∇EΩΨ|2 dy ≥ 0. (18)

Proof. Put C = Rm \ cl Ω. Since K̃ ′
Ω = −K̃ ′

C we get using Proposition 4.1

〈Ψ, EΩΨ〉 =
〈

1
2
Ψ− K̃ ′

ΩΨ, EΩΨ
〉

+
〈

1
2
Ψ−K ′

CΨ, EΩΨ
〉

=
∫

Rm\∂Ω

|∇EΩΨ|2.
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Definition 4.3. Lex X, Y be Banach spaces. Denote by I the identity
operator on X. If M is a subspace of X denote by dimM the dimension of
M . If Z is a subspace of X such that X = M

⊕
Z, i.e. X is the direct sum

of M and Z, denote by codimZ = dimM the codimension of Z. If T is a
bounded linear operator from X to Y , denote by KerT = {x ∈ X;Tx = 0}
the kernel of T , α(T ) = dim KerT , β(T ) = codimT (X). We say that T is
upper semi-Fredholm if T (X) is a closed subset of Y and α(T ) < ∞. For an
upper semi-Fredholm operator T denote i(T ) = α(T )−β(T ) the index of T . We
say that T is Fredholm if T is upper semi-Fredholm and β(T ) < ∞. If X is a
complex Banach space and T is a bounded linear operator on X, denote by σ(T )
the spectrum of T and by r(T ) = sup{|λ|;λ ∈ σ(T )} the spectral radius of T .

Lemma 4.4. Let G ⊂ Rm be a bounded domain with connected Lipschitz
boundary, m ≥ 2. Then ( 1

2I−K̃
′
G)nG = nG. Denote H−1/2(∂G;Cm)∩E−1(Cm)

the set of all Ψ ∈ H−1/2(∂G;Cm) such that EGΨ is constant in G. Then
H−1/2(∂G;Cm)∩E−1(Cm) = Ker( 1

2I− K̃
′
G)

⊕
{cnG; c ∈ C} and dim Ker( 1

2I−
K̃ ′

G) ≤ m.
Proof. ( 1

2I − K̃ ′
G)nG = nG by Lemma 3.3 and Proposition 3.2.

If Ψ ∈ Ker( 1
2I − K̃ ′

G) then u = EGΨ, p = QGΨ is a weak solution of the
Neumann problem for the Stokes system (1), (3) with the boundary condition
g = 0 (see Proposition 3.2). Lemma 2.1 gives that u = EGΨ is constant.
Let now Φ ∈ H−1/2(∂G;Cm) ∩ E−1(Cm). Then ∇QGΦ = ∆EGΦ = 0 in
G. So, there is a constant c such that QGΦ = c in G. Put Ψ = Φ + cnG.
Lemma 3.3 gives that EGΨ = EGΦ is constant and QGΨ = 0 in G. Thus
Ψ ∈ Ker( 1

2I− K̃
′
G) by Proposition 3.2. Since nG 6∈ Ker( 1

2I− K̃
′
G), we infer that

Ker( 1
2I − K̃ ′

G)
⊕
{cnG; c ∈ C} = H−1/2(∂G;Cm) ∩ E−1(Cm).

Suppose that Ψ ∈ Ker( 1
2I − K̃ ′

G), 〈Ψ, c〉 = 0 for each c ∈ Rm. Then
there exists b ∈ Cm such that EGΨ = b on the closure of G. Thus 0 =
〈Ψ,b〉 = 〈Ψ, EGΨ〉 and Lemma 3.4 gives that Ψ = dnG for some d ∈ C. Since
nG 6∈ Ker( 1

2I − K̃ ′
G), we infer that Ψ = 0. This gives dim Ker( 1

2I − K̃ ′
G) ≤ m.

Proposition 4.5. Let G ⊂ Rm be a bounded domain with connected Lips-
chitz boundary. If λ ∈ C is an eigenvalue of 1

2I − K̃ ′
G in H−1/2(∂G,Cm) then

0 ≤ λ ≤ 1.
Proof. Let Ψ be an eigenfunction corresponding to an eigenvalue λ. We can

suppose that λ 6= 0. Then Ψ = (1
2I − K̃

′
G) 1

λΨ. Proposition 3.2 and Lemma 2.1
give that

∫
Ψ = 0. If Ψ = bnG, b ∈ C, then λ = 1 by Lemma 4.4. Suppose now

that Ψ 6= bnG. Then

〈Ψ, EGΨ〉 =
∫

Rm\∂G

|∇EGΨ|2 dx > 0

by Lemma 3.4 and Corollary 4.2. According to Proposition 4.1 and Corollary 4.2∫
G

|∇EGΨ(x)|2 =
〈

1
2
Ψ− K̃ ′

GΨ, EGΨ
〉

= 〈λΨ, EGΨ〉 = λ

∫
Rm\∂G

|∇EGΨ|2.

9



Therefore

0 ≤ λ =

∫
G

|∇̂EGΨ|2 dx∫
Rm\∂G

|∇̂EGΨ|2 dx
≤ 1.

Proposition 4.6. Let Ω ⊂ Rm be a bounded domain with Lipschitz bound-
ary, m ≥ 2. Then there is a closed subspace Y of H−1/2(∂Ω, Rm) with finite

codimension such that
√
〈Ψ, EΩΨ〉, ‖EΩΨ‖H1/2(∂Ω),

√
〈[(1/2)I − K̃ ′

Ω]Ψ, EΩΨ〉
are three norms on Y which are equivalent to the original norm.

Proof. First we show that there exist a closed subspace X of H−1/2(∂Ω, Rm)
with finite codimension and a constant C1 such that

‖Ψ‖H−1/2(∂Ω) ≤ C1‖EΩΨ‖H1/2(∂Ω) ∀Ψ ∈ X. (19)

For ∂Ω connected see [12], Proposition 4.11. Denote S1, . . . , Sk all components
of ∂Ω. Then EΩ is an upper semi-Fredholm operator from H−1/2(Sj , R

m) to
H1/2(Sj , R

m)) for each j (see [13], §16, Theorem 8). If j 6= l then EΩ is a
compact linear operator from H−1/2(Sj , R

m) to H1/2(Sl, R
m)). Thus EΩ is an

upper semi-Fredholm operator from H−1/2(∂Ω, Rm) to H1/2(∂Ω, Rm)) (see [13],
§16, Theorem 16). According to [15], Lemma 5.1 there exists a closed subspace
X of H−1/2(∂Ω, Rm) such that H−1/2(∂Ω, Rm) = X

⊕
KerEΩ. The relation

(19) is a consequence of [13], §16, Theorem 10 and [3], Theorem 1.42.
Denote

r(v) = ‖∇v‖L2(Ω) +
∣∣∣∣∫
Ω

v dHm

∣∣∣∣.
Then r(v) is an equivalent norm on H1(Ω;Rm) (see [10], Chapter 1, §1.5.4).
Set

V =
{
v ∈ H1(Ω, Rm);

∫
∂Ω

v dy = 0
}
.

Then there is a positive constant C2 such that ‖v‖H1(Ω) ≤ C2‖∇v‖L2(Ω) for all
v ∈ V . Denote Y = {Ψ ∈ X;EΩΨ ∈ V,

∫
Ψ = 0}. Since EΩ is a continuously

invertible operator X onto EΩ(X) ⊂ H1(Ω, Rm) and V is a closed subspace
of H1(Ω, Rm) with finite codimension, Y is a closed subspace of H−1,2(Ω, Rm)
with finite codimension. Fix Ψ ∈ Y . Since EΩΨ is the trace of EΩΨ on ∂Ω we
obtain using (19), (7), Proposition 4.1 and Corollary 4.2

‖Ψ‖2
H−1/2(∂Ω,Rm) ≤ C1‖EΩΨ‖2

H1/2(∂Ω,Rm) ≤ C1‖EΩΨ‖2
H1(Ω,Rm)

≤ C1C2

∫
Ω

|∇EΩΨ|2 dy = C1C2〈[(1/2)I − K̃ ′
Ω]Ψ, EΩΨ〉

≤ C1C2

∫
Rm\∂Ω

|∇EΩΨ|2 dy = C1C2〈Ψ, EΩΨ〉.
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Theorem 4.7. Let G ⊂ Rm be a bounded domain with connected Lipschitz
boundary, m ≥ 2. Then σ( 1

2I − K̃ ′
G) ⊂ 〈0, 1〉 in H−1/2(∂G,Cm) and 1

2I − K̃ ′
G

is a Fredholm operator with index 0.
Proof. Proposition 4.6 yields that there is a closed subspace Y of finite

codimension and a positive constant L such that ‖Ψ‖2
H−1/2(∂G)

≤ L〈(Ψ, EGΨ〉,
‖Ψ‖2

H−1/2(∂G)
≤ L〈( 1

2I − K̃ ′
G)Ψ, EGΨ〉 for each Ψ ∈ Y . Put Z = {Ψ = Ψ1 +

iΨ2;Ψ1,Ψ2 ∈ Y and
∫

Ψ = 0}. Then Z is a closed subspace of H−1/2(∂G,Cm)
with finite codimension. Proposition 4.1 and Corollary 4.2 give

‖Ψ‖2
H−1/2 ≤ L〈Ψ, EGΨ〉, ‖Ψ‖2

H−1/2 ≤ L〈[(1/2)I − K̃ ′
G]Ψ, EGΨ〉 (20)

for each Ψ ∈ Z.
If λ ∈ R then (20 ) gives

〈[(1/2−λ)I−K̃ ′
G]Ψ, EGΨ〉 = 〈[(1/2)I−K̃ ′

G]Ψ, EGΨ〉−λ〈(Ψ, EGΨ〉 ∈ R. (21)

If λ < 0 then (20) and (21) give

L〈[(1/2− λ)I − K̃ ′
G]Ψ, EGΨ〉 ≥ L〈[(1/2)I − K̃ ′

G]Ψ, EGΨ〉 ≥ ‖Ψ‖2
H−1/2(∂G).

If λ > 1 then Corollary 4.2, Proposition 4.1 and (20 ) give

L|〈[(1/2− λ)I − K̃ ′
G]Ψ, EGΨ〉| ≥ L{λ〈Ψ, EGΨ〉 − 〈[(1/2)I − K̃ ′

G]Ψ, EGΨ〉}

= Lλ

∫
Rm\∂G

|∇EGΨ|2 dy − L

∫
G

|∇EGΨ|2 dy ≥ L(λ− 1)
∫

Rm\∂G

|∇EGΨ|2 dy

= L(λ− 1)〈Ψ, EGΨ〉 ≥ (λ− 1)‖Ψ‖2
H−1/2(∂G).

If λ = λ1 + iλ2 ∈ C, λ2 6= 0 and Ψ ∈ Z then (20) and (21) give

|〈[(1/2− λ)I − K̃ ′
G]Ψ, EGΨ〉| = |〈[(1/2− λ1)I − K̃ ′

G]Ψ, EGΨ〉 − iλ2〈Ψ, EGΨ〉|

≥ |λ2|〈Ψ, EGΨ〉| ≥ |λ2|L−1‖Ψ‖2
H−1/2(∂G).

Fix λ ∈ C \ (0, 1〉. We have proved that there is a positive constant M such
that

‖Ψ‖2
H−1/2(∂G) ≤M〈[(1/2− λ)I − K̃ ′

G]Ψ, EGΨ〉.

for each Ψ ∈ Z. If Ψ ∈ Z \ {0} then

‖Ψ‖H−1/2(∂G) ≤M〈[(1/2− λ)I − K̃ ′
G]Ψ, EGΨ〉/‖Ψ‖H−1/2(∂G)

≤M‖EG‖H−1/2(∂G)→H−1/2(∂G)‖[(1/2− λ)I − K̃ ′
G]Ψ‖H−1/2(∂G).

So, the operator 1
2I−K̃

′
G−λI is upper semi-Fredholm by [13], § 16, Theorem 8.

Since the index i( 1
2I−K̃

′
G−µI) is constant on C\(0, 1〉 (see [13],§ 18, Corollary 3)

and 1
2I − K̃ ′

G − µI is invertible for |µ| > ‖ 1
2I − K̃ ′

G‖ (see [15], Lemma 6.5), we
infer that i( 1

2I − K̃ ′
G − λI) = 0. Thus 1

2I − K̃ ′
G − λI is a Fredholm operator

with index 0. If λ 6= 0 then α( 1
2I − K̃ ′

G − λI) = 0 by Proposition 4.5 and
i( 1

2I − K̃ ′
G − λI) = 0 forces that the operator 1

2I − K̃ ′
G − λI is onto. Therefore

1
2I − K̃ ′

G − λI is a continuously invertible operator (see [3], Theorem 1.42).

11



5 Indirect BEM

In this section we shall study the problem (1), (3) for a bounded domain G with
connected Lipschitz boundary using the indirect boundary integral equation
method. We shall look for a solution in the form of a hydrodynamical single
layer potential u = EGΨ, p = QGΨ with a density Ψ ∈ H−1/2(∂G). We have
proved that u = EGΨ, p = QGΨ is a solution of the problem if and only if
1
2Ψ−K̃ ′

GΨ = g (see Proposition 3.2). We determine the necessary and sufficient
condition for the solvability of the problem. Moreover, we prove that the integral
equation 1

2Ψ− K̃ ′
GΨ = g can be solved by the successive approximation.

In the numerical practice we approximate g, so we solve the equation 1
2Ψ̃−

K̃ ′
GΨ̃ = g̃ where g̃ is close to g. Since the operator 1

2I − K̃ ′
G is not invertible

this equation might not be solvable. To overcome this difficulty we define a
modified operator

M ′Ψ = K̃ ′
Gψ −

1
c

∫
∂G

Ψ dy, c =
∫

∂G

1 dy. (22)

We show that the integral equation 1
2Ψ−M ′Ψ = g is uniquely solvable and if the

problem (1), (3) is solvable and Ψ is a solution of the equation 1
2Ψ−M ′Ψ = g

then 1
2Ψ− K̃ ′

GΨ = g. We show that the modified equation 1
2Ψ−M ′Ψ = g can

be solved by the successive approximation.

Proposition 5.1. Let G ⊂ Rm be a bounded domain with connected Lip-
schitz boundary. Then H−1/2(∂G,Cm) is the direct sum of Ker( 1

2I − K̃ ′
G)

and ( 1
2I − K̃ ′

G)(H−1/2(∂G,Cm)) = {Ψ ∈ H−1/2(∂G,Cm);
∫

Ψ = 0}. If we
denote by L′G the restriction of K̃ ′

G onto ( 1
2I − K̃ ′

G)(H−1/2(∂G,Cm)), then
σ( 1

2I − L′G) ⊂ (0, 1〉.
Proof. If Ψ ∈ H−1/2(∂G,Cm), then u = EGΨ, p = QGΨ is a solution of

the problem (1), (3) with the boundary condition g = ( 1
2I − K̃ ′

G)Ψ by Propo-
sition 3.2. Lemma 2.1 gives that

∫
Ψ = 0. Thus ( 1

2I − K̃
′
G)(H−1/2(∂G,Cm)) ⊂

{Ψ ∈ H−1/2(∂G,Cm);
∫

Ψ = 0} and codim( 1
2I − K̃ ′

G)(H−1/2(∂G,Cm)) ≥ m.
Lemma 4.4 gives dim Ker( 1

2I−K̃
′
G) ≤ m. So codim( 1

2I−K̃
′
G)(H−1/2(∂G,Cm)) =

dim Ker( 1
2I − K̃ ′

G) = m by Theorem 4.7. Hence ( 1
2I − K̃ ′

G)(H−1/2(∂G,Cm)) =
{Ψ ∈ H−1/2(∂G,Cm);

∫
Ψ = 0}.

Let now Ψ ∈ Ker( 1
2I − K̃ ′

G) ∩ ( 1
2I − K̃ ′

G)(H−1/2(∂G,Cm)). Then
∫

Ψ =
0. Since EGΨ is constant on G by Lemma 4.4, we obtain 〈Ψ, EGΨ〉 = 0.
Since

∫
Ψ = 0, Lemma 3.4 gives that Ψ = bnG for some b ∈ C. Since nG 6∈

Ker( 1
2I − K̃ ′

G) by Lemma 4.4, we infer that b = 0. Since Ker( 1
2I − K̃ ′

G) ∩
( 1
2I − K̃ ′

G)(H−1/2(∂G,Cm)) = {0} and codim( 1
2I − K̃ ′

G)(H−1/2(∂G,Cm)) =
dim Ker( 1

2I − K̃ ′
G), we deduce that H−1/2(∂G,Cm) = Ker( 1

2I − K̃ ′
G)

⊕
( 1
2I −

K̃ ′
G)(H−1/2(∂G,Cm)).
Since H−1/2(∂G,Cm) = Ker( 1

2I − K̃ ′
G)

⊕
( 1
2I − K̃ ′

G)(H−1/2(∂G,Cm)), we
have σ( 1

2I − L′G) ⊂ σ( 1
2I − K̃ ′

G) ⊂ 〈0, 1〉. Moreover, the operator ( 1
2I − L′G) is

one-to-one and onto. Thus 0 6∈ σ( 1
2I − L′G) (see [3], Theorem 1.42.)
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Proposition 5.2. Let X be a Banach space, T be a bounded linear operator
on X. Suppose that X is the direct sum of Ker(I − T ) and (I − T )(X). Denote
by T̃ the restriction of T onto (I − T )(X). Suppose that

lim
j→∞

‖T̃ j‖1/j < 1. (23)

Fix now y ∈ (I − T )(X), x0 ∈ X. Put

xj+1 = Txj + y (24)

for a nonnegative integer j. Then there exists

x = lim
j→∞

xj

and
‖x− xj‖ ≤ Cqj(‖y‖+ ‖x0‖) (25)

for arbitrary j, where C > 0, 0 < q < 1 are constants depending only on T .
(For the proof see ([11]), Proposition 3.)

Theorem 5.3. Let G ⊂ Rm be a bounded domain with connected Lipschitz
boundary, m ≥ 2. Fix g ∈ H−1/2(∂G,Rm). Then there is a weak solution of
the problem (1), (3) if and only if

∫
g = 0. Suppose now that

∫
g = 0 and

Ψ0 ∈ H−1/2(∂G,Rm). For a nonnegative integer k put

Ψk+1 = [(1/2)I + K̃ ′
G]Ψk + g. (26)

Then there is Ψ ∈ H−1/2(∂G,Rm) such that Ψk → Ψ in H−1/2(∂G,Rm) as
k → ∞. Moreover, there are constants 0 < q < 1, C > 0 depending only on G
such that

‖Ψk −Ψ‖H−1/2(∂G,Rm) ≤ Cqk

(
‖g‖H−1/2(∂G,Rm) + ‖Ψ0‖H−1/2(∂G,Rm)

)
. (27)

If we put u = EGΨ, p = QGΨ then u, p is a weak solution of the problem (1),
(3).

Proof. Suppose first that there is a weak solution of the problem (1), (3).
Lemma 2.1 gives that

∫
g = 0.

Suppose now that
∫

g = 0. Set T = (1/2)I+K̃ ′
G, T̃ the restriction of T onto

[(1/2)I − K̃ ′
G](H−1/2(∂G,Cm)). Proposition 5.1 gives that H−1/2(∂G,Rm) =

Ker(I −T )
⊕

(I −T )(H−1/2(∂G,Rm)) and σ(I − T̃ ) ⊂ (−1, 1). Since r(T̃ ) < 1,
[18], Chapter VIII, §2 gives (23). According to Proposition 5.2 there exists
Ψ ∈ H−1/2(∂G,Rm) such that Ψk → Ψ as k →∞ in H−1/2(∂G,Rm) and (27)
holds with constants 0 < q < 1, C > 0 depending only on G.

Put u = EGΨ, p = QGΨ. Letting k → ∞ in (26) we get Ψ = [(1/2)I +
K̃ ′

G]Ψ + g. Proposition 3.2 forces that u, p is a weak solution of the problem
(1), (3).
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Proposition 5.4. Let G ⊂ Rm be a bounded domain with connected Lips-
chitz boundary, m ≥ 2. Then the operator 1

2I −M ′ is continuously invertible
in the space H−1/2(∂G,Rm). If Ψ ∈ H−1/2(∂G,Rm), 1

2Ψ −M ′Ψ = g and∫
g = 0, then

∫
Ψ = 0 and 1

2Ψ− K̃ ′
GΨ = g.

Proof. Suppose first that 1
2Ψ − M ′Ψ = g and

∫
g = 0. By virtue of

Proposition 5.1

0 =
∫

∂G

g dy =
∫

∂G

(
1
2
I − K̃ ′

G

)
Ψ dy +

1
c

∫
∂G

Ψ dy =
1
c

∫
∂G

Ψ dy.

Therefore 1
2Ψ−K ′

GΨ = 1
2Ψ−M ′Ψ = g.

Now we prove that 1
2I −M ′ is one-to-one. Suppose ( 1

2I −M ′)Ψ = 0. Then∫
Ψ = 0 and 1

2Ψ − K̃ ′
GΨ = 1

2Ψ −M ′Ψ = 0. Since 1
2I − K̃ ′

G is injective on
{f ∈ H−1/2(∂G,Rm);

∫
f = 0} by Proposition 5.1, we infer that Ψ = 0.

The operator M ′ − K̃ ′
G is a finite rank operator and therefore compact (see

[15], p. 88). Since 1
2I − K̃ ′

G is a Fredholm operator with index 0 by Theo-
rem 4.7, the operator 1

2I −M ′ is a Fredholm operator with index 0, too (see
[13], § 16, Theorem 16). Since 1

2I−M
′ is one-to-one, it is also onto and therefore

continuously invertible (see [3], Theorem 1.42).

Proposition 5.5. Let G ⊂ Rm be a bounded domain with connected Lips-
chitz boundary, m ≥ 2. Then there is an equivalent norm on H−1/2(∂G,Cm)
such that ‖ 1

2I + M ′‖ ≤ q < 1. Let now g ∈ H−1/2(∂G,Cm),
∫

g = 0. Fix
Ψ0 ∈ H−1/2(∂G,Cm). For a nonnegative integer k put

Ψk+1 =
(

1
2
I +M ′

)
Ψk + g.

Then Ψk → Ψ in H−1/2(∂G,Cm), 1
2Ψ−M ′Ψ = g and ‖Ψ−Ψj‖ ≤ qj [‖g‖+

‖Ψ0‖] for arbitrary j.
Proof. Let λ be an eigenvalue of 1

2I −M ′ and Ψ be a corresponding eigen-
vector. Then Ψ = f + g, where g is constant and

∫
f = 0. We have

λf + λg =
(

1
2
I −M ′

)
Ψ =

(
1
2
I −K ′

G

)
Ψ + g.

By virtue of Proposition 5.1

λ

∫
g =

∫
λf +

∫
λg =

∫ (
1
2
I −K ′

G

)
Ψ +

∫
g =

∫
g.

If g 6= 0 then λ = 1. If g = 0 then Ψ = f ∈ [(1/2)I − K̃ ′
G](H−1/2(∂G,Cm)) by

Proposition 5.1. Since λ is an eigenvalue of [(1/2)I −L′G], Proposition 5.1 gives
that 0 < λ ≤ 1.

Fix λ ∈ C \ (0, 1〉. The operator 1
2I − K̃ ′

G − λI is a Fredholm operator
with index 0 by Theorem 4.7. Since M ′ − K̃ ′

G is a finite rank operator and so
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compact (see [15], p. 88), the operator 1
2I −M ′ − λI is a Fredholm operator

with index 0 (see [13], §16, Theorem 16). If λ ∈ σ( 1
2I − M ′) then λ is an

eigenvalue of 1
2I −M ′. We have proved that λ is not an eigenvalue of 1

2I −M ′.
Thus σ( 1

2I −M ′) ⊂ (0, 1〉. Since σ( 1
2I +M ′) ⊂ 〈0, 1) we have r( 1

2I +M ′) < 1.
If we fix r( 1

2I + M ′) < q < 1 then there exists an equivalent norm ‖ · ‖ on
H−1/2(∂G,Cm) such that ‖ 1

2I +M ′‖ ≤ q (see [6]). The rest is a consequence
of Proposition 5.2.

6 Double layer potentials

Now we define a hydrodynamical double layer potential corresponding to the
boundary condition (3). Let Ω ⊂ Rm be an open set with compact Lipschitz
boundary. Fix y ∈ ∂Ω such that there is the unit outward normal nΩ(y) of Ω
at y. For x ∈ Rm \ {y}, j, k ∈ {1, . . . ,m} set

RΩ
k (x,y) =

1
Hm−1(∂B(0; 1))

[
nΩ

k (y)
|x− y|m

− m(yk − xk)(y − x) · nΩ(y)
|x− y|m+2

]
.

Then RΩ
k (x,y) = nΩ(y) · ∇yQk(y − x).

For Ψ = [Ψ1, . . . ,Ψm] ∈ L2(∂Ω, Rm) define the corresponding hydrodynam-
ical double layer potential with density Ψ by

(WΩΨ)(x) =
∫

∂Ω

K̃Ω(x,y)Ψ(y) dHm−1(y) (28)

and the corresponding pressure

(RΩΨ)(x) =
∫

∂Ω

RΩ(x,y)Ψ(y) dHm−1(y)

in Rm \∂Ω. Then (WΩΨ, RΩΨ) ∈ C∞(Rm \∂Ω, Rm+1) solve the Stokes system

∇RΩΨ−∆WΩΨ = 0, ∇ ·WΩΨ = 0 in Rm \ ∂Ω.

We have the following decay behavior as |x| → ∞:

(WΩΨ)(x) = O(|x|1−m),

|(∇WΩΨ)(x)|, RΩΨ(x) = O(|x|−m).

Since K̃Ω
jk(x,y) = −nΩ(y) ·∇yEjk(y−x)+Qj(y−x)nΩ

k (y), we have (WΩf)∗ ≤
(|∇EΩf |)∗ + (QΩf)∗ ∈ L2(∂Ω).

If x ∈ ∂Ω define

K̃ΩΨ(x) = lim
ε↘0

∫
∂Ω\B(x;ε)

K̃Ω(x,y)Ψ(y) dy.
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whenever this limit exists. Clearly, K̃Ω is the adjoint operator of K̃ ′
Ω. Thus K̃Ω

is a bounded linear operator on L2(∂Ω, Rm) and on H1/2(∂Ω, Rm). Moreover,

[WΩΨ]+(x) =
1
2
Ψ(z) + K̃ΩΨ(z), [WΩΨ]−(x) = −1

2
Ψ(z) + K̃ΩΨ(z) (29)

for almost all x ∈ ∂Ω (see [9], Proposition 3.2). If Ψ ∈ H1/2(∂Ω) then WΩΨ ∈
H1(Ω, Rm) (see [9], Theorem 4.4) and 1

2Ψ + K̃ΩΨ is the trace of WΩΨ.

Proposition 6.1. Let G ⊂ Rm be a bounded open set with connected Lips-
chitz boundary, m ≥ 2. Let u, p be a weak solution of the problem (1), (3) with
g ∈ H−1/2(∂G,Rm). Then

u(x) = EGg(x) +WGu(x), p(x) = QGg(x) +RGu(x) x ∈ G, (30)

EGg(x) +WGu(x) = 0, QGg(x) +RGu(x) = 0 x 6∈ clG. (31)

Proof. If u ∈ C2(G,Rm), p ∈ C1(G) then this result is well-known (see [14],
p. 29).

Suppose now that g ∈ L2(∂G,Rm). Then u∗ + p∗ ∈ L2(∂G) and g is the
nontangential limit ∂u/∂n − pn at almost all points of ∂G (see [4], Theorem
2.9). Let Ωj be domains from Lemma 3.1. Then (30), (31) hold true for Ωn.
Using Lebesgue lemma we obtain these equalities for G.

Let now g be general. According to Theorem 5.3 and Lemma 2.1 there exists
Ψ ∈ H−1/2(∂G,Rm) and c ∈ Rm such that u = EGΨ + c, p = QGΨ. Choose
Ψk ∈ L2(∂G,Rm) such that Ψk → Ψ in H−1/2(∂G,Rm). Put uk = EGΨk +c,
pk = QGΨk, gk = ∂uk/∂n− pkn. Then gk ∈ L2(∂G,Rm) by [4]. So, (30), (31)
hold for uk, pk and gk. If k →∞ we get (30), (31).

Corollary 6.2. Let G ⊂ Rm be a bounded open set with connected Lipschitz
boundary, m ≥ 2. Then EGnG ≡ 0, QGnG = 0 in Rm \ clG.

Proof. We use Proposition 6.1 for u ≡ 0, p = 1.

7 Direct BEM

Let now G ⊂ Rm be a bounded domain with connected Lipschitz boundary,
m ≥ 2, g ∈ H−1/2(∂G,Rm) be such that

∫
g = 0. According to Theorem 5.3

there is a weak solution u, p of the problem (1), (3). Denote by ũ the trace of
u. Since

u(x) = EGg(x) +WGũ(x), (32)

p(x) = QGg(x) +RGũ(x) (33)

in G it is enough to determine ũ. Using boundary behavior of hydrodynamical
potentials we get

1
2
ũ− K̃Gũ = EGg on ∂G. (34)
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Proposition 7.1. Let G ⊂ Rm be a bounded domain with connected Lips-
chitz boundary, m ≥ 2. Then 1

2I − K̃G is a Fredholm operator with index 0 in
H1/2(∂G,Cm), H1/2(∂G,Cm) = Ker( 1

2I − K̃G)
⊕

( 1
2I − K̃G)(H1/2(∂G,Cm))

and Ker( 1
2I − K̃G) = Cm. If we denote by LG the restriction of K̃G onto

( 1
2I − K̃G)(H1/2(∂G,Cm)) then σ( 1

2I − LG) ⊂ (0, 1〉.
Proof. Since 1

2I−K̃G and 1
2I−K̃

′
G are adjoint operators, 1

2I−K̃G is a Fred-
holm operator with index 0 and σ( 1

2I−K̃G) ⊂ 〈0, 1〉 by Theorem 4.7, [15], Theo-
rem 5.15, and [15], Theorem 6.24. According to Proposition 5.1 and [15], Chap-
ter 3, §3.3, we have ( 1

2I−K̃G)(H1/2(∂G,Cm)) = {w ∈ H1/2(∂G,Cm); 〈Ψ,w〉 =
0 ∀Ψ ∈ Ker( 1

2I − K̃ ′
G)} and Ker( 1

2I − K̃G) = {w ∈ H1/2(∂G,Cm); 〈Ψ,w〉 =
0 ∀Ψ ∈ ( 1

2I−K̃
′
G)(H−1/2(∂G,Cm))} = Cm. Since H−1/2(∂G,Cm) is the direct

sum of Ker( 1
2I−K̃

′
G) and ( 1

2I−K̃
′
G)(H−1/2(∂G,Cm)) we deduceH1/2(∂G,Cm) =

Ker( 1
2I − K̃G)

⊕
( 1
2I − K̃G)(H1/2(∂G,Cm)). This forces σ( 1

2I − LG) ⊂ (0, 1〉.

Theorem 7.2. Let G ⊂ Rm be a bounded domain with connected Lipschitz
boundary, m ≥ 2, g ∈ H−1/2(∂G,Rm),

∫
g = 0. Fix ũ0 ∈ H1/2(∂G,Rm). For

a nonnegative integer k put

ũk+1 = [(1/2)I + K̃G]ũk + EGg. (35)

Then there is ũ ∈ H1/2(∂G,Rm) such that ũk → ũ in H1/2(∂G,Rm) as k →∞.
Moreover, there are constants 0 < q < 1, C > 0 depending only on G such that

‖ũk − ũ‖H1/2(∂G,Rm) ≤ Cqk

(
‖g‖H−1/2(∂G,Rm) + ‖ũ0‖H1/2(∂G,Rm)

)
. (36)

The function ũ is a solution of the equation (34). If u, p are given by (32), (33)
in G, then u, p is a weak solution of the problem (1), (3) and ũ is the trace of
u on ∂G.

Proof. Put T = (1/2)I + K̃G and denote by T̃ the restriction of T onto
[(1/2)I − K̃G](H1/2(∂G,Cm)). Proposition 7.1 gives that H1/2(∂G,Rm) =
Ker(I − T )

⊕
(I − T )(H1/2(∂G,Rm)) and σ(I − T̃ ) ⊂ (−1, 1). Since r(T̃ ) < 1,

[18], Chapter VIII, §2 gives (23). According to Theorem 5.3 there is a weak
solution v, q of the problem (1), (3). By virtue of (32), (33) and (34) we
receive that EGg ∈ (I − T )(H1/2(∂G,Rm)). Proposition 5.2 gives that there is
ũ ∈ H1/2(∂G,Rm) such that ũk → ũ as k →∞ in H1/2(∂G,Rm) and

‖ũk − ũ‖H1/2(∂G,Rm) ≤ C̃qk

(
‖EGg‖H1/2(∂G,Rm) + ‖ũ0‖H1/2(∂G,Rm)

)
.

holds with constants 0 < q < 1, C̃ > 0 depending only on G. So, (36) holds
with C = C̃(1 + ‖EG‖).

Letting k →∞ we get that ũ is a solution of the equation (34). Since v is also
a solution of the equation (34), Proposition 2.1 forces that w = ũ − v ∈ Rm.
Since v, q is a solution of the problem (1), (3), we have v = EGg + WGv,
q = QGg + RGv in G. Since v + w, q is a solution of the problem (1), (3), we
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have also v + w = EGg +WG(v + w) = u, q = QGg + RG(v + w) = p in G.
Thus ũ = v + w is the trace of u = v + w on ∂G.

Proposition 7.3. Let G ⊂ Rm be a bounded domain with connected Lips-
chitz boundary, m ≥ 2. Put

MΨ = K̃Gψ −
1
c

∫
∂G

Ψ dy, c =
∫

∂G

1 dy.

The operator 1
2I − M is continuously invertible in H1/2(∂G,Cm). If f ∈

H1/2(∂G,Cm), h ∈ ( 1
2I − K̃G)(H1/2(∂G,Cm)) and 1

2 f −M f = h, then 1
2 f −

K̃Gf = h.
Proof. Since 1

2I−M
′ is continuously invertible by Proposition 5.4, its adjoint

operator 1
2I −M is also continuously invertible (see [15], Theorem 6.24). We

have H1/2(∂G,Cm) = Cm
⊕

( 1
2I − K̃G)(H1/2(∂G,Cm)) by Proposition 5.1.

Since 1
2 f − K̃Gf ∈ ( 1

2I − K̃G)(H1/2(∂G,Cm)), (K̃G −M)f ∈ Cm and h = [12 f −
K̃Gf ]+ (K̃G−M)f ∈ ( 1

2I− K̃G)(H1/2(∂G,Cm)), we infer that (K̃G−M)f = 0.

Theorem 7.4. Let G ⊂ Rm be a bounded domain with connected Lipschitz
boundary, m ≥ 2. Then there is an equivalent norm on H1/2(∂G,Rm) such that
‖ 1

2I +M‖ ≤ q < 1. Let now h ∈ H1/2(∂G,Rm). Fix f0 ∈ H1/2(∂G,Rm). For
a nonnegative integer k put

fk+1 =
(

1
2
I +M

)
fk + h.

Then fk → f in H1/2(∂G,Rm), 1
2 f −M f = h and ‖f − fj‖ ≤ qj [‖h‖+ ‖f0‖] for

arbitrary j.
Proof. Since there is an equivalent norm on H−1/2(∂G,Cm) such that ‖ 1

2I+
M ′‖ ≤ q < 1 (see Proposition 5.5), we have ‖ 1

2I + M‖ = ‖ 1
2I + M ′‖ ≤ q < 1

(see [15], Theorem 3.3). The rest is a consequence of Proposition 5.2.

8 BEM for the Stokes problem

Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary. We
would like to construct a solution of the Stokes problem, i.e. u ∈ H1(G,Rm),
p ∈ L2(G) such that (1) holds and u = f on ∂G, where f ∈ H1/2(∂G,Rm) be
given. It is well-known that this problem is solvable if and only if∫

∂G

f · nG dy = 0, (37)

a velocity u is unique and a pressure p is unique up to an additive constant (see
[5]). Denote

g = ∂u/∂nG − pnG. (38)
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Then

u(x) = EGg(x) +WGf(x), p(x) = QGg(x) +RGf(x) x ∈ G (39)

by Proposition 6.1. In this section we calculate g by the successive approxima-
tion. Set

h = ∂(WGf)/∂nG − (RGf)nG. (40)

(39) and Proposition 3.2 give g = g/2− K̃ ′
Gg + h, i.e(

1
2
I +K ′

G

)
g = h. (41)

Proposition 8.1. Let G ⊂ Rm be a bounded domain with connected Lips-
chitz boundary. Then 1

2I + K̃ ′
G is a Fredholm operator with index 0 in the space

H−1/2(∂G,Cm).
Proof. Fix R > 0 such that G ⊂ B(0;R) and put Ω = B(0;R)\G. According

to Proposition 4.6 there exists a closed subspace Y of H−1/2(∂Ω, Cm) with finite
codimension such that 1

2I − K̃ ′
Ω is a continuously invertible operator from Y

onto a Banach space ( 1
2I − K̃ ′

Ω)(Y ). Thus 1
2I − K̃ ′

Ω is an upper semi-Fredholm
operator on H−1/2(∂Ω, Cm) by [13], §16, Theorem 8. Moreover, 1

2I − K̃ ′
Ω is an

upper semi-Fredholm operator from H−1/2(∂G,Cm) to H−1/2(∂Ω, Cm) by [13],
§16, Theorem 10. If Ψ ∈ H−1/2(∂G,Cm), then ( 1

2I − K̃ ′
Ω)Ψ− ( 1

2I + K̃ ′
G)Ψ =

[∂(EGΨ)/∂n−(RGΨ)n]|∂B(0;R) and thus (1
2I−K̃

′
Ω)−( 1

2I+K̃ ′
G) is a compact

linear operator from H−1/2(∂G,Cm) to H−1/2(∂Ω, Cm). So, 1
2I + K̃ ′

G is an
upper semi-Fredholm operator from H−1/2(∂G,Cm) to H−1/2(∂Ω, Cm) by [13],
§16, Theorem 16. Clearly, 1

2I + K̃ ′
G is an upper semi-Fredholm operator on

H−1/2(∂G,Cm). If λ > 1/2 then λI + K̃ ′
G is a Fredholm operator with index

0 on H−1/2(∂G,Cm) by Proposition 4.7. Since the index is constant on each
component of semi-Fredholmness by [13], §18, Corollary 3, we infer that 1

2I+K̃
′
G

is a Fredholm operator with index 0 on H−1/2(∂G,Cm).

Proposition 8.2. Let G ⊂ Rm be a bounded domain with connected Lips-
chitz boundary. Then Ker[(1/2)I + K̃ ′

G] = {cnG; c ∈ R} and H−1/2(∂G,Rm) =
[(1/2)I + K̃ ′

G](H−1/2(∂G,Rm))
⊕

Ker[(1/2)I + K̃ ′
G].

Proof. nG ∈ Ker[(1/2)I + K̃ ′
G] by Lemma 4.4..

Suppose that Ψ ∈ H−1/2(∂G,Rm), [(1/2)I + K̃ ′
G]Ψ = cnG, c ∈ R. Then∫

Ψ =
∫
{cnG + [(1/2)I − K̃ ′

G]Ψ} = 0 by Proposition 5.1. Put Ω = Rm \ clG.
According to (37) and Proposition 4.1

0 =
∫

∂G

cnG · EGΨ dy =
∫

∂G

{[(1/2)I − K̃ ′
Ω]Ψ} · EGΨ dy =

∫
Ω

|∇EGΨ|2 dy.

So, EGΨ is constant in Ω. Since EGΨ(x) → 0 as |x| → ∞, we infer that
EGΨ = 0 in Ω. Lemma 3.4 gives that there exists α ∈ R such that Ψ =
αnG. Thus c = 0, Ker[(1/2)I + K̃ ′

G] = {βnG;β ∈ R} and {βnG;β ∈ R} ∩
[(1/2)I + K̃ ′

G](H−1/2(∂G,Rm)) = {0}. Since dim Ker[(1/2)I + K̃ ′
G] = 1 and
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(1/2)I+ K̃ ′
G is a Fredholm operator with index 0 by Proposition 8.1, we deduce

that H−1/2(∂G,Rm) = [(1/2)I + K̃ ′
G](H−1/2(∂G,Rm))

⊕
Ker[(1/2)I + K̃ ′

G].

Proposition 8.3. Let G ⊂ Rm be a bounded domain with connected Lips-
chitz boundary. Define

M̂Ψ =
1
2
Ψ + K̃ ′

GΨ +
1
c
nG

∫
∂G

nG ·Ψ, c =
∫

∂Ω

1 dy. (42)

Then M̂ is a continuously invertible operator in H−1/2(∂G,Rm).
Proof. Let M̂Ψ = 0. SinceH−1/2(∂G,Rm) = [(1/2)I+K̃ ′

G](H−1/2(∂G,Rm))⊕
{αnG;α ∈ R} by Proposition 8.2, we have [(1/2)I + K̃ ′

G]Ψ = 0. According
Proposition 8.2 there exists α ∈ R such that Ψ = αnG. Thus 0 = M̂Ψ = αnG

and α = 0. The operator M̂ is one to one. M̂ is a finite dimensional pertur-
bation of the Fredholm operator with index 0 by Proposition 8.1. So, M̂ is a
Fredholm operator with index 0 (see [13], §16, Theorem 16). Since the operator
M̂ is injective, it is continuously invertible (see [3], Theorem 1.42).

Theorem 8.4. Let G ⊂ Rm be a bounded domain with connected Lipschitz
boundary, m ≥ 2. Then there is an equivalent norm on H−1/2(∂G,Rm) such
that ‖I − M̂‖ ≤ q < 1. Let f ∈ H1/2(∂G;Rm),

∫
f · nG dy = 0. Let h be given

by (40). Fix g0 ∈ H−1/2(∂G,Rm). For a nonnegative integer k put

gk+1 = (I − M̂)gk + h.

Then gk → g in H−1/2(∂G,Rm), M̂g = [(1/2)I + K̃ ′
G]g = h and ‖g − gj‖ ≤

qj [‖h‖+ ‖g0‖] for arbitrary j. If u, p are given by (39) then u, p is a solution
of the Stokes problem with the boundary condition f and g = ∂u/∂nG − pnG.

Proof. First we show that σ(I − M̂) ⊂ 〈0, 1). Let λ ∈ σ(I − M̂). If λ
is not an eigenvalue then λ ∈ (0, 1) by Theorem 4.7, Theorem 8.1 and [13],
§16, Theorem 16. Let now λ be an eigenvalue with an eigenfunction Ψ. Since
H−1/2(∂G,Cm) = [(1/2)I + K̃ ′

G](H−1/2(∂G,Cm))
⊕
{αnG;α ∈ R} by Propo-

sition 8.2, there exist Φ ∈ [(1/2)I + K̃ ′
G](H−1/2(∂G,Cm)) and α ∈ C such

that Ψ = Φ + αnG. Proposition 8.2 gives [(1/2)I + K̃ ′
G]nG = 0 and thus

0 = λΨ− (I − M̂)Ψ = [(1/2)I + K̃ ′
G]Φ + (λ− 1)Φ + βnG with β ∈ C. Hence

[(1/2)I + K̃ ′
G]Φ = (1 − λ)Φ. If Φ 6= 0 then 0 ≤ λ ≤ 1 by Proposition 4.5. If

Φ = 0 then α 6= 0 and 0 = λΨ − (I − M̂)Ψ = αλnG and λ = 0. This and
Proposition 8.3 gives that σ(I − M̂) ⊂ 〈0, 1). Thus r(I − M̂) < 1. If we fix
r(I − M̂) < q < 1 then there exists an equivalent norm ‖ · ‖ on H−1/2(∂G,Cm)
such that ‖I − M̂‖ ≤ q (see [6]).

Since
∫

f ·nG dy = 0 there exist u ∈ H1(G,Rm), p̃ ∈ L2(G,Rm) solving the
Stokes system in G such that v = f on ∂G. Fix α ∈ R. Put p = p̃ + α. Then
u, p is a solution of the Stokes problem with the boundary condition f . Put
g = ∂u/∂n − pnG. We can choose α in a such way that

∫
g · nG = 0. Then

M̂g = [(1/2)I + K ′
G]g = h. The rest is a consequence of Proposition 8.3 and

Proposition 5.2.
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