
CERGE
Center for Economic Research and Graduate Education

Charles University Prague

Essays on Pricing, Product Quality, and
Intellectual Property Rights Protection in the

Software Market

Jiří Střelický

Dissertation

Prague, March 2011

Jiří Střelický

Essays on Pricing, Product Quality, and
Intellectual Property Rights Protection in the

Software Market

Dissertation

Prague, March 2011

DISSERTATION COMMITTEE:

AVNER SHAKED, University of Bonn and CERGE-EI (Chair)

KREŠIMIR ŽIGIĆ, CERGE-EI (Local Chair)

ANDREAS ORTMANN, The University of New South Wales and CERGE-EI

REFEREES:

MILAN HORNIAČEK, Comenius University in Bratislava

MARTIN PEITZ, University of Mannheim

i

ii

Contents

Abstract vii

Acknowledgements ix

Introduction 1

Software Upgrades under a Monopoly 3

1 Introduction 4

2 The model 7

2.1 Basics . 7

2.2 Users . 9

2.3 The developer’s problem . 14

2.4 Welfare . 15

3 A single price model for imperfect foresight users 16

3.1 User decision and products distribution across users . 16

3.2 The developer’s problem . 18

4 Imperfect foresight users and price discrimination 19

4.1 The “non-lock-in” set-up . 20

4.2 The “lock-in” set-up . 22

5 Imperfect foresight users: comparisons and welfare analysis 23

5.1 A single price versus price discrimination . 23

5.2 Welfare analysis . 25

6 Perfect foresight users: single price developer 26

6.1 The user decision . 26

6.2 Product distribution across users . 28

6.3 Equilibrium . 29

7 Perfect foresight users and price discrimination by an upgrade version 30

7.1 General set-up . 30

7.2 Equilibria . 31

7.3 Equilibria comparison under perfect foresight . 34

8 Welfare analysis: perfect foresight set-up 35

iii

9 The comparison between imperfect and perfect foresight 36

9.1 The comparison of equilibria . 36

9.2 The generalization of results . 37

10 Conclusion 37

References 39

A Appendix 41

A.1 The approach used for S.O.C. verification . 41

A.2 The approach used for consumer surplus calculation . 41

A.3 The single price model for imperfect foresight users . 42

A.4 Imperfect foresight users and price discrimination . 42

A.5 Imperfect foresight users: comparison and welfare analysis . 43

A.6 Perfect foresight: single price developer . 46

A.7 Perfect foresight: discrimination by upgrades . 47

A.8 Numeric simulations . 48

Intellectual Property Rights Protection and Enforcement in a Software Duopoly

50

1 Introduction 51

2 The basic model 56

2.1 Model set-up . 56

2.2 Monopoly . 58

2.3 Bertrand Competition . 59

2.4 Stackelberg competition in prices . 62

2.5 Possible Network Effect Extension . 63

2.6 Key chapter results . 64

3 Decreasing product value for illegal users 64

3.1 Model set-up . 65

3.2 Monopoly . 66

3.3 Bertrand competition . 67

3.4 Optimal service restrictions: the first stage . 70

3.5 Key section results . 71

4 Physical product protection against copying 72

4.1 Model set-up . 73

4.2 Monopoly . 75

iv

4.3 Bertrand competition . 75

4.4 Key section results . 81

5 Conclusion 82

References 85

Appendix 87

A Basic Model 87

A.1 General notes for all appendices . 87

A.2 Indifferent users . 87

A.3 Bertrand competition . 87

A.4 Stackelberg competition in prices . 88

B Lower quality to illegal users 88

B.1 Indifferent users . 88

B.2 Monopoly . 88

B.3 Bertrand competition . 89

B.4 Stackelberg competition . 90

C Developers implement physical protection 91

C.1 Indifferent users . 91

C.2 Duopoly: general notes . 92

C.3 Bertrand competition where only A implements protection cA = c 93

C.4 Bertrand competition where both developers implement protection 96

v

vi

Abstract

In this thesis, I explore the particular issues of pricing, product quality selection, and intellectual property

rights (IPR) protection in the software market. In the first part of the thesis, I study price discrimination

in a monopolistic software market. The monopolist charges different prices for the upgrade version and for

the full version. Consumers are heterogeneous in taste for software that is infinitely durable and there is

no resale. I show that price discrimination leads to a higher software quality but raises both absolute price

and price per quality. This price discrimination decreases the total number of consumers compared to no

discrimination. Finally, such discrimination decreases consumers’ surplus but increases the developer’s profit

and social welfare that attains the social optimum in the limit. In the second part of the thesis, I focus

on the interaction between a regulator’s IPR protection policy against software piracy on the one side and

the forms of IPR protection that software producers may themselves undertake to protect their IPR on the

other side. Two developers, each offering a variety of different quality, compete for heterogeneous users who

choose among purchasing a legal version, using an illegal copy, and not using a product at all. Using an

illegal version violates IPR and is thus punishable when disclosed. If a developer considers the level of piracy

as high, he can introduce a form of private protection for his product. I examine the above issues within the

framework where the quality of each developer’s product is exogenously given, and the developers compete

in prices.

Abstrakt

V disertaci zkoumám specifické problémy cenotvorby, výběr kvality výrobku a ochranu autorských práv

(IPR) na softwarovém trhu. V prvńı části disertace studuji cenovou diskriminaci u softwarového monopolu.

Monopol účtuje rozd́ılné ceny za upgrade verzi a za plnou verzi. Uživatelé jsou r̊uznorod́ı v užitku ze soft-

waru, který je nekonečně trvanlivý a jeho daľśı prodej neńı možný. Ukazuji, že cenová diskriminace sice vede

k vyšš́ı kvalitě softwaru, ale zároveň zvedne jak absolutńı cenu, tak cenu za jednotku kvality, a že tato cenová

diskriminace sńıž́ı celkový počet uživatel̊u. Nakonec, tento druh cenové diskriminace snižuje spotřebitelské

přebytky, zvyšuje zisk monopolu, avšak v limitě celkový společenský přebytek dosahuje sociálńıho optima.

V druhé části disertace analyzuji ekonomické dopady interakce mezi ochranou duševńıch práv proti soft-

warovému pirátstv́ı regulatorńı politikou na straně jedné a formou ochrany softwaru, kterou implementuj́ı k

ochraně svých děl výrobci, na straně druhé. Dvě softwarové firmy, každá nab́ızej́ıćı software odlǐsné kvality,

soutěž́ı o r̊uznorodé uživatele, kteř́ı se rozhoduj́ı mezi nákupem legálńı verze, použ́ıváńım ilegálńı kopie a

celkovým nepouž́ıváńı softwaru. Použ́ıváńı ilegálńı verze porušuje autorská práva a vede k postih̊um v př́ıpadě

odhaleńı. Jestliže softwarová firma považuje úroveň pirátstv́ı za vysokou, může zavést vlastńı specifickou

formu ochrany softwaru. Daný problém analyzujme v konceptu, kdy kvalita softwaru obou softwarových

firem je daná exogenně a firmy soutěž́ı v cenách.

vii

viii

Acknowledgements

When I made a decision to do Ph.D. studies at CERGE-EI, I could have hardly imagined the effort that

was necessary to successfully complete it. Especially, when I moved to a business career six years ago, I

realized that accomplishing such a task became more than challenging. To do so, required enormous effort

and patience from all people around me. Thus, to many of them I am more than grateful for standing at

the end of my long Ph.D. journey.

My first and the deepest thanks go to my chair, Krešimir Žigić who provided me with strong guidance and

friendly support during my whole studies. He provided me not only with excellent expertise and guidance,

but he was able to challenge me all the time and raised my curiosity for the topic in countless discussions.

He showed long patience for reviewing dozens of versions of the dissertation and contributed with countless

numbers of ideas. But I am even more than grateful to him for continuously motivating me to complete the

dissertation and not giving it up.

I strongly appreciate the huge support of Avner Shaked, who was my chair in the beginning of the

dissertation and who set the overall direction that was shaped during much discussion that partially took

place in Bonn during my one-year Marie Currie Fellowship. He helped me to set the direction of my studies

and mainly encouraged my interest for Microeconomics and Game Theory.

My visit at UC Berkeley, where I learned a lot about information economics, had a strong impact on

forming my research interests, so my special thanks belong to Yale Braunstein and Hal Varian.

At the same time, I would like to thank all professors who contributed to my accomplishment during my

Ph.D. studies. I would like to especially mention professors like Jan Hanousek, Andrew Austin, Jan Švejnar,

Štěpán Jurajda, Michal Kejak, Lubomı́r Ĺızal, Evžen Kočenda, Daniel Münich, and others. These thanks

belong to them not only for providing me with very useful knowledge but also for creating an exceptional

CERGE spirit that I felt all around.

During my studies, I met a lot of exceptional fellows at CERGE and during studies, who shaped me and

many of them became my friends. At this point, I should mention Dr. Michael Kúnin, whose exceptional

technical skills proved inevitable in shaping the very last version of my thesis.

I would like also to thank my opponents Milan Horniaček and Martin Peitz for their valuable comments

as well as Paul Belleflamme for his insightful comments on the final version of my thesis.

I leave the most important thanks for the very end. It goes to my beloved and incredibly patient wife,

Katka, who provided me with daily support and motivation for all those years. She showed unbelievable

tolerance during all these years in which I devoted a countless number of weekends to my dissertation instead

of spending time with family. Without her, I would never manage to combine work with dissertation studies

and never with family life. Thanks a lot, dear Katka!

ix

x

Introduction

The dissertation is composed from four essays focused on the software market. The thesis can conceptually be

divided into two main parts each of which uses a related set-up and methodology. In the first part, I focus

on a price discriminating software monopolist using upgrade discounts that compete with older versions,

while in the second part, I analyze the interaction between the public and private intellectual property rights

protection (IPR) in a software duopoly set-up.

This first part of the dissertation comprises two essays, one in which software users have imperfect

foresight and the second, a more complex one, in which these users have perfect foresight. I assume that

software is infinitely durable and any kind of resale is forbidden and that consumers are infinitely lived and

heterogeneous in sensitivity to software quality. Given the type of user foresight, I study a particular type

of price discrimination in which the monopolist charges a different price for the so-called “upgrade version”

and for the “full version” of software. I show that price discrimination leads to a higher software quality on

the one side, but raises both absolute price and price per quality unit on the other. In contrast to standard

price discrimination, I show that this price discrimination does not increase sales. Moreover, this specific

discrimination not only decreases the number of consumers who would qualify for the “full version” without

discrimination but even the number of consumers who would qualify for the “upgrade version.” Finally, I

demonstrate that such discrimination decreases the consumers’ surplus and social welfare, which is not offset

by a higher developer’s profit.

In the second main part, I study the economic impacts of the interplay between a regulator’s IPR

protection policy against software piracy on the one side and the forms of IPR protection that software

producers may themselves undertake to protect their intellectual property on the other. Two developers,

each offering a variety of different quality, compete for heterogeneous users who choose among purchasing

a legal version, using an illegal copy and not using the product at all. Using an illegal version violates

IPR and is thus punishable when disclosed. If a developer considers the level of piracy as high, he can

introduce a particular form of IPR protection. The quality of each developer’s product is exogenously given

and the developers compete in prices. The second part of the dissertation is also composed of two essays. In

the first essay, I study the positive aspects of competition between developers when private IPR protection

comes in the form of restricting support and other services to illegal users. In the second essay, I analyze

the same issues but now software protection appears in the form of physical protection rather than in the

form of restricting services. I examine the above issues within the framework of Bertrand and Stackelberg

competition while a monopoly set-up serves as a point of reference in both essays.

1

2

Software Upgrades under a Monopoly1

Abstract

We analyze a particular case of price discrimination in a software market dominated by a monopoly that

charges different prices for what is known as “upgrade version” and for the “full version” of software. We

assume that the software is infinitely durable, and any kind of resale is forbidden. We compare software

prices, quality, consumer surplus, and social welfare in two set-ups, a market where the developer sets a single

price for both versions versus a market where the developer discriminates. Consumers are infinitely lived and

heterogenous in sensitivity to software quality. We show that price discrimination leads to a higher software

quality on the one side, but raises both absolute price and price per quality unit on the other. Contrary to

standard price discrimination, we show that this price discrimination does not increase sales. This specific

discrimination not only decreases the number of consumers who would qualify for the “full version” without

discrimination but even the number of consumers who would qualify for the “upgrade version.” Finally, we

find that such discrimination decreases consumers’ surplus yet increases the developer’s profit and social

welfare with the social optimum attained in the limit.

1All errors remaining in this text are the responsibility of the author.

3

1 Introduction

The software market is one of the largest and fastest growing markets where, for instance, the largest de-

veloper (Microsoft) earns a revenue of more than $60 billion per year2. Other several hundred thousand

developers operate on the market, so it appears that tough competition should be the norm. By a closer

look at every particular sub-market of the software market (not only the operating systems), we could often

identify a dominant developer with such an established position (e.g., Adobe, Symantec, Pinnacle, and of

course Microsoft) that the whole sub-market could be treated as almost a monopoly. Such a monopolistic

market structure may serve as an explanation for some high software prices (Katz and Shapiro, 1998). More-

over, there is a high range of possible price discrimination schemes that such a monopolist may undertake.

Since software is “lent” to users, where the identity of both parties is often known, the developer could easily

set marginal prices to different groups of users without incentive problems. In such a case, a user prefers

to reveal the personal information that qualifies him for a lower price. In the real world, we could observe

dozens of prices for identical software: a price for the standard retail user (often called the full version), the

OEM version, the upgrade, and student or multi-license versions. On top of that, there are different prices

for the university, the army, the public sector, or large corporations, and naturally, the goal is to set prices

close to the reservation prices of the respective groups.

Besides the pricing policy, an even more important issue is whether and how to improve the quality

of software that such a monopolist firm generates. By the vague term “quality,” we understand not only

software functionality, but foremost software stability, speed, compatibility with hardware, and nowadays

quite often security. From this point of view, software evolution may be viewed as socially sub-optimal

if a developer rashly introduces poorly tuned software3 that leads to welfare losses caused by additional

consumer costs4.

Thus, the main focus of our paper is to analyze the pricing policy of a software monopolist and its impact

on software quality evolution. More specifically, a monopolist can either set a single price for its products,

or it can stick to price discrimination based on an upgrade scheme. As we shall see, a different approach to

a pricing strategy leads, in turn, to a different evolution of software quality.

Software developers often motivate users to switch more frequently to a new version of the product by

2The Microsoft report for the fiscal year 2008.
3For example, more than 20 000 mistakes were known for Microsoft Windows 2000 at the time of the release, and a Service

Pack for Microsoft Windows XP was in preparation even before the official XP release.
4Though most users may have in mind a frozen or “blue screen of death” window with the consequent loss of the latest

document, software bugs can, however, cause more severe losses. United States losses due to software problems are estimated at
USD 59.5 billion, which is 0.6% of GDP. According to the Stanford Research Institute, most of these problems are due to a lack
of testing. For example, a software bug caused the death of 228 people in an airplane crash of Korean Airlines, or a bug in ABS
software caused more than 38 000 trucks to be withdrawn from the market. If such a situation occurs, the regulatory authorities
tend to force developers to improve quality, e.g., by undertaking broader testing and tuning before the official release.

Note that software developers usually bear no, or very limited, responsibility for user losses associated with software usage
according to most End-User License Agreements (EULAs) that must be accepted by users before installing the software. In
the EULA, the developer determines the rights and commitments between himself and an end user. The industry standard is
that the developer assigns to himself most of the rights without any commitment. Most types of EULAs are often criticized
and considered as a sign of monopoly behavior. According to the SCC (Sustainable Computing Consortium), it is necessary
to change it in the future and to force software companies to bear partial responsibility for their products. Under the current
market situation, full developer responsibility would not be acceptable since official authorities are worried that such user
protection, which is common in other industries, would undesirably suppress software evolution and unacceptably increase
software prices.

The complex problem of developer responsibility and the legal framework are analyzed, for example, in Werden (2001).

4

lowering the price in the case where users own the previous version. Thus, a user faces two options: to switch

to every new version to get the upgrade price, or to switch only from time to time for the full price5. In

the real world, upgrade prices are predominantly used for business software. The ratio between upgrade and

full price varies according to the developer’s position on the market, the necessity to have updated software,

and innovation frequency6.

Because the average time between releases of new versions is short7, users have to familiarize themselves

with new software almost permanently. When an old version becomes sufficiently outdated, the users’

willingness to switch to new software grows, and software obsoleteness becomes crucial to both users’ and

developers’ decision process.

In order to model the above phenomena, we put forward a dynamic model environment in which there

is, on the one side, a software monopolist who introduces a new version (quality) of software all the time

(or every period), and on the other side, there are consumers (or users) who are heterogeneous in their

sensitivity to software quality. That is, they buy software with a different frequency depending on their

currently possessed software version. We assume that there is no second-hand market for software and that

the developer commits to its prices at the outset for the whole horizon. That is, he sets either a single price

(in the absence of price discrimination) or a pair of prices whereby a lower price is charged to the consumers

who buy new software every period. Since software is perfectly durable and developers keep introducing new

versions all the time, the model has to deal with a growing number of software versions. We first assume

that users have imperfect foresight in a sense that they are unable to predict how often they would switch to

a new software version in the future. Later on, we extend our model to users with perfect foresight without

changing the developer’s problem. We shall show that the perfect foresight of users, if known to developers,

increases the developers’ opportunity to force users to switch more often.

The key model simplification is the absence of consumers’ outside option. In reality, every user has outside

options such as using similar software from non-dominant developers (including open-source software) or even

using an illegal copy of the software. However, even though software prices have a significant impact on

the users’ decision whether to undertake piracy or not, what is more important for the extent of software

piracy is the role of government8 and the expected piracy punishment. Thus, our model well suits markets

such as business software in developed countries, where software upgrading is standard, and a high expected

punishment limits piracy. Banerjee (2003) analyzed the problem of switching from legal software to piracy,

and its social welfare impact with respect to the government’s incentives to tolerate piracy. We also assume

away the network effects since their significance under monopoly is often suppressed to the role of an entry

barrier. The concept of network effects under a monopoly was studied by Ellison and Fudenberg (2000) and

Fudenberg and Tirole (2000).

As for the related literature, our approach shares some of the features of behavior-based pricing with

5Nevertheless, sometimes users need not be motivated to switch, e.g., game players are often willing to pay more for a new
version when they own the previous version than when they have no experience with that particular game.

6E.g., the full price for MS Windows XP Home is $199, and the upgrade price is only $99. For MS Office XP Pro, these
prices are $499 and $299 respectively. Very often the upgrade price is approximately 50%-70% of the full price.

7The major releases are usually between 12 and 24 months.
8Usually governments only provide a legal environment, whereas actual anti-piracy force is exerted by independent or public

organizations.

5

multiple products (see, for instance, Fudenberg and Tirole, 1998, and Ellison and Fudenberg, 2000; see

also Villas–Boas and Fudenberg, 2007 and Belleflamme and Peitz, 2010 for a survey of this literature).

The key feature of this approach is that the monopolist may be able to use his information about the

consumers’ purchasing history to offer different prices and/or products to consumers with such different

histories. The two most common information structures consistent with behavior-based pricing are the

“identified consumers” and the “semi-anonymous consumers.”While the first category is self-explanatory,

semi-anonymous consumers are consumers who can prove that they purchased software in the last period

if they wish to do so, but they can also pretend not to have bought it if this is in their interest. So the

underlying assumption in our model in which consumers qualify for an upgrade if they buy the last version

of the software can be thought to fit the “semi-anonymous consumers” assumption. Moreover, much like

Fudenberg and Tirole (1998), and Ellison and Fudenberg (2000), we also study the provision of “upgrades” by

a monopolist in a setting of vertical differentiation, where there is a consensus among customers that newer

versions of the software are better than older ones. Our analysis, however, differs from the above literature

in some important aspects. First, we focus on the software market, rather than on a broader class of durable

goods. This, among others, implies that the existence of a second-hand market is not appropriate in our

setting. We, unlike Fudenberg and Tirole (1998), and Ellison and Fudenberg (2000), use an infinite horizon

model to study successive product generations in the software market, and in this sense, we focus more

on the incentives to innovate and on the social optimal level of innovation rather than on the very pricing

decisions. As for monopoly pricing, we do not deal explicitly with the commitment issue, and are mostly

interested in how the introduction of price discrimination based on upgrades and the lock-in of consumers

affect the software quality evolution. Moreover, we do it in the two set-ups of myopic and forward-looking

consumers.

Another relevant paper that shares some similarity with our analysis is that of Fishman and Rob (2000),

who consider a durable-good monopolist that periodically introduces new product models with each new

model being an improvement over the preceding one. In this light, our focus of software evolution can be

viewed as a particular case of their analysis of R&D in durable-good industries under monopoly. They,

however, assume that consumers are homogeneous, and, with their focus on social optimum, their primary

finding is that if the monopoly developer can neither shorten the lifetime of its products nor discriminate in

prices, then the monopoly developer innovates less frequently and invests less than at the socially optimal

level. Then they show that if either planned obsolescence or price discrimination based on the age of

the product held by the consumer is available, then the developer can both increase his or her profit and

implement the social optimum.9.

A peculiar feature of Fishman and Rob (2000) is that the homogeneity of consumers leads to every new

9There are many papers that build upon or deal with other aspects of Fishman and Rob (2000). For instance, Atil et al.
(2008) show that a competitive environment or after-market leads to a lower investment in R&D. Mehra and Seidmann (2008)
focus on the life-cycle management of software products and show how the optimal upgrade changes throughout the life cycle
based on whether there are heterogeneous customers, externalities, or product incompatibilities. Anton and Biglaiser (2009)
study upgrades and their quality in a dynamic model with homogenous users, focusing on the pricing and taking innovation
as exogenous. Nahm (2004) focuses on the interaction between inter-temporal pricing and R&D decisions based on the pricing
regimes (net sales vs. buyback). Other papers investigating obsolescence include Echevarŕıa (2005), Wang and Hui (2005), and
Inderst (2008).

6

product being purchased by all consumers. However, real durable-good markets, and the software market

in particular, are characterized by the simultaneous presence of both the newest and the previous products

in the consumers’ ownership, i.e., while there are consumers who use the newest product, there also are

consumers who keep using previous ones. As each new product represents a quality improvement over the

preceding one, vertical differentiation is inherent in such markets; so, as already stated above, we allow for

consumer heterogeneity with respect to quality sensitivity that captures this property. In addition, while

Fishman and Rob (2000) show that a price discriminating monopolist is able to fully implement the social

optimum, they assume that the price discrimination is of the first-degree kind in the sense that the developer

is able to freely change the price according to the age of the product currently owned by the consumer. In

our approach, the price discount is only offered to those who own the immediately preceding version, which

is a more realistic setting of behavior based on third-degree price discrimination. We show that if the

developer can set different prices for the upgrade and the full version, then the social welfare resulting from

the monopolist’s optimal action in the limit approaches the social optimal level irrespective of whether the

users have perfect or imperfect foresight. We also show that a popular notion according to which upgrade

prices help to spread software and lead to lower price levels does not hold if different prices for the upgrade

and the full version are used.

The paper is organized as follows. In the second chapter, we set up the model that serves as the general

framework for our analysis. The first essay (the third, fourth, and fifth sections) deals with the choice of a

software upgrade versus the full-price version in an environment where users have imperfect foresight. More

specifically, in the third section, we analyze the developer’s behavior without price discrimination, and in the

fourth section, we focus on price discrimination based on a lower upgrade price. Finally, in the fifth section,

we analyze the impact of price discrimination on prices, software quality evolution, and social welfare. Next

three sections constitute the second essay, where users are now assumed to have perfect foresight. In sections

six to eight, we replicate our analysis from sections three to five, but now with the assumption of perfect

foresight. In addition, in section seven, we study the monopolist’s tendency to initiate lock-in behavior. In

the ninth section, we discuss the results obtained across all sections and point out the differences between

an imperfect versus perfect foresight set-up. Section ten concludes.

2 The model

2.1 Basics

There is a monopoly software developer who releases a new version every period. The timeline starts in

period 1, when the first version of the software is released, and continues indefinitely.

When a user buys software, he can use the version purchased forever without any additional fee. All

versions of software are infinitely durable without depreciation. However, the developer sells only the latest

version of the software every period, whereas older versions are not sold anymore. Besides that, the developer

outlaws any resale by a license agreement with the user. We assume that users have no outside option like

piracy or open-source software, so all users are fully dependent on the actual developer’s offer.

7

2.1.1 Price discrimination

While only the current software version can be sold in every period, the developer is able to price discriminate

by setting different prices (for the same version) along with the eligibility rules for a consumer to qualify for

a given price. We assume that in every period it is impossible that there is a user who is completely ineligible

to any price offered in the period. In general, the developer can discriminate based on the history of the

user’s previous actions, and the rules may change between periods. In this paper, we make the following two

assumptions.

First, the only thing the developer can observe about a specific user in any period is the software version

(if any) possessed by the user. Thus, the only way how the developer can price discriminate is based on the

age (in periods) of the software version in the user’s hands.

Second, we assume that the developer’s pricing policy is stable over time. Namely, the prices offered in

period t and the corresponding eligibility rules do not depend on t. We concentrate on the following two

cases:

• The single price, when every version is offered at the same price p to all users in every period.

• The “new user” versus an “upgrade”, when in every period t anyone can buy at the “new user” price

p2, but the users who purchased the software version immediately preceding the current one, i.e., the

version of period t− 1, and only those users, are entitled10 to buy at the “upgrade” price p1, with p1

and p2 constant across periods. Here those who own older versions, but not the immediately preceding

one, are treated as “new users” just as those who own no version at all.

Remark 1 One of the key assumptions we make is that the monopolist is able to precommit to its price(s).

That is, the monopolist sets price(s) in the first period and keeps them unchanged thereafter. In other words,

the famous Coase conjecture that a price setting monopolist in an inter-temporal set-up may not commit

to its future prices is not an issue in our set-up. The reason for this may, for instance, be that (besides

permanent upgrades), our monopolist has a reputation for sticking to his or her pre-announced price or

has fixed production capacity that servers as a commitment device against future price decreases, etc.11(See

more on the durable-good monopoly with commitment in Belleflamme and Peitz, 2010, chapter 10.2; see also

Fudenberg and Villas-Boa on behavioral based price discrimination and Stole’s survey on price discrimination,

2007.)

2.1.2 Quality and R&D cost

Denote software quality in period t as Qt. For simplicity, we treat quality as a one-dimensional variable

that can be viewed as a weighted linear combination of all characteristics (performance, design, stability,

10Generally, it is possible to introduce more differentiated upgrade prices, e.g., for users who possess the version from the
second latest period, the third latest period, and so on. Doing that would not substantially change our results in any way, but
the structure of the model, as well as overall results, would become less transparent.

11There is, however, an alternative micro-foundation approach which explains the price rigidity by means of rational inat-
tention (see, for instance, Sims, 2005). In the realistic case when this inattention appears on the consumers’ side, a frequent
price changes may require consumers to pay lots of attention to the price. That, in turn, may be irritating for the consumers
so in the end, they could decide to consume less. As a result, it would be optimal for the seller to choose his pricing strategy
in advance and commits to it (see Matějka, 2010). Moreover, this may also explain the empirical observations that real-life
developers are observed to keep roughly constant prices over longer period of time.

8

and security, amid others) In fact, exact quality cannot be measured, so we measure the quality indirectly

by the willingness to pay for a product.

As resale is outlawed, there is no outside option for the users, and any version is infinitely durable, the

only trigger for new demand is an improvement in software quality that persuades users to replace their

older version of software12. In our model, we introduce the developer’s cost of software quality improvement

∆Q, which is in fact the cost of R&D. All other developer costs are normalized to zero. We assume that

the cost of software quality improvement is increasing in quality ∂C(∆Q)
∂∆Q > 0, and we assume that costs are

convex ∂2C(∆Q)
∂∆Q2 > 0. This condition means that gradual quality improvement (e.g., to improve quality by 1

every period for the next three periods) is cheaper than a significant quality jump (e.g., to improve quality

by 3 within one period). Both conditions are satisfied for quadratic functions; so, we use

C(∆Q) = B̄ · (∆Q)2, (1)

where parameter B̄ > 0 reflects R&D effectiveness.

Improving software is a longtime process based on cumulative activities like learning by doing. Thus,

the developer cannot increase software quality simply by hiring a large number of new programmers in one

period. To achieve significant progress in quality improvement, the developer must decide about the targeted

future quality several periods in advance. The developer does so by deciding on the maximum evolution

quality improvement in period t, Kt, at least n periods before period t. Then in period t, software quality

improvement is limited to ∆Qt = Qt − Qt−1 ≤ Kt and cannot be exceeded13. In reality, n may be several

years. In our model, we assume n→∞; hence, the developer decides about the evolution capacity once and

for all.

In line with the assumption of stable prices and eligibility rules, we assume that the evolution capacity

is stable over time, Kt = K for all t. The capacity is assumed to be fully utilized in every period. Thus,

a monopolist releases new software versions with constant quality improvement at the maximum capacity

level, that is, Q = ∆Qt = Qt − Qt−1 = K each period t. If the initial quality in period t is Qt, then the

quality in period t+ l is Qt+l = Qt + l ·Q.

As all developer choice variables, namely the prices and the quality jump, are stable, we assume that

they are chosen in the very beginning. Note that in our framework, quality adjustment choice and capacity

choice are basically equivalent since in selecting capacity K in the beginning, the developer intends to fully

use this capacity to achieve quality improvement Q = K in every period.

2.2 Users

Assume an infinite number of heterogenous users on the market. The users differ in their sensitivity θ to

product quality, where θ is uniformly distributed and is normalized14 to interval 〈0, 1〉. Users with θ close

12The model can be generalized by introducing the probability of failure. Nevertheless, we then get total demand as a linear
combination of demand stemming from technological improvement and demand coming from physical depreciation. The total
result will be influenced by the weights put on each source without changing the core of the result.

13This is a simplification helping us to focus the paper on price discrimination.
14We could also explicitly introduce a “market size” parameter by assuming that the density of θ is a positive constant rather

than exactly 1, but this is effectively captured by parameter B̄ in the developer’s cost function as demonstrated below.

9

to 1 primarily prefer quality, while users with θ close to 0 are very price sensitive. Users’ discount factor

between periods is β ∈ [0, 1), which is assumed the same15 for all users.

At the beginning of every period, a user may either own no software version at all or own a software

version from some of the previous periods. Then the user faces the following question. If no version of

software is owned, then the question is: “Buy the software now or wait for some next period when the

consumer value of the new software, because of a higher product quality, will increase.” If some previous

software version is owned, then the question is: “Buy the new version now or wait until the consumer value

is increased and meanwhile continue using the old version.” We can consider owning no software as owning

the “zero version,” whose quality is Q0 = 0.

Consider a user of type θ who owns a version of quality Qt in period t. If this user decides not to buy

the newest version, then this user’s utility flow in period t is θQt. (This implies that users have zero utility

flow before they buy software for the first time.) If this user buys the newest version, whose quality is Qt,

at price pt, then this user’s utility flow in period t is θQt − pt. Note that pt can differ among users due to

the developer’s eligibility rules. However, if a user happens to be eligible for more than one price in a given

period, then the lowest of these prices will be used as pt.

In the paper, we separately analyze two cases of user behavior:

• Users with imperfect foresight or myopic users, who make a decision whether or not to buy software

based only on the comparison of the utility of having (or not having) the actual product at the current

period, while ignoring their eventual switching to new software. Those users assume in calculating

their utility that they would keep the actual version forever.

• Users with perfect foresight, who know exactly in which period they would switch to a new version;

those users calculate their utility flow precisely in advance.

2.2.1 The decision of users with imperfect foresight

An imperfect foresight user of type θ who owns no software until period t, switches to software of quality

Qt at price pt in period t, and who never switches again, has the following infinite utility flow from period t

onwards:

Ut = θ(Qt + βQt + β2Qt + . . .)− pt = θ
1

1− β
Qt − pt. (2)

For simplicity, denote qt = 1
1−βQt and the utility flow of a user θ from buying software of quality qt for

price pt in period t as

Uθ(qt, pt) = θqt − pt. (3)

It is obvious that a new user θ strictly buys software at period t if and only if Uθ(qt, pt) > 0. The marginal

user who is indifferent16 between buying and waiting for some next period has sensitivity parameter θ = pt
qt

.

The previous decision process, however, does not cover a user who already possesses some version of

software. Consider now an imperfect foresight user of type θ who possesses the software of quality Ql from

15In other words, we assume that all heterogeneity among users is captured by θ.
16Indifferent consumers can either buy or not, and it is useless to restrict them, for example, to buy because their measure

is 0 even if their number goes to infinity as t tends to infinity.

10

period l. Such a user has already ensured utility flow Uθ = θQl at every period t ≥ l. He decides to switch

to new software that would bring him Uθ = θQt if and only if the difference in quality offsets the disutility

from price pt. It implies that he buys in period t if and only if

Uθ(qt, pt) = θqt − pt ≥ θql = Uθ(ql). (4)

If the quality change is not sufficient to compensate for the disutility from the price (if θ(qt− ql) < pt), then

the user does not buy now, uses his older version from period l, and waits until the next period t+ 1 when

he enters into the decision process again and when he compares the utility flow θql with θqt+1 − pt+1.

As can be seen from the user decision process described, the users do not foresee future software quality

levels Qt and prices pt so that each period they look at the actual quality offered by the developer and

decide based on the current price. In this case, the users cannot foresee the exact time of next switching to

a new product. These users simplify their decision process by comparing the utility flow from using software

forever ignoring their own future decision process.

2.2.2 The decision of users with perfect foresight

Perfect foresight means that every user can foresee future quality levels Qt and prices pt in every period t.

Then a perfect foresight user faces the following problem in every period. Let U lt be the user’s discounted

utility flow in period t given that the version from period l ≤ t with quality Ql is used during this period,

and let Ut be a shortcut for U tt . Let plt be the minimal price the user is eligible for in period t given that the

version from period l is owned. If the currently owned version l < t is used for n periods on and then a new

version is bought in period t+ n, then

U lt = θQl
(
1 + β + · · ·+ βn−1

)
+ βnUt+n, (5)

whereas if the new version t is purchased at price plt and then used for n periods, when another new version

is bought, then

Ut = −plt + θQt
(
1 + β + · · ·+ βn−1

)
+ βnUt+n. (6)

In every period, the user chooses (i) between buying and not buying and (ii) for how long to keep the

version, given the anticipated quality and price development, which can be generally written as a dynamic

programming problem. Given our assumptions about the stability of prices, pricing rules, and quality

improvement, U lt solely depends on the difference t − l in the sense U l+mt+m = U lt for any integer m ≥ 0. An

interpretation of this is that the consumer has a guaranteed utility level of θQl per period, which amounts

to the discounted flow of θ Ql

1−β = θql, and decides on the basis of added utility so that equations (5) and (6

) can be re-written as

U lt − θql = βn (Ut+n − θql) (7)

if the consumer does not switch in period t, and

Ut − θql = −plt + θ (Qt −Ql)
(
1 + β + · · ·+ βn−1

)
+ βn (Ut+n − θql) (8)

= −plt + θ (qt − ql) + βn (Ut+n − θqt) (9)

11

if the consumer switches in period t.

As a particularly important example, consider a user with a high sensitivity θ, who buys every period and

he knows that. Given the stability of prices (pt = p or pt = p1) and quality improvements (Qt = Qt−1 +Q,

so that qt = qt−1 + q), and the last equation takes the form

Ut − θqt−1 = −p+ θq + β (Ut+1 − θqt) (10)

for every t. Infinite iteration of this equation yields (for β < 1)

Ut − θqt−1 = (−p+ θq)
(
1 + β + β2 + · · ·

)
=

1

1− β
(θq − p) , (11)

so that a necessary condition for a user with perfect foresight to switch every period is θq − p ≥ 0.

Notation 1 We denote the user who buys every period as a high-end user and a user who buys less frequently

than every period as a low-end user.

2.2.3 Regularity of upgrades

In general, if prices, quality improvement, and eligibility rules vary over time, so may vary the users’ decision

as to buy the new version or keep the currently held one for another period. However, the ensuing stability

assumptions lead to the following result, which substantially simplifies further analysis.

Proposition 1 Let prices, quality improvement levels, and price eligibility rules be constant over time, and

let the developer’s pricing policy be either “upgrade” price p1 versus “new user” price p2 or single-price

p1 = p2 = p. Then it is optimal for a user with either imperfect or perfect foresight to switch regularly, i.e.,

there exist a period T ≥ 0 and a natural number n = n(β, θ, p1, p2, Q) such that the user switches in periods

T , T + n, T + 2n, . . . , and in no other period. In addition, n is non-increasing in θ.

Proof. The existence follows from the facts that the initial utility is zero, the per-period quality im-

provement is positive, and the prices are stable. Then ∃T such that Q0 + T ·Q > max{p1, p2}.

Regularity under the single price stems from the fact that the user faces exactly the same problem in

every period. Regularity under “upgrade” versus “new user” prices follows from the analysis in sections 4

(imperfect foresight) and 7 (perfect foresight).

In addition, the fact that n is non-increasing in θ follows from the “θQ − p” utility structure: as θ

increases, the user will not decide to purchase new versions less frequently, which means that n will not

decrease.

While we show in this proposition that it is an optimal solution to upgrade regularly, it is actually the

optimal behavior for all users except for those indifferent between two switching frequencies. However, such

users are of measure zero and can be thus neglected.

Detail descriptions of user decisions will follow in the dedicated sections. At this moment, just note that

the distribution of products across perfect foresight users differs from the distribution of products across

imperfect foresight users.

12

2.2.4 The participation constraint and foresight

From our analysis of the decision process of a user with imperfect foresight, it follows that a necessary

condition for such a user to switch every n periods at price p is θ (qT+n − qT) = θnq ≥ p. Using the same

approach as in the derivation of (11), we can show that the same necessary condition (which is thus the

participation constraint in our model) applies for users with perfect foresight. In addition, a user with

imperfect foresight will switch to a new product at the earliest possible moment, so that the condition

θnq − p ≥ 0 is also sufficient for the minimal n at which it is satisfied. However, a user with perfect

foresight may decide to wait till the next period or even longer instead of buying the new version at the first

opportunity when the participation constraint is met.

Consider again a high-end user with a high sensitivity θ, who buys every period and he knows that (perfect

foresight), and let the developer use the single-price policy. While we have shown that the participation

constraint for this user is θq − p ≥ 0, the user has other possibilities, one of which is buying every two

periods. Logically, the user will prefer buying every period to buying every two periods if the discounted

utility flow over a span of two periods is higher in the former case. Assume the user decides between switching

in periods T and T + 1 and in period T alone. The discounted (at the beginning of period T) utility flow

is then θQT − p + β(θQT+1 − p) in the former case and θQT − p + β(θQT) in the latter case. Therefore,

switching every period is more profitable than switching every two periods if

θ (QT+1 −QT) = θQ ≥ p, (12)

which is equivalent to θ ≥ p/Q. Since q > Q for β > 0, condition (12) is stronger than the participation

constraint. In the part of this paper dealing with perfect foresight, we show that this condition is sufficient

and derive the corresponding condition for n > 1.

Remark 2 If we assumed that the user initially owns the version from period T − 1 and chooses between

updating in periods T and T + 1, and updating in period T + 1 alone, the result would be the same.

Note that this decision rule has now capital Q rather than q and recall the difference between the two:

Q is the actual quality of software while q is the user-discounted flow of quality, q = 1
1−βQ.

Notation 2 In the rest of the paper, we will refer to both variables q, Q as “quality” keeping in mind the

difference between the two.

2.2.5 Demand

As every user switches to new software versions regularly, let dn = dn(β, p1, p2, Q) be the measure, in terms

of θ, of users who switch exactly every n periods. In general, dn ≥ 0 (some switching frequencies can be

absent) and
∑∞
n=1 dn = 1.

We assume that the developer cannot observe the exact distribution of software versions across users,

but the developer knows the function dn(·). This can be interpreted in the way that the developer cannot

observe in which period t he actually finds himself, so he cannot observe software distribution across users

13

and assumes that all possible distributions are equiprobable (each distribution appears in the whole infinite

model just once).

2.3 The developer’s problem

The model deals with heterogenous users over infinite number of periods, and as t → ∞, the number of

software versions the users can own goes to infinity. The distribution of software versions differs from period

to period and never repeats. Thus, the developer faces a different demand function each period, which leads

to different profit Πi, so the total profit would be Π∞ =
∑∞
i=1 δ

iΠi, where δ is the developer’s discount

factor.

To simplify our analysis, we assume that the developer values profit from every period equally17, so

that the discounting factor is δ = 1. Thus, the developer’s infinite-time profit maximization is equivalent

to maximizing the average profit per period. In the rest of the paper, we will assume that the developer

maximizes the following profit function:

Π = lim
n→∞

1

n

n∑
i=1

Πi. (13)

Remark 3 Fixing quality jump forever and maximizing average profit per period are key simplifications in

the model that would allow us to get analytical solution while keeping the rest of the assumptions very flexible

(infinite number of different products, infinite heterogenous customer, infinite number of users groups with

different decisions). These simplifications are not so far from empirical observations given the fact that

real-life developers are observed to keep roughly constant prices over several periods and to improve their

products gradually.

Remark 4 As we already argued, the simplification with maximizing average profit corresponds to the sit-

uation where developer cannot observe in which period he actually finds himself, thus he assumes that all

possible version distributions across consumers are equiprobable. In other words, the developer views profits

in different periods as independent and identically (due to price and quality adjustment stability) distributed

random variables, so that the limit in (13) equals the average per-period profit by the law of large numbers,

and maximizes the average profit across all distributions. In fact, this is the same problem as stated in

equation (13) except the constant.

More specifically, the developer knows the demand function dn, so that in every period the share d1 of

users will buy the new version (at price p1), whereas for each n > 1, only 1
n of those users who switch only

in every n periods will buy on the average (at price p2, note that p1 = p2 = p for the single price policy).

Then the average per-period revenue equals p1d1 + p2

∑∞
n=2

1
ndn, whereas the developer’s cost equals B̄Q2

per period. Thus, the developer’s profit per period can be rewritten as

Π = p1d1 + p2

∞∑
n=2

1

n
dn − B̄Q2. (14)

17A possible interpretation is that an increase in the user base due to network effects exactly offsets the discounting of future
earnings.

14

Also denote B = B̄(1− β)2, and recall the notation q = Q
1−β , which allows the expression of the developer’s

cost as Bq2, a form we will prefer with imperfect foresight18.

Notation 3 The number of high-end users, d1, will be also denoted NH . The average number of low-end

users who switch in a given period,
∑∞
n=2

1
ndn, will be denoted NL. The average number of users who switch

in a given period will be denoted N = NH +NL.

Remark 5 Introducing discounting 0 < δ < 1 would not lead to analytical solution and would require

additional restriction on users without any impact on key results.

2.4 Welfare

To measure the efficiency of the monopolist developer, we traditionally use social welfare, which consists of

consumer surplus and the developer’s profit. We use the average per-period welfare. Recall that consumer

surplus is calculated based on qt = 1
1−βQt, so it is already discounted, and profits are not discounted by

assumption. According to Proposition 1 , every user starts buying at some finite period and then buys

regularly. Then consider the user with quality sensitivity θ, and let n(θ) and p(θ) be the frequency and

the price at which this user switches to new versions of the product. Then the additional utility accruing

to this user at every purchase is θn(θ)q − p(θ), which corresponds to the participation constraint, and the

per-period additional utility equals θq − p(θ)
n(θ) . Therefore, the average per-period consumer surplus equals

CS =

∫ 1

0

(
θq − p(θ)

n(θ)

)
dθ =

q

2
−
∫ 1

0

p(θ)

n(θ)
dθ.

The developer’s profit equals revenue minus cost, and the per-period revenue generated by a user with

quality sensitivity θ, who switches to a new version every n(θ) periods at price p(θ), equals p(θ)
n(θ) , whence the

per-period revenue equals ∫ 1

0

p(θ)

n(θ)
dθ,

and the per-period cost equals B̄Q2 = Bq2.

Thus, the per-period social welfare equals

W = CS + Π =
q

2
−
∫ 1

0

p(θ)

n(θ)
dθ +

∫ 1

0

p(θ)

n(θ)
dθ −Bq2 =

q

2
−Bq2. (15)

Proposition 2 The socially optimal quality adjustment is given by

q0 =
1

4B
⇐⇒ Q0 =

1

4B̄(1− β)
.

Proof. The claim directly follows from (15).

18Parameter B̄ also effectively captures market size, i.e., the density of θ being a constant other than exactly 1. In such a
case, the demand dn will be multiplied by that constant, which is equivalent (as far as profit maximization is concerned) to
dividing B̄ by the constant in question.

15

3 A single price model for imperfect foresight users

3.1 User decision and products distribution across users

In this section, we analyze the case when the developer does not discriminate users based on purchasing

history and sets a single price p to all users. The developer sets the same price p for all periods and every

new version is sold for this price. In the first period, when the developer starts to operate in the market, no

user possesses any version of software. The initial quality of software at time t = 0 is Q0 = 0, or, using the

notation q = Q
1−β , q0 = 0.

When the developer releases a software of quality q in the first period, t = 1, for price p, it attracts the

users whose utility from the software is positive: Uθ(p, q) = θq − p ≥ 0. Those users have θ ≥ p
q (we assume

p
q < 1 and check this assumption later), other users do not buy and wait till the next period, see Figure 1 .

no product product q

0 θ = p
q 1

Figure 1: The distribution of products after the first period

In the second period, t = 2, the developer releases a new version of the software for the same price p, but

with an additional quality improvement q (the quality is now 2q), and offers this product to both groups of

the users in the market—to those who already possess the version of software with quality q and to those

who still do not have it. Users without software buy if Uθ(2q, p) ≥ 0 so from their utility function (3) their

sensitivity θ must be higher than p
2q . Equation (3) implies that a user who already uses the software buys

a new version if and only if θ · 2q − p ≥ θ · q. Thus, after two periods, every user with sensitivity θ higher

than p
2q uses the software version of quality 2q. See Figure 2 .

no product product 2q product 2q

0 θ = p
2q θ = p

q 1

Figure 2: The distribution of products after the second period

In the third period, the developer releases a software version of quality 3q for the same price p. A user

who does not own any version of software yet, buys the new version if his sensitivity is θ ≥ p
3q according

to (3). A user who is already using software decides according to equation (4). After the second period,

users with θ ≥ p
2q are using software of quality 2q, so the new version of software 3q is bought only by users

satisfying θ · 3q − p ≥ θ · 2q (by those with θ ≥ p
q). The distribution of software is depicted in Figure 3 .

When we look at the distribution of software version across users, we see that after the third period

software of quality 3q is used by users with θ ∈ 〈 p3q ,
p
2q 〉 ∪ 〈

p
q , 1〉, software of quality 2q is used by users with

θ ∈ 〈 p2q ,
p
q 〉 and no one is using version of quality q from the first period. Users with sensitivity to quality

16

no product product 3q product 2q product 3q

0 θ = p
3q θ = p

2q θ = p
q 1

Figure 3: The distribution of products after the third period

θ ∈ 〈0, p3q 〉 are not using software at all and wait until the next periods.

For further analysis of software distribution across users, we have to look separately at each group of

users θ ∈ 〈 p
(n+1)q ,

p
nq 〉 where n ∈ 〈1,∞). For each group, we look which version they are using and when

they actually update (replace) the product. Users with θ = p
nq are marginal users who are, at selected

periods, indifferent between switching to the newest version or staying with an older version (or not using

the software at all). Continuing with the same approach, we obtain the following distribution of versions

across users (see Figure 4).

0 p
q 1

Period 1
q

0 p
2q

p
q 1

Period 2
2q2q

0 p
3q

p
2q

p
q 1

Period 3
3q2q3q

0 p
4q

p
3q

p
2q

p
q 1

Period 4
4q4q3q4q

0 p
5q

p
4q

p
3q

p
2q

p
q 1

Period 5
5q4q3q4q5q

0 p
6q

p
5q

p
4q

p
3q

p
2q

p
q 1

Period 6
6q6q6q4q5q6q

Figure 4: The distribution of products across users

The analysis presented can be summarized by the following proposition.

Proposition 3 Users of the highest sensitivity to quality, that is, θ ∈ [pq , 1], buy a new version of the

17

0 p
(n+2)q

p
(n+1)q

p
nq · · · p

3q
p
2q

p
q 1

frequency n+ 2 n+ 1 3 2 1

Figure 5: The distribution of switching frequencies across users

software every period and users with θ ∈ 〈 pnq ,
p

(n−1)q 〉 buy a new version every nth period. As n → ∞, the

measure of those who do not use any version of software, θ ∈ 〈0, pnq 〉, goes to zero.

It is interesting that the set of consumers who own a particular software quality is generally non-convex,

and it is possible that in a given period a consumer with a higher quality sensitivity owns a lower quality

version, as can be seen in Figure 4 . However, as we are interested in average per-period values, what really

matters is how often consumers update. According to the proposition above, the set of consumers with the

same updating frequency is convex, and (by the general result in Section 2) this frequency is non-increasing

in quality sensitivity. Average frequency of switching is displayed in figure 5 .

This is equivalent to the following demand structure.

d1 = 1− p

q
, dn =

p

(n− 1)q
− p

nq
=
p

q

(
1

n(n− 1)

)
, n ≥ 2. (16)

3.2 The developer’s problem

The developer’s profit per period is generally given by (14), which, after taking into account the single price

policy and substituting (16), takes the form

Π = p

(
1− p

q

)
+ p

∞∑
n=2

p

q

1

n2(n− 1)
−Bq2.

Denote

D =

∞∑
n=2

1

n2(n− 1)
= 2− π2

6
≈ 0.355,

so that the profit can be written as

Π =

(
1− p

q

)
p+

p

q
Dp−Bq2. (17)

The developer maximizes the profit by setting optimal p and q.

Proposition 4 If the users have imperfect foresight and the developer uses the single price policy, then the

developer’s choice of price and quality, and the implied price-quality ratio, are the following.

p∗ =
1

16 (1−D)
2
B
, q∗ =

1

8B (1−D)
,
p∗

q∗
=

1

2 (1−D)
. (18)

In addition, equilibrium numbers of users are

N∗H = 1− p∗

q∗
=

1− 2D

2− 2D
, N∗L =

p∗

q∗
D =

D

2 (1−D)
, N∗ = N∗H +N∗L =

1

2
, (19)

so that and exactly half of the users are switching every period.

18

0 n+1 n 4 3 2 1 1

eligible only for full price eligible for upgrade

Figure 6: Market distribution in non-lock-in

Proof. The optimal price and quality are obtained from F.O.C.; S.O.C. are checked in Appendix A.3.1

. Equilibrium numbers of users are obtained directly from (18).

Substituting D into the equilibrium, we obtain:

p∗ =
9

4B (π2 − 6)
2 '

0.150262

B
, (20)

q∗ =
3

4B (π2 − 6)
' 0.193818

B
, (21)

p∗

q∗
=

3

π2 − 6
' 0.775 273. (22)

(Note that the last equality also proves that the assumption p
q < 1 was correct.) Substituting back into (17

), we obtain the developer’s profit:

Π∗ =
1

64B (1−D)
2 =

9

16B (π2 − 6)
2 '

0.037565

B
. (23)

Summary 1 In this section, we derived monopoly equilibrium and distribution of user if only one price is

allowed. As for the equilibrium price, this is in line with Stokey (1979, 1981) who shows that in a dynamic

durable-good context when the developer can commit to the time path of prices, the monopolist precommits

to the same price in all periods, which coincides with the static monopoly price. Like in many static models,

the developer sells exactly to half of all users; so, equilibrium price and quality are set to reach those half

of the users every period. Finally, note that the proportion of the users who buy software is independent on

factor B.

4 Imperfect foresight users and price discrimination

In this section, we analyze the situation when the developer offers a lower “upgrade” price p1 to users who

own the version from the previous period. The rest of the users, who are using older products, are not

eligible for the lower price and could buy the new version only for a standard “full” price p2. Denote the

quality offered by the developer in this section Qe, and qe = Qe

1−β .

If the upgrade price p1 is only slightly lower than the full price p2, some users who would buy every

second period for price p2 now prefer buying every period for price p1; however, all users who buy every

three periods do not change their decision and still buy every three periods. This leads to market coverage

as in Figure 6 .

19

0 n+3 n+2 n+1 n 1 1

eligible only for full price eligible for upgrade

Figure 7: Market distribution in lock-in

In the case of a higher discount for upgrading users, not only those who would buy for price p2 every

two periods, but even users who would buy less frequently than every n ≥ 3 periods would now switch every

period. This market situation leads to market coverage as in Figure 7 .

We shall refer to the former case, where a user with all switching frequencies are present on the market,

as to the “non-lock-in” case, while the latter case, where some frequencies of switching are out of the market,

will be referred to as the ”lock-in” case. We shall analyze both cases, and we start with the non-lock-in

market.

4.1 The “non-lock-in” set-up

Assume in this part that the upgrade price is p1 ∈ 〈p22 , p2〉. This condition will guarantee that all frequencies

of switching are present in the market. (We show later that this condition is satisfied in equilibrium.) Let

us separate the revenue generated by upgrade versions and by the full versions. We see that only users with

sensitivity parameter θ greater than p1
qe

buy every period. These users generate revenue denoted as R1. The

rest of the users, who are not eligible for the upgrade price, generate revenue R2. The full-price demand is

similar to the single price case as in equation (16) with the exception that some users who would switch

every two periods at p2 now switch every period at p1.The measure of those users is
(
p2
qe
− p1

qe

)
and since

their frequency of switching was every second period in the case of a single price, we have to adjust the

average demand per period for the term 1
2

(
p2
qe
− p1

qe

)
. Thus, the revenue functions are:

R1 =

(
1− p1

qe

)
· p1, (24)

R2 =

(
p2

qe
D − 1

2
(
p2

qe
− p1

qe
)

)
· p2,

and the developer’s profit is:

Π =

(
p2

qe
D − 1

2
(
p2

qe
− p1

qe
)

)
· p2 +

(
1− p1

qe

)
· p1 −Bq2

e . (25)

Remark 6 Imperfect foresight means that the users with θ only slightly higher than p1
qe

, one period after

buying, will find it profitable to buy the newest version at p1, so they will buy. These users do not consider

the possibility that they can be better off buying every two periods at p2 rather than every period at p1 whether

it can actually happen or not.

Proposition 5 If the users have imperfect foresight, and the developer price discriminates as described,

then the developer’s choice of prices and quality is the following.

p∗1 = 4
(1− 2D)

2

(16D − 7)
2
B
, p∗2 = 2

1− 2D

(16D − 7)
2
B
, q∗e =

2D − 1

B (16D − 7)
. (26)

20

The equilibrium numbers of users are

N∗H =
3− 8D

7− 16D
' 0.120909,

N∗L =
2D − 1

16D − 7
' 0.219772, (27)

N∗ = 2
2− 5D

7− 16D
=

5π2 − 48

8π2 − 75
' 0.340681.

Proof. The optimal prices and quality are obtained from F.O.C.; S.O.C. as well as the condition

p1 ∈ 〈p22 , p2〉 are checked in Appendix A.4.1 . The numbers of users are obtained directly from these values.

Substituting D into the equilibrium, we obtain:

p∗1 =
4

B

(
π2 − 9

)2
(8π2 − 75)

2 '
0.193200

B
, (28)

p∗2 =
6
(
π2 − 9

)
B (8π2 − 75)

2 '
0.333255

B
, (29)

q∗e =

(
π2 − 9

)
B(8π2 − 75)

' 0.219772

B
, (30)

p∗1
q∗e

=
4π2 − 36

8π2 − 75
' 0.879090, (31)

p∗2
q∗e

=
6

8π2 − 75
' 1.516363. (32)

substituting (26) into (25), we obtain the developer’s profit:

ΠD∗ =
1

B

(2D − 1)
2

(16D − 7)
2 =

1

B

(
π2 − 9

)2
(8π2 − 75)

2 '
0.048300

B
. (33)

Lemma 1 If the users have imperfect foresight, and the developer uses either the single-price policy or “non-

lock-in” price discrimination, then all equilibrium prices, qualities, and profits are dependent on the discount

factor β, and all of them are increasing in β. On the other hand, the numbers of switching users N∗H , N∗L,

N∗ are independent on β.

Proof. Can be seen immediately from the results above by recalling that B = B̄(1−β)2 and q = 1
(1−β)Q.

Remark 7 If we compare profit made by a single price developer and a developer who undertakes price

discrimination based on upgrades, we notice that the profit for price discrimination is higher in the latter

case. Clearly, the discriminating developer always has the option to set prices equally p1 = p2. The exact

relationship between the profits is given by:

ΠD∗
−Π∗ =

1

B

(2D − 1)2

(16D − 7)2
− 1

64B(1−D)2
' 0.010734

B
> 0. (34)

Remark 8 In our analysis, we neglect the fact that in the first period all users should pay full price, including

the users who will buy regularly every period afterwards. This simplification is in line with the basic form

(13) for profit, which implies that any finite number of periods in the beginning can be neglected. Note

21

again, that imperfect foresight users do not predict future switching to a new version so, for instance, they

do not consider the situation that under certain prices p1, p2 they can buy a product for the full price p2

with negative immediate utility and offset it later on with the future positive utility flow from upgrades. Such

considerations will be analyzed in the case of perfect foresight.

4.2 The “lock-in” set-up

In the case of lock-in, we deal with different optimization problems. There are only users who switch every

period, and then there are users who switch less frequently than every two periods. Users switching exactly

every two periods are not in the market. Consider now the general case, where only users switching every

period and then every n or more periods are in the market (further referred to as n-lock-in). Assume

p1 ∈ 〈p2n ,
p2
n−1 〉. (Again, we will show later that this condition is satisfied in equilibrium.)

Remark 9 Note that from a mathematical point of view, non-lock-in is a particular case of lock-in at n = 2

(“2-lock-in”).

Denote θ1,n a user who is indifferent between switching every period and every n periods, and θn,n+1 = p2
nqe

is the user who is indifferent between switching every n and every n+ 1 periods. Denote again revenue from

users switching every period as R1 = (1− θ1,n) · p1. From users utility function (3) in view of Remark 6 ,

we see that a user indifferent between switching every period and every n periods is a user with sensitivity

to quality θ1,n = p1
qe

, so the revenue from users switching every period is R1 =
(

1− p1
qe

)
· p1.

Revenue from users switching less frequently consists of revenue from users who switch every n periods:

1
n (θ1,n − θn,n+1)p2 and from users switching even less frequently p2

qe
Dn+1p2:

R2 =
1

n
(θ1,n − θn,n+1) p2 +

p2

qe
Dn+1p2,

where

Dn+1 =

∞∑
m=n+1

1

m2(m− 1)
=

1

n
− ψ1(n+ 1),

where ψ1(·) is the polygamma function of order 1.

Remark 10 As could be seen directly from the definition, Dn is decreasing and goes to zero as n goes to

infinity.

Summing up the revenue for both groups R1, R2, taking into account the developer’s costs Bq2
e , and

re-arranging, we obtain the developer’s profit function:

Π =
p2

nqe
(p1 + p2 − np2ψ1(n)) +

(
1− p1

qe

)
p1 −Bq2

e . (35)

Proposition 6 If the users have imperfect foresight and the developer price discriminates so that no user

switches every 2, . . . , n− 1 periods, then the developer’s choice of prices and quality is the following.

p∗1 =
n2

B

(nψ1(n)− 1)
2

(4n2ψ1(n)− 4n− 1)
2 , p

∗
2 =

n2

2B

nψ1(n)− 1

(4n2ψ1(n)− 4n− 1)
2 , q

∗
e =

n

2B

nψ1(n)− 1

4n2ψ1(n)− 4n− 1
,

22

and the average number of switching users per period is:

ND∗ =
n(1 + 2n)ψ1(n)− 2(1 + n)

4n2ψ1(n)− 4n− 1
. (36)

Proof. The optimal prices and quality are obtained from F.O.C.; S.O.C. as well as the condition

p1 ∈ 〈p2n ,
p2
n−1 〉 are checked in Appendix A.4.2 . The value ND∗ is then derived by substitution.

Substituting p∗1, p
∗
2, q
∗
e into the profit function (35), we obtain the equilibrium profit:

Π∗ =
n2

4B

(nψ1(n)− 1)
2

(4n2ψ1(n)− 4n− 1)
2 .

Remark 11 By substituting p∗1, p∗2, q∗e into the definition of indifferent users, we see that in equilibrium the

indifferent users are:

θ∗
1,n

=
p∗1
q∗e

=
1

2

(
1 +

1

4n2ψ1(n)− 4n− 1

)
, θ∗n,n+1 =

p∗2
nq∗e

=
1

4n2ψ1(n)− 4n− 1
.

Lemma 2 If the developer uses n-lock-in under imperfect foresight, then as n increases, the average number

of switching users decreases, and equilibrium quality change, both prices, both prices per quality change,

and the developer’s profit increase. In addition, the equilibrium quality converges from below to the socially

optimal value q0 = 1
4B as n increases.

Proof. Directly follows from the results above.

The last result implies that the best strategy for the developer in our model is to set n close to infinity.

This result is caused by the set-up of our model, where the developer is maximizing average profit. Thus,

the developer does not differentiate between profit realized in the first period and profit from a period close

to infinity. Maximizing the average profit instead of the discounted flow of profit is a simplification to obtain

an analytical solution19. However, remark that for those who switch every n periods, the developer starts

receiving revenue from this group for the first time at period n; thus, it would be natural to assume that the

profit from this group is discounted by βn, which would immediately imply that for β < 1, the optimal n is

finite.

5 Imperfect foresight users: comparisons and welfare analysis

5.1 A single price versus price discrimination

In this section, we contrast price discrimination with the single price equilibrium, so we compare changes in

quality, prices, prices per unit of quality change p∗

q∗ , the total number of switching users, and welfare for both

cases. We do the comparison for the “non-lock-in” case and then extend the results to the general “lock-in”

case via Lemma 2 . The proofs of the results stated here are made by direct arithmetical comparison of the

relevant results above and are thus omitted.

19Introducing the discounted developer profit would require a numerical solution even for the simplest possible case of the
single price and imperfect foresight.

23

Lemma 3 The product quality in the case of a single price is lower than the quality set by the developer

discriminating the users based on upgrades.

This result is in line with the general view of the impact of price discrimination. From a purely quality

point of view, the developer using price discrimination based on a lower price of the upgrade accelerates

quality evolution more than a single price monopoly.

Lemma 4 If price discrimination based on a lower upgrade price is not possible, the single price p∗ is lower

than the full price p∗2, and even lower than the price of an upgrade version p∗1.

This result may be counter-intuitive at first sight as we should be aware that the quality q∗e > q∗, so the

higher price even for upgrades is justified by a quality change.

Another insightful comparison we obtain if we compare the price per quality20, p∗

q∗ .

Lemma 5 The equilibrium price per quality p∗

q∗ is lower if possibility for discrimination does not exist, that

is p∗

q∗ <
p∗1
q∗e
<

p∗2
q∗e

. Consequently, the number of buyers is higher for a developer that charges the single price.

Lemma 6 The proportion of users buying in every period in the case of a single price is higher than in the

case of price discrimination.

This is a very interesting result. Generally, the motivation for price discrimination is to increase revenue

by increasing the number of users. In standard price discrimination, the price for a more sensitive group is

lower than for the other groups, and it is profitable to sell till the price reaches marginal costs.

On the other hand, a lower price for upgrades persuades some users to buy more frequently which, in

turn, raises the number of users. The key factor of this price discrimination is that the discount is not offered

to the most price sensitive users but to the most quality sensitive users. A possible interpretation of this is

that price discrimination by using upgrades helps the developer to better separate the quality sensitive users

buying in every period and to accelerate software evolution (recall that the quality change is higher under

price discrimination) to fit their demand better. As for the low-end users, the full price for the software is set

very high because the developer knows that even though their sensitivity for quality is lower, the fact that

they possess an older version means that their valuation of the new software eventually becomes relatively

high; thus, these users will buy sometimes as well. Accelerating software evolution enables the developer to

charge a higher price to all of them. In a single-price model, the developer values low-end users relatively

more, so he must attract a higher number of users by keeping both price and quality lower.

Remark 12 Note, that in our comparison, when we compare single price and price discrimination equilibria,

we have different equilibrium qualities q∗ < q∗e . Thus, the higher prices (and the lower number of users) in the

price discrimination case is partially caused by a higher equilibrium quality. For a better understanding of this

effect, we can decompose “moving” from the single price equilibrium to the price discrimination equilibrium

into two steps. In the first step, we fix quality at the single price equilibrium level q∗ while allowing price

20Though in the literature the inverse, i.e., quality per price unit. q
p

is usually used for comparison, we use p
q

as it plays a key

role in the distribution of switching customers in our model.

24

discrimination, and in the second step, we adjust quality (and prices) to their profit-maximizing levels. This

analysis is performed in Appendix A.5.1 .

The results above apply to the “non-lock-in” case. It follows from Lemma 2 that if the developer decides

to use n-lock-in, the results above are reinforced as n increases.

5.2 Welfare analysis

In this section, we analyze welfare changes by comparing price discrimination and single-price equilibria.

We analyze consumer surplus (CS) for all, low-end and high-end users, as well as social welfare W , which is

consumer surplus plus the developer’s profit. For all these variables, we compare their average per-period

values (in fact, all these differ from period to period). The values for a single-price developer can be found

in Appendix A.5.2 , and the values for a price discriminating developer can be found in Appendix A.5.3 . In

particular, the average CS per period under a single price equals

CS =
1

32

1− 2D

(1−D)
2
B
≈ 0.021778

B
,

and under price discrimination with n-lock-in, the average CS per period equals

CS =
1−

(
4n2ψ1(n)− 4n− 1

)−2

32B
.

The following results are proved by direct comparison of the values derived in Appendices A.5.2 and

A.5.3 .

Proposition 7 The consumer surplus is higher in the case of a single-price monopoly than under non-lock-in

price discrimination and decreases in n as n-lock-in is used.

The consumer surplus for both high-end and low-end users is higher in the case of a single-price developer

than under non-lock-in price discrimination, and decreases in n, and the same applies to CS per buyer for

high-end users. As for consumer surplus per buyer for all users or for low-end users, they are higher under

n-lock-in than under the single price except for n = 2 (non-lock-in) and n = 3, and increase in n.

Social welfare is lower in the case of a single-price developer than under non-lock-in price discrimination,

increases in n as n-lock-in is used, and approaches the socially optimal level from below as n goes to infinity.

The different relation between CS per buyer for all or low-end users under a single price and under n-

lock-in at n = 2 and n = 3 seems to be just a mathematical property of the model—recall that the developer

prefers “infinite” lock-in so that in the end those CS are higher under price discrimination. See the discussion

in section 8 for better exposition.

The intuition is that as the length of the lock-in period increases, the developer becomes “more precise”

in the sense of extracting more and more consumer surplus by setting the appropriate price-to-quality ratio

since the targeting group (upgraders) becomes more narrow. Thus, per-period CS in the lock-in case tends

to zero as n increases to infinity. In the limit (which is mathematically unreachable), the monopolist makes

all consumers pay a price of q0 per period (i.e., p2 has an asymptotic behavior of nq0), where q0 is also the

25

socially optimal value of quality. Thus, much like in the case of the first degree price discrimination, the

developer can in the limit extract the entire consumer surplus. Unlike in the case of the first degree price

discrimination, however, this happens due to the dynamic nature of the model: as n increases, the size of

the largest consumer group (in terms of switching frequency) in the market decreases, and it is easier to

extract surplus from separate smaller groups. This can be interpreted as an example of first-degree price

discrimination as the limiting case of third-degree one (see also the Remark before Proposition 11).

6 Perfect foresight users: single price developer

6.1 The user decision

In this section, we analyze the developer’s behavior if all users have perfect foresight. The rest of the set-up

is the same as in the previous part, which means that in every period t, the developer introduces a new

version of software and sells only this new version. Every new version has a quality improvement Q over

the previous version, so that at period t the software quality is Qt = tQ. The decision process for perfect

foresight users is the same as for users with imperfect foresight: users compare the utility flow from keeping

the currently possessed version with the utility flow from switching to a new version. In the case of perfect

foresight, however, every user can anticipate the optimal frequency of switching to a new version. A user of

quality sensitivity θ with perfect foresight calculates the utility flow Un (θ) from switching every n periods

(for all n ∈ 〈1,∞)), and then he decides for such switching frequency n that brings him the maximal utility

flow. Naturally, the optimal frequency of switching is fully dependent on the sensitivity to quality θ.

By perfect foresight user, we mean a user who calculates the utility flow and the optimal frequency of

switching at the moment of buying a new version and later follows this decision. Alternatively, a user may

calculate the utility flow every period and see whether switching would bring him higher utility or whether

he should wait till the next period. When such a user calculates the utility flow every period, he takes into

account that he will follow the same decision in the future so he incorporates into the calculation his future

decisions that are aligned with his current decision. In the case of a single price, these two approaches are

equivalent (see Remark 13).

According to the analysis presented in section 2, the necessary condition for a user with perfect foresight

to switch every n periods at price p is θnq − p ≥ 0, and while this necessary condition is the same as

under imperfect foresight, it is no longer sufficient. As mentioned above, when a user decides for an optimal

frequency of switching, he must compare the utility flow for all possible frequencies of switching n, where for

each frequency he calculates the infinite-time utility flow. When doing so, the user must calculate the utility

flow with respect to all possible future switching. To decide between two possible frequencies of switching,

the user can just compare the utility flow between two periods when he would always switch to a new version,

no matter which of the two frequencies of switching he would select. The simplest example is the decision

between switching every period and every two periods, which yields the threshold of θ12 = p
Q in (12) as

analyzed in Chapter 2.

For another example, consider a user with quality sensitivity θ who is comparing the utility flow from

26

switching every two periods and every three periods. Assuming that the user decides to buy in period t, the

periods when this user always switches to a new version, no matter whether he decides for frequency 2 or 3,

are periods t + 6, t + 12, t + 18, . . . If the utility flow from one of those frequencies is higher for the next

6 periods, then this user naturally prefers this frequency in all of his future decision periods t + 6, t + 12,

t + 18, . . . Thus, to compare which frequency of switching is better, it is enough in the example above to

compare the utility flow from 6 periods since the decision will be regularly repeated every 6 periods.

Assume now that version available in the market in period t has quality tQ. Buying every three periods

implies switching two times to a new version within six periods. For the first time, the user switches in

period t to the version of quality tQ and pays the price p, and for the second time, he switches at period

t + 3 to the new version of quality (t+ 3)Q and pays the price p again. Thus, at time t, the discounted

utility flow from the next six periods is:

Un=3(θ) = θ
(
tQ+ tQβ + tQβ2 + (t+ 3)Qβ3 + (t+ 3)Qβ4 + (t+ 3)Qβ5

)
− p− pβ3. (37)

Similarly, switching every two periods requires switching at periods, t, t+2, t+4, so that the user obtains

the following utility flow from the next 6 periods:

Un=2(θ) = θ
(
tQ+ tQβ + (t+ 2)Qβ2 + (t+ 2)Qβ3 + (t+ 4)Qβ4 + (t+ 4)Qβ5

)
− (38)

− p− pβ2 − pβ4.

Comparing the utility flows Un=3(θ) and Un=2(θ), the user sees which frequency of switching is better for

him. From the above utility flows Un=3(θ) and Un=2(θ), we can immediately derive that the user indifferent

between switching every two and every three periods has quality sensitivity

θ23 =
p

Q

1

(β + 2)
, (39)

where the user with quality sensitivity θ prefers switching every two periods to switching every three periods

if θ > θ23 and switching every three periods to switching every two periods if θ < θ23.

Remark 13 In this example, the decision process is equivalent to an alternative decision process when a

user with quality sensitivity θ at period t possesses the product from period t − 2 and decides whether to

switch or to wait till the next period. The utility flows are then:

Un=3 = θ
(
(t− 2)Q+ (t+ 1)Qβ + (t+ 1)Qβ2 + (t+ 1)Qβ3 + (t+ 4)Qβ4 + (t+ 4)Qβ5

)
− βp− pβ4,

and

Un=2 = θ
(
tQ+ tQβ + (t+ 2)Qβ2 + (t+ 2)Qβ3 + (t+ 4)Qβ4 + (t+ 4)Qβ5

)
− p− pβ2 − pβ4.

Equating the two expressions above and solving for θ, we see again that the indifferent user is θ23 = p
Q

1
(β+2) .

The same result can be derived for the case when the user owns a version from period t − 1 and chooses

between waiting one or two periods. Thus, the approaches to the decision process are equivalent, and it is

not important in which period the user makes a decision about the optimal frequency of switching.

27

Remark 14 From the derivation of the indifferent user θ23 and from the previous remark, we see that the

user’s decision about optimal switching to a new version is dependent only on β, Q, and p, but independent

on the decision period t.

Lemma 7 Given the discount factor β, the software price p, and the per-period quality improvement Q, the

user indifferent between switching every n and every n+ 1 periods has quality sensitivity

θn,n+1 =
p

Q

(1− β)
2

n (1− β)− β (1− βn)
. (40)

The users with θ > θn,n+1 strictly prefer switching every n periods to switching every n + 1 periods, and

the users with θ < θn,n+1 strictly prefer switching every n + 1 periods to switching every n periods. This

value does not depend on which version, if at all, is possessed by the user at any given time. Moreover, this

threshold decreases in β, is not lower than the corresponding imperfect foresight value (with p and Q fixed),

and the utility flow to the indifferent user is non-negative so that the participation constraint holds.

Proof. The derivation of the threshold (40) and the rest of the proof can be found in Appendix A.6.1 .

Remark 15 Note that at β = 0, (40) yields θn,n+1 = p
nQ , which is the imperfect foresight value (at β = 0,

q = Q), and the limiting value at β → 1 is θn,n+1 = p
Q

2
n+n2 .

6.2 Product distribution across users

Users who switch every n periods are those whose quality sensitivities satisfy θ ∈ (θn,n+1, θn−1,n); thus,

substituting (40), we see that the users who switch every n periods are those with θ from the interval:

θ ∈

(
p

Q

(1− β)
2

n (1− β)− β (1− βn)
,
p

Q

(1− β)
2

(n− 1) (1− β)− β (1− βn−1)

)
, (41)

and the number of users switching with every n periods is

Nn = θn−1,n − θn,n+1 =
p

Q

(1− β)
3

(1− βn)

(1− βn − n (1− β)) (β (1− βn)− n (1− β))
. (42)

The previous equations (40), (41), (42) are valid for all users who switch with frequency n ∈ 〈2,∞).

Users who switch every period are just from interval θ ∈ 〈 pQ , 1〉 (note that θ12 = p
Q) and their number is

N1 = 1− p
Q . Summing all switching users over all n ∈ 〈1,∞) together, we obtain that, on the average, the

number of switching users per period is:

N =

(
1− p

Q

)
+

∞∑
n=2

1

n
Nn

=

(
1− p

Q

)
+
p

Q

∞∑
i=2

1

i

(1− β)
3 (

1− βi
)

(1− βi − i (1− β)) (β (1− βi)− i (1− β))
.

For simplicity, denote

L(β) =

∞∑
i=2

1

i

(1− β)
3 (

1− βi
)

(1− βi − i (1− β)) (β (1− βi)− i (1− β))
. (43)

28

Then, given the price p, the quality improvement Q, and the discount factor β, the number of switching

users per period on the average, is

N =

(
1− p

Q

)
+
p

Q
L (β) . (44)

Lemma 8 L(β) is increasing in β, with L(0) = D = 2− 1
6π

2 ≈ 0.355066 and, in the limit, L(1) = 7− 2
3π

2 ≈

0.420264.

Proof. Equation (43) cannot be generally expressed analytically for β other than 0 and 1. To verify the

statement, we used a numerical simulation where we showed that L(β) increases in β. Selected simulation

results can be found in Appendix A.8.1 . The limiting values can be derived using (42) and Remark 15 .

Remark 16 It is clear that the introduction of perfect foresight has an impact on the distribution of indif-

ferent users. If the prices and quality adjustment are fixed, then the threshold θn,n+1 is higher under perfect

foresight. This means that the proportion of users switching less frequently is higher than in the case of

imperfect foresight.

6.3 Equilibrium

From a mathematical point of view, the problem faced by the single-price developer when the users have

perfect foresight is the same as in the imperfect foresight case. The only difference, in the single price

framework, between perfect and imperfect foresight is in the numerical values of the equilibrium solution.

The analytic form remains the same with L(β) in the place of D, and the distribution of indifferent users is

different. We can use all results from the single price case under imperfect foresight. Thus, using the profit

function (17) derived for imperfect foresight users, we obtain:

Π(p,Q, β) =

(
1− p

Q

)
p+ p

p

Q
L(β)− B̄Q2. (45)

Using the results from Chapter 4, we obtain:

p∗(β,B) =
1

16 (1− L(β))
2
B̄
, Q∗(β,B) =

1

8B̄ (1− L(β))
,
p∗

Q∗
=

1

2 (1− L(β))
, (46)

and the equilibrium profit:

Π∗(β,B) =
1

64B̄ (1− L(β))
2 .

As β increases, future present value of utility flow increases and for the same quality jump Q∗ every user

is willing to pay more; thus, the developer can increase price p∗. However from the developer’s point of view,

it is the same as raising the sensitivity to quality; thus, he can also raise produced quality, which in turn

increases his profit. We can summarize this in the following lemma:

Proposition 8 p∗(β), Q∗(β), p∗

Q∗ (β), and Π∗(β) are increasing in discount factor β and decreasing in

parameter B̄, and the number of switching users in the case of the single-price is independent on β and is

equal to N∗ = 1
2 , which is the same number as in the case of an imperfect foresight set-up.

Proof. L(β) is increasing in β, and as can be immediately seen from the equilibrium, p∗, Q∗, p∗

Q∗ , Π∗

are decreasing in B̄, and they are increasing in L, so that they are all increasing in β. The value N∗ is then

obtained directly.

29

7 Perfect foresight users and price discrimination by an upgrade
version

7.1 General set-up

In the perfect foresight set-up with discrimination by upgrades, every user sees which frequency of switching

is the best for him, and a user who switches to a new version every period for a lower upgrade price p1

knows that not switching in one period means that in the next period he is not eligible for the upgrade

price anymore and should pay the higher (full) price p2. If the price p2 is relatively high with respect to the

upgrade price p1, then there would be users who would rather switch every period for a lower price p1 than

switch for the full price more frequently than every n periods. In this case, the high difference between the

prices p1 and p2 crowds out users with lower frequencies of switching, e.g. 2, 3, up to n− 1.

Assume that the developer sets prices p1 and p2 in a way to crowd out users who would switch every

2, .., n − 1 periods, and so, only users switching every period and every n (and more) periods are on the

market. Then denote the user indifferent between switching every period at the upgrade price p1 and every

n periods at the full price p2 as θ1,n, and the developer’s profit function combines the features of the profit

function (45) from the perfect foresight set-up with single price as well as the profit function from imperfect

foresight with price discrimination:

Π = (1− θ1,n) p1 +
1

n
(θ1,n − θn,n+1) p2 +

p2

Q
Ln+1 (β) p2 − B̄Q2, (47)

where the profit function consist of four parts:
1. (1− θ1,n) p1 Revenue generated by users switching every period;
2. 1

n (θ1,n − θn,n+1) p2 Revenue generated by users switching exactly every n periods;
3. p2

Q Ln+1 (β) p2 Revenue generated by users switching less than every n periods; and

4. B̄Q2 Cost of product development with quality jump Q.
Here Ln+1 (β) is analogous to L(β) in (43) with the initial n − 1 terms of the sum not included. The

definition of Ln+1 (β) is thus the following:

Ln+1 (β) =

∞∑
i=n+1

1

i

(1− β)
3 (

1− βi
)

(1− βi − i (1− β)) (β (1− βi)− i (1− β))

(note that L2(β) is the same as L(β)).

7.1.1 Necessary conditions for equilibrium existence

• Condition 1: There are users who would switch every period:

0 ≤ θ1,n ≤ 1. (48)

• Condition 2: There are users who would switch every n periods, but no user would switch every n−1

periods:

θn,n+1 ≤ θ1,n ≤ θn−1,n. (49)

30

Remark 17 The whole problem could be generally solved using Lagrangian multipliers and Kunh–Tucker

conditions; however, we approach it by using an unconstrained maximization problem with the further iden-

tification of binding constraints that are later incorporated into the decision process. This approach gives

more insights on model behavior.

Remark 18 Other conditions that must hold are participation constraints θm,m+1mq − p2 ≥ 0 for m ≥ n

and θ1,nq − p1 ≥ 0. However, these conditions hold by the construction of the respective thresholds as is

shown in the corresponding propositions.

7.1.2 A user indifferent between switching every period and every n periods

As compared to perfect foresight with a single price, the problem of the indifferent user is now more compli-

cated. If a user owns a version which is more than one period older, then this user is only eligible for the full

price p2 so that the decision on the frequency of switching follows the rule (40) with p2 instead of p, so that

the optimal switching frequency at the full price n = n(θ, p2, Q, β) is derived. However, if the user owns the

version from the previous period, then the user is also eligible for the upgrade price p1, so that two options

are available. First, the user can exercise his upgrade price claim, and if this is optimal, then this will be

done in every subsequent period as the same choice will be faced. Second, the user may wait n− 1 periods

so that the version at hand becomes n periods old and then switch every n = n(θ, p2, Q, β) periods21.

Lemma 9 Given the discount factor β, the software prices p1 and p2, and the per-period quality improvement

Q, the user indifferent between switching every period at the upgrade price p1 and in every n periods at the

full price p2 has quality sensitivity

θ1,n = (1− β)
p1 (1− βn)− p2 (1− β)βn−1

(1− βn − nβn−1(1− β))Q
. (50)

The users with θ > θ1,n strictly prefer switching every period at p1 to switching every n periods at p2,

and the users with θ < θ1,n strictly prefer switching every n periods at p2 to switching every period at p1.

Moreover, if n is optimal at price p2, then the utility flow to the indifferent consumer is non-negative so that

the participation constraint is satisfied.

Proof. The derivation of the threshold (50) and the proof that the participation constraint is satisfied

can be found in Appendix A.7.1 .

For the sake of convenience, denote

X =
(1− β)

2

n (1− β)− β (1− βn)
, Y =

(1− β) (1− βn)

1− βn − nβn−1(1− β)
, Z =

(1− β)
2
βn−1

1− βn − nβn−1(1− β)
,

so that the thresholds can be written as θn,n+1 = p2
QX and θ1,n = p1

Q Y −
p2
Q Z.

7.2 Equilibria

The approach for calculating equilibria is the following. Given β, we fix n and look for an equilibrium

assuming that conditions (48) and (49) are satisfied. If they indeed hold, we have an interior equilibrium.

21From the optimality of n(θ, p2, Q, β), it follows that the user will not consider the options involving either switching (at p2)
at other frequencies or waiting for any other number of periods than n− 1 and then switching every n periods.

31

In case some condition is not satisfied, we incorporate this condition into the profit function and calculate the

equilibrium again. Then we look for n ∈ (2,∞) such that the developer maximizes his profit. Unfortunately,

we cannot internalize n into a general solution and the only possibility is to verify the solution for the

problem for all n. However, from the solution, it will be clear how the pattern of equilibria changes based

on n and β.

As in the case of imperfect foresight, we will distinguish “lock-in” and “non-lock-in” equilibria. By a

“lock-in” equilibrium we understand the developer’s strategy when he sets the price difference between the

upgrade price p1 and the full price p2 so high that there is no user switching every two periods (or even

more). Consequently, a “non-lock-in” equilibrium is an equilibrium when prices p1 and p2 are in such a

relation that there are users switching every two periods. As is shown later, the only condition that may be

violated after an unconstrained optimization is θ1,n ≥ θn,n+1, which effectively means that it is optimal for

the developer to increase n. The distribution of switching frequencies across users is qualitatively the same

as in the imperfect foresight case, see Figures 6 and 7 , though the threshold values are different.

7.2.1 “Non-lock-in” equilibria

Necessary conditions for the existence of an interior non-lock-in equilibrium22 are θ2,3(p∗2) ≤ θ1,2(p∗1, p
∗
2) ≤

min{θ1,2(p∗2), 1}, and since equilibrium prices and the quality jump are dependent on β, the resulting nec-

essary condition will be fully dependent on β too. As we have shown already in (50), the indifferent user

between switching every period at p1 and every two periods at p2 has quality sensitivity

θ1,2(p1, p2) =
p1

Q
(1 + β)− p2

Q
β. (51)

From equation (39), we know that a user who is indifferent between switching every second and every third

period (at p2) satisfies

θ2,3(p2) =
p2

Q (β + 2)
. (52)

Then after substituting θ1,2, θ2,3 from (51), (52) into the general profit function (47), simplifying for n = 2,

and using F.O.C. (see Appendix A.7.2 for S.O.C. and condition tests), we obtain a profit function similar to

the profit function of the non-lock-in case in the imperfect foresight set-up, see (25):

Π =

(
1− p1

Q
(1 + β) +

p2

Q
β

)
p1 +

1

2

(
p1

Q
(1 + β)− p2

Q
β − p2

Q (β + 2)

)
p2 +

p2

Q
L3p2 − B̄Q2. (53)

Using F.O.C. (see Appendix A.7.2 for S.O.C. and the necessary conditions), we obtain equilibrium prices

p∗1, p∗2 and quality improvement Q∗:

p∗1 =
4λ2

2

Λ2
2B̄

, p∗2 =
2 (2 + β) (1 + 3β)λ2

Λ2
2B̄

, Q∗ =
λ2

Λ2B̄
, (54)

where

λ2 = (1 + β)2 − 2(2 + β)L3, Λ2 = 6 + 11β − β3 − 16(1 + β)(2 + β)L3,

22Here θ1,2(p∗1, p
∗
2) is θ1,n calculated at n = 2, i.e., the user who is indifferent between switching every period at p1 and

switching every two periods at p2; whereas, θ1,2(p∗2) = p∗2/Q
∗ is θn−1,n calculated at n = 2, i.e., the user who is indifferent

between switching every period at the ”full” price p2 and switching every two periods at p2.

32

and these values are positive at every β ∈ (0, 1). The only necessary condition that is not guaranteed to hold

is θ2,3(p∗2) ≤ θ1,2(p∗1, p
∗
2), which is violated at β ≥ B2 ≈ 0.325448. The violation of this condition means that

the developer’s profit decreases in p1 in the entire non-lock-in region, whence it is optimal for the developer

to switch to 3-lock-in (and often further).

Substituting the equilibrium values back into the profit function as well as (51), (52), we obtain

Π∗ =
λ2

2

Λ2
2B̄

, θ∗1,2 =
2
(
2 + 4β − β2 − β3 − 4(1 + β)(2 + β)L3

)
Λ2

, θ∗2,3 =
2(1 + 3β)

Λ2
,

so that the number of high-end users N1 = 1 − θ1,2 and the per-period average number of low-end users

N2 = 1
2 (θ1,2 − θ2,3) + p2

Q L3 in equilibrium are the following.

N∗1 =
(1 + β)(2 + β + β2 − 8L3(2 + β))

Λ2
, N∗2 = (1− β)

λ2

Λ2
.

Corollary 1 Equilibrium prices per quality rations, obtained directly from (54), equal

p∗1
Q∗

=
4λ2

Λ2
,
p∗2
Q∗

=
2 (2 + β) (1 + 3β)

Λ2
.

As β is increasing, the equilibrium number of high-end users is also increasing. Intuitively, the present

value of the future utility flow is growing in β, so it becomes more profitable for the consumers to use

the upgrade option. This also leads the developer to decrease p1 with respect to p2, thus attracting more

consumers to the upgrade version, until β reaches B2, when all consumers buying every two periods are

crowded out.

7.2.2 “Lock-in” equilibria

In the previous part, we examined non-lock-in equilibria where users switching every two periods were always

present on the market. Now, we will generalize the case in a way that users switching every two periods (or

even less frequently) are not present on the market. Taking into account the previous calculation, we derive

the following general profit function:

Π =

(
1− p1

Q
Y +

p2

Q
Z

)
p1 +

1

n

(
p1

Q
Y − p2

Q
Z − p2

Q
X

)
p2 +

p2

Q
Ln+1p2 − B̄Q2, (55)

where n is the lowest frequency of users switching at the regular price present on the market. Then the

“lock-in” equilibrium is the following (see Appendix A.7.3 for S.O.C. and the necessary conditions).

p∗1 =
n2λ2

n

Λ2
nB̄

, p∗2 =
n2(Y + nZ)λn

2Λ2
nB̄

, Q∗ =
nλn

2ΛnB̄
,

where

λn = X + Z − nLn+1, Λn = 2nY (2X + Z)− Y 2 − n2Z2 − 4n2Y Ln+1,

and these values are positive at every n and β ∈ (0, 1). The only necessary condition that is not guaranteed

to hold is θn,n+1 ≤ θ1,n, which is violated at β ≥ Bn, where Bn is increasing in n with limn→∞Bn = 1
2 ,

tabulated in Appendix A.8.1 . The violation of this condition means that the developer’s profit decreases

in p1 in the entire n-lock-in region, so that it is optimal for the developer to switch to (n+ 1)-lock-in. This

33

implies that if β ≥ 1
2 , then it is optimal in our model for the developer to crowd out lower frequencies

of switching infinitely, so no price discrimination equilibrium exists. However, if we introduce discounting

into the developer’s profit and take into account that the consumers start buying only after the quality

accumulated reaches their participation constraint (instead of neglecting this due to no discounting, infinite

horizon, and hence per-period optimization), then lock-in equilibria would exist for high values of β. The

range of β at which price discrimination equilibria exist would also expand if we assume that some consumers

have perfect foresight and others have imperfect foresight as described in section 9.2. It should be also noted

that high values of β are not very appropriate to software.

Substituting the equilibrium values back into the profit function (55) as well as into the thresholds, we

obtain

Π∗ =
n2λ2

n

4Λ2
nB̄

, θ∗1,n =
n
(
Y (2X + Z)− nZ2 − 2nY Ln+1

)
Λn

, θ∗n,n+1 =
nX(Y + nZ)

Λn
,

so that the number of users, who are switching are

N∗1 = 1− θ∗1,n =
Y
(
n(2X + Z)− Y − 2n2Ln+1

)
Λn

, N∗2 =
1

n

(
θ∗1,n − θ∗n,n+1

)
+
p∗2
Q∗

Ln+1 = (Y − nZ)
λn
Λn

.

7.2.3 Comparative statics for price discrimination equilibria

The following results can be derived from the equilibria above. Recall that non-lock-in is mathematically

2-lock-in. We assume that β is valid, i.e., β ≤ Bn for the given n.

Lemma 10 If the developer uses n-lock-in price discrimination under perfect foresight, then the average

number of switching users is decreasing in n and increasing in β, whereas the equilibrium quality change,

both prices, both prices per quality change, and the developer’s profit increase in both n and β. In addition,

the equilibrium quality change converges for β < 1
2 from below to the socially optimal level Q0 = 1

4B̄(1−β)
as

n increases.

7.3 Equilibria comparison under perfect foresight

Here we compare perfect foresight equilibria under a single price and under price discrimination. As under

imperfect foresight, the developer’s profit is always higher for price discrimination since the developer always

has a possibility to set prices p1 = p2. The following result, which exactly parallels the imperfect foresight

outcome, can be shown to hold.

Lemma 11 In the case of price discrimination, a developer’s quality Q and both prices are higher than in

the case of a single price, that is p∗ ≤ p∗1 ≤ p∗2, and the price per unit of the quality jump is higher in the

case of price discrimination, that is p∗

Q ≤
p∗1
Q ≤

p∗2
Q , no matter the β and B. This result is independent from

the perfect or imperfect foresight set-up.

From this result, it follows that the developer’s cost of a higher quality improvement in the case of price

discrimination is more than fully compensated for by the increased prices.

In comparing the developer profit for a particular β and n, we see that the best strategy for the developer

in our model is to set n close to infinity, which is the same result as in the case of imperfect foresight. This

34

result again stems from our model set-up, where the developer is maximizing the average profit per period.

Thus, the developer does not differentiate between the profit realized in the first period and the profit from a

very distant period “close to infinity.” Note that maximizing the average profit instead of the discounted profit

across each period is a simplification to obtain an analytical solution, and the introduction of discounting

would lead to a finite optimal lock-in depth.

8 Welfare analysis: perfect foresight set-up

A welfare analysis for the perfect foresight set-up is analogous to the imperfect foresight set-up from section

5. All related results from the imperfect foresight remain valid for the perfect foresight at β = 0. The

following result can be shown to hold23.

Proposition 9 (i) Consumer surplus per period is higher for the single price developer than for the price

discriminating developer for all relevant β, increases in β and decreases in n as n-lock-in is used. This

is valid for the total consumer surplus as well as for the consumer surplus for high-end and low-end users

separately.

(ii) Under perfect foresight, the equilibrium per-period CS per buyer (total, high-end, and low-end alike)

increases in β, which applies to both a single-price monopoly and price discrimination for every n. Per-period

CS per buyer for high-end users is higher for the single price developer than for the price discriminating

developer for all relevant β and decreases in n. Per-period CS per buyer for low-end users is lower for the

single price developer than for the price discriminating developer for all relevant β except for β <≈ 0.097773

at n = 2 and β <≈ 0.004777 at n = 3, and increases in n.

(iii) Under perfect foresight, total per-period CS per buyer is lower for the single price developer than for

the price discriminating developer whenever n ≥ 8 or β >≈ 0.289509. It increases in n whenever n ≥ 8 or

β <≈ 0.099358.

Part (i) exactly corresponds to the one from the imperfect foresight case, and part (ii) is similar to what

happens under imperfect foresight (recall that under imperfect foresight, CS per buyer for high-end users

follows the same pattern as CS itself; whereas, the total CS per buyer and CS per buyer for low-end users

increase in n and are higher under price discrimination except for n = 2 and n = 3). Thus, part (ii) confirms

that the different relation between a single-price and price discrimination CS per buyer for low-end users for

low n is just a mathematical property.

Part (iii) shows that as for the total CS per buyer, the effect for low-end users eventually prevails (mainly

because the CS for high-end users decreases more quickly than the CS for low-end users). (See Appendix

A.8.2 for the behavior of the CS per buyer when n is small.) As it is optimal for the developer to “squeeze”

non-updating consumers who switch relatively frequently, the CS per buyer eventually increases in n.

As for social welfare, according to Lemmata 10 and 11 , the equilibrium quality is higher under price

discrimination and converges from below to the socially optimal level as n increases. Therefore, the same

23These results were derived similar to those presented in Appendices A.5.2 and A.5.3 , but with perfect foresight equilibria
and thresholds. As these results are often mathematically cumbersome, we opted not to include them explicitly but rather
leave the Mathematica file available upon request.

35

properties apply to the equilibrium social welfare (for β < 1
2 , when price discrimination equilibria exist).

9 The comparison between imperfect and perfect foresight

9.1 The comparison of equilibria

As we have already noted, the outcome of the model at β = 0 is identical under both perfect and imperfect

foresight. While the results at β > 0 are different as described below, there is one notable exception. Namely,

the average number of users who switch to a new version every period is 1
2 no matter whether they have

perfect or imperfect foresight. Therefore, the number of switching users per period under a single price is

independent from the discount factor β, and costs B̄.

Before comparing other results, recall that while perfect foresight results are expressed in terms of the

developer’s quality cost efficiency B̄ and the quality choice Q, imperfect foresight results were, for conve-

nience, expressed in terms of B = B̄(1−β)2 and q = Q
1−β , so the corresponding change has been made. The

following result can be proved.

Proposition 10 Assume that β > 0, the price setting is fixed at either a single price or price discrimination

by upgrades, and that n is fixed with β ≤ Bn in the discrimination case. Then the following results hold.

(i) The equilibrium prices, qualities, price-to-quality ratios, and per period profits are lower under perfect

foresight than under imperfect foresight, and the average per-period number of switching users is higher under

perfect foresight than under imperfect foresight.

(ii) Under price discrimination, the equilibrium per-period consumer surplus, whether total or per buyer,

is higher under perfect foresight than under imperfect foresight, counted for all users or for high-end and

low-end consumers separately. However under the single price, the CS is higher under perfect foresight if β

is not too high (β < 1
2 is sufficient in all cases) but becomes higher under imperfect foresight as β → 1.

(iii) The social welfare is lower under perfect foresight than under imperfect foresight.

A useful insight into part (i) is provided by Lemmata 7 and 9 , where we show that the indifferent

users have a positive utility flow under perfect foresight, and that flow is zero under imperfect foresight. In

other words, the developer cannot exert as much monopoly power against users with perfect foresight as

against users with imperfect foresight: hence, the result above. This is especially evident as β → 1 when the

imperfect foresight values (other than number of users) tend to +∞; whereas, the perfect foresight values,

while also increasing in β, have finite limits.

For part (ii)—See Appendix A.8.3 for the thresholds under a single-price monopoly—the lower degree

of monopoly power in equilibrium also results in a higher consumer surplus under perfect foresight when

β is relatively low, including all values of β such that a price discrimination equilibrium under perfect

foresight exists. However, at high values of β (which are improbable as noted in the discussion of price

discrimination equilibria under perfect foresight), when the imperfect foresight equilibrium values tend to

infinity, CS becomes higher under imperfect foresight.

Part (iii), while following from the fact that equilibrium qualities are lower under perfect foresight, might

be surprising as a weaker monopoly is usually associated with higher welfare. However, in our model, while

36

the developer cannot extract as much CS from the users as under imperfect foresight, neither are the users

able to capture the entire difference, which results in a loss in welfare. Note that as it is optimal for the price

discriminating developer to “squeeze” infinitely, the welfare will tend to its optimal value in both cases.

9.2 The generalization of results

We have shown that the comparative static results are qualitatively independent from using a perfect foresight

or an imperfect foresight set-up. Thus, we can generalize the comparative static results on the market set-

up where we have mixed users with imperfect and perfect foresight. If the type of foresight of the user is

statistically independent from the user’s quality sensitivity, with the latter uniformly distributed on 〈0, 1〉,

then all qualitative results of this paper remain valid.

10 Conclusion

In this paper, we have analyzed monopoly price discrimination based on upgrades designed for users who

switch every period. It was done in quite a general set-up (infinitely durable products, an infinite number of

users with different sensitivity to quality), and our restrictions on the model set-up were only based on the

empirically observed patterns of the developers’ behavior. We assumed the prices to be the same in every

period since in real markets, we often observe prices for new versions of a product set at almost the same

level as for previous versions. Our second restriction was that the quality improvement from one period to

another was fixed.

As for our main result, we showed that price discrimination does not lead to lower prices for any user

group in the market. This is caused by the character of price discrimination in our model, when the target

group of price discounts is not the most price sensitive group of the users, but the discount is provided to

the users with the highest frequency of switching, i.e., to the users with the highest sensitivity to quality.

The second key result is that a price discriminating developer accelerates software development more

than a single-price developer, which could be perceived as beneficial for users, but on the other hand, the

number of switching users in the case of a price discriminating developer is always lower. Even if we split

users into two groups, those who switch every period and those who switch less frequently, we see that in

the case of a price discriminating developer, the number of switching users is lower in both groups.

We showed that all those comparative static results are valid no matter whether users have perfect or

imperfect foresight.

We can also look at the results from a different perspective: A price discriminating developer can more

effectively “separate” high-end users from low-end users and charge them a higher price by offering a higher

software quality while at the same time being aware that low-end users become less important from a revenue

point of view. Since the developer knows that low-end users would switch to a new version from time to

time anyway, the developer sets the price for them relatively higher than in the case of a single price, which

ensures for the developer that those users who may consider switching to a new version every second period

at the full price would rather switch every period for the lower upgrade price. This effect is more visible for

perfect foresight users.

37

As for social welfare, a price discriminating developer generates (under plausible assumptions) higher

per-period consumer surplus per user, but at the same time the number of switching users is lower, and the

overall consumer surplus is lower as well. While this also indicates that the developer’s monopoly power

strengthens, the social welfare increases as well and approaches the socially optimal level in the limiting case.

The model used in the essay was designed for the software market, but it can be easily applied more

widely whenever users are heterogeneous and a resale market is outlawed. Infinite durability of the product is

not necessary, but the absence of product depreciation eliminates demand generated by product replacement

due to physical obsolescence, which simplifies the analytical solution.

38

References

Anton, J., and Biglaiser, G. (2009): “Quality, Upgrades, and (the Loss of) Market Power in a Dynamic

Monopoly Model,” ERID Working Paper, No. 9.

Banerjee, D.S. (2003): “Software Piracy: A Strategic Analysis and Policy Instruments,” International

Journal of Industrial Organization, Vol. 21, pp. 97–127.

Belleflamme, P., and Peitz, M. (2010): Industriall Organization: Market Strategies, Cambridge University

Press.

Echevarŕıa, R.C. (2005): “Technological and Physical Obsolescence and the Timing of Adoption,” Fun-

dación BVVA, Working Paper.

Ellison, G., and Fudenberg, D. (2000): “The Neo-Luddite’s Lament: Excessive Upgrades in the Software

Industry,” RAND Journal of Economics, Vol. 31, pp. 253–272.

Fishman, A., and Rob, R. (2000): “Product Innovation by a Durable-good Monopoly,” RAND Journal of

Economics, Vol. 31, pp. 237–252.

Fudenberg, D., and Tirole, J. (2000): “Pricing a Network Good to Deter Entry,” Journal of Industrial

Economics, Vol. 48, pp.373–390.

Fudenberg, D., and Tirole, J. (1998): “Upgrades, Tradeins, and Buybacks,” RAND Journal of Economics,

Vol. 29, pp. 235–258.

Fudenberg, D., and Villas-Boas, J. M. (2006): “Behavior-based Price Discrimination and Customer Recog-

nition,” in Hendershott, T.J., ed. Handbook on Economics and Information Systems, Elsevier.

Inderst, R. (2008): “Durable Goods with Quality Differentiation,” Economic Letters, Vol. 100, pp. 173–177.

Katz, L., and Shapiro, C. (1998): “Antitrust in Software Markets,”Freedom Foundation Conference.

Mehra, A., and Seidmann, A. (2008): “Optimal Timing of Upgrades over a Software Product’s Life Cycle,”

The Bradley Policy Research Center Working Paper, No. FR 08-22.

Matějka, F. (2010): “Rigid Pricing and Rationally Inattentive Consumer,” CERGE-EI Working Paper

Series, No. 409.

Nahm, J. (2004): “Durable-goods Monopoly with Endogenous Innovation,” Journal of Economics & Man-

agement Strategy, Vol. 13, pp. 303–319.

Sims, C.A. (2003): “Implications of Rational Inattention,” Journal of Monetary Economics, Vol. 50(3), pp.

665–690.

Shapiro, C. (2000): “Competition Policy in the Information Economy,” in Hope, E., ed. Competition Policy

Analysis, Routledge.

39

Stokey, N., (1979): “Intertemporal Price Discrimination,” Quarterly Journal of Economics, Vol. 93, pp.

355–371.

Stokey, N., (1981): “Rational Expectations and Durable Goods Pricing,” Bell Journal of Economics, Vol.

12, pp. 112–128.

Stole, L.A. (2007): “Price Discrimination and Competition,” in Armstrong, M., and Porter, R., eds. Hand-

book of Industrial Organization, Volume 3, Elsevier.

Wang, Q.H., and Hui, K.L. (2005): “Technology Timing and Pricing In the Presence of an Installed Base,”

EconWPA Working Paper, No. 0512013.

Werden, G.J. (2001): “Network Effects and Conditions of Entry: Lessons from the Microsoft Case,” An-

titrust Law, Vol. 69, pp. 87–111.

Internet Sources: www.tomshardware.com, www.idg.com, www.zive.cz.

40

A Appendix

Most of the calculations in this paper were performed using Mathematica and other similar software. The

Mathematica file is available upon request.

A.1 The approach used for S.O.C. verification

In all cases, the objective function is the developer’s profit, which can be either a function of a single price

and a quality, Π(p,Q), or a function of two prices and a quality, Π(p1, p2, Q), where Q is replaced with q

under imperfect foresight. In the single-price case, the form of the Hessian used in this paper is

H =

(
Πpp ΠpQ

ΠpQ ΠQQ

)
, (56)

and in the two-price case we use

H =

 Π11 Π12 Π1Q

Π12 Π22 Π2Q

Π1Q Π2Q ΠQQ

 , (57)

where subscripts ‘1’ and ‘2’ stand for the derivatives with respect to p1 and p2. In the proofs below, we

immediately proceed to listing the principal minors of the Hessians.

A.2 The approach used for consumer surplus calculation

A recurrent task in this paper is to calculate the average per period consumer surplus (CS) as an infinite

sum of CS of the consumers who switch every n or more periods, n ≥ 2. Recall that the structure of the

consumers’ utility is θQ− p, so that the structure of added consumer utility is θq − p, where q = Q
1−β , and

the range of the consumers who switch every n periods is given by θn,n+1 < θ < θn−1,n, where θn,n+1 strictly

decreases in n and limn→∞ θn,n+1 = 0. In addition, the usual form of θn,n+1 is

θn,n+1 =
p

Q
Xn, lim

n→∞
Xn = 0

(here p can be p2, and Q can be q for imperfect foresight, but see below). Then the average demand per

period from the group in question equals

∞∑
m=n

1

m
(θm−1,m − θm,m+1) =

p

Q

∞∑
m=n

1

m
(Xm−1 −Xm) =

p

Q
Ln.

The value Ln depends on the consumers’ discount factor β, and at β = 0, it turns into the imperfect foresight

Dn. The subscript n is usually omitted when n = 2.

CS for the group in question is given by CSn+ =
∑∞
m=n CSm, where

CSm =

∫ θm−1,m

θm,m+1

(
θq − p

m

)
dθ =

∫ (p/Q)Xm−1

(p/Q)Xm

(
θq − p

m

)
dθ =

p2

Q

(
X2
m−1 −X2

m

2(1− β)
− Xm−1 −Xm

m

)
.

Note that the infinite sum of the “subtracted” term inside the parentheses is Ln, and as limm→∞Xm = 0,

∞∑
m=n

(
X2
m−1 −X2

m

)
= lim
m→∞

(
X2
n−1 −X2

m

)
= X2

n−1,

41

so that the final expression for CS is

CSn+ =

∞∑
m=n

CSm =
p2

Q

(
X2
n−1

2(1− β)
− Ln

)
.

Two particularly important cases are n = 2 (recall that X1 = 1 for all β), and n = n + 1 (when the

summation starts at n+ 1). Then

CS2+ =
p2

Q

(
1

2(1− β)
− L

)
, CS(n+1)+ =

p2

Q

(
X2
n

2(1− β)
− Ln+1

)
.

For imperfect foresight the outcome is (note that here Xn = 1/n)

CS2+ =
p2

q

(
1

2
−D

)
, CS(n+1)+ =

p2

q

(
1

2n2
−Dn+1

)
.

A.3 The single price model for imperfect foresight users

A.3.1 S.O.C. verification

The profit function is

Π =

(
1− p

q

)
p+

p

q
Dp−Bq2,

and the principal minors of the Hessian are 2
q (D − 1) and 4B

q (1−D), so that H is negative definite as q > 0,

B > 0, and D ≈ 0.355. Therefore, the solution to F.O.C. is a maximum.

A.4 Imperfect foresight users and price discrimination

A.4.1 S.O.C. and validity in non-lock-in

We have to maximize the profit

Π =

(
1− p1

q

)
· p1 +

p2

q
D · p2 −B · q2 −

(
p2

q
− p1

q

)
· 1

2
· p2

with respect to the conditions p1 ∈
〈
p2
2 , p2

〉
and p1

q ≤ 1. Our approach is to start with unconstrained

optimization and check the conditions afterwards. (It happens that the conditions are satisfied, so there is

no need to re-calculate.)

F.O.C. result in

p∗1 = 4
(1− 2D)

2

(16D − 7)
2
B
, p∗2 = 2

1− 2D

(16D − 7)
2
B
, q∗e =

2D − 1

B (16D − 7)
,

so that
p∗1
p∗2

= 2 − 4D, and 1 − p1
q = 3−8D

7−16D , which satisfies our assumptions that p1 ∈
〈
p2
2 , p2

〉
and p1

q ≤ 1.

The principal minors of the Hessian equal − 2
q , 7−16D

4q2 , and −B(7−16D)
2q2 , so that H is negative definite as

q > 0, B > 0, and D ≈ 0.355. Therefore, the solution to F.O.C. is a maximum.

A.4.2 S.O.C. and validity in lock-in

The profit function in n-lock-in is

Π =
p2

nqe
(p1 + p2 − np2ψ1(n)) +

(
1− p1

qe

)
p1 −Bq2

e .

42

As in the non-lock-in case, there are the validity conditions p1 ∈ 〈p2n ,
p2
n−1 〉 and p1

q ≤ 1, which are assumed

to hold before being checked.

F.O.C. result in

p∗1 =
n2

B

(nψ1(n)− 1)
2

(4n2ψ1(n)− 4n− 1)
2 , p

∗
2 =

n2

2B

nψ1(n)− 1

(4n2ψ1(n)− 4n− 1)
2 , q

∗
e =

n

2B

nψ1(n)− 1

4n2ψ1(n)− 4n− 1
,

and the validity conditions can be shown to hold using the properties of the polygamma function.

The Hessian is calculated as in (57), and the principal minors equal

−2

q
,

4n2ψ1(n)− 4n− 1

n2q2
, − 2B(4n2ψ1(n)− 4n− 1)

n2q2
,

so that H is negative definite as q > 0, B > 0, and it can be shown that 4n2ψ1(n) − 4n − 1 > 0, ∀n ≥ 2.

Therefore, the solution to F.O.C. is a maximum.

A.4.3 The number of users under imperfect foresight and price discrimination

The number of upgrading users in equilibrium:

N∗H = 1− p∗1
q∗e

=
1

2

(
1− 1

4n2ψ1(n)− 4n− 1

)
. (58)

The number of users who buy less frequently than every period is:

N∗L =
p∗2
q∗e
Dn+1 −

1

n

(
p∗2
nq∗e
− p∗1
q∗e

)
=

nψ1(n)− 1

4n2ψ1(n)− 4n− 1
. (59)

Summing N∗H and N∗L, we obtain the average demand per period N∗.

A.5 Imperfect foresight users: comparison and welfare analysis

A.5.1 Single price versus price discrimination

A comparison using the single-price equilibrium quality q∗ by the price discriminating devel-

oper In the equilibrium comparison in the main part, we see that prices and quality are higher in the case

of a price discriminating developer. Assume now that the developer has already set the quality at a level of

the single price equilibrium q∗ = 1
8(1−D)B , derived in (18), and now is allowed to price discriminate. We

now compare how these prices, denoted as pcs1 and pcs2 , differ from the single-price equilibrium value p∗. This

comparison will allow us to separate the pure effect of enabling price discrimination and the effect of higher

quality in the case of price discrimination.

Proposition 11 Optimal prices for discrimination for a developer who has already set q = q∗ are

pcs1 =
1

2B

1− 2D

(7− 16D)(1−D)
, pcs2 =

1

4B

1

(7− 16D)(1−D)
.

Proof. If the quality change q is fixed in the non-lock-in price discrimination problem, F.O.C. in prices

result in

p1 =
4(1− 2D)

7− 16D
q, p2 =

2

7− 16D
q,

43

the ratio of the prices is p1
p2

= 2 − 4D, so that the non-lock-in condition p1 ∈
〈
p2
2 , p2

〉
is satisfied, and the

principal minors of the Hessian equal − 2
qand 7−16D

4q2 so that the solution is a maximum. Substituting q = q∗

yields the result.

By comparing with the optimal single price p∗ = 1
16(1−D)2B

, we immediately see that
pcs1
p∗ ' 1.133911,

so that pcs1 is higher than p∗, and since pcs2 is higher than pcs1 , both prices are higher in the case of price

discrimination.

Corollary 2 Enabling price discrimination while fixing q∗ from the single-price equilibrium decreases the

average number of users who switch to the new product, raises the price for both the upgrade and full versions,

and increases the price per quality value, p∗

q∗ <
psc1
q∗ <

psc2
q∗ .

Proof. The result is proven by direct comparison.

Thus, the key result from the comparison of the single-price and price discrimination equilibria comes

from two effects: enabling price discrimination and increasing equilibrium quality. Further, these two effects

reinforce each other as both result in higher prices and a lower number of users.

A.5.2 Welfare analysis: single price developer

Recall that the equilibrium price and quality improvement are

p∗ =
1

16 (1−D)
2
B
, q∗ =

1

8 (1−D)B
=⇒ p∗

q∗
=

1

2 (1−D)
.

The asterisk superscript denoting the equilibrium values is implied where needed.

Consumer surplus for high-end users equals

CSH =

∫ 1

p
q

(θq − p) dθ =
1

2q
(p− q)2

=
1

64

(1− 2D)2

(1−D)
3
B
≈ 0.0048941

B
. (60)

Consumer surplus per buyer for high-end users is then

CSH
NH

=
CSH
1− p

q

=
1

2
(q − p) =

1

32

1− 2D

(1−D)
2
B
≈ 0.021778

B
. (61)

Consumer surplus for low-end users equals

CSL =
p2

q

(
1

2
−D

)
=

1

64

1− 2D

(1−D)3B
≈ 0.016884

B
. (62)

Consumer surplus per buyer for low-end users is then

CSL
NL

=
CSL
p
qD

= p
(1− 2D)

2D
=

1

32

(1− 2D)

(1−D)
2
DB

≈ 0.061335

B
. (63)

Total consumer surplus equals

CS = CSH + CSL =
1

32

1− 2D

(1−D)
2
B
≈ 0.021778

B
. (64)

Consumer surplus per buyer is then

44

CS

N
=

1

16

1− 2D

(1−D)
2
B
≈ 0.043556

B
. (65)

Finally, social welfare under imperfect foresight with a single-price developer equals

W =
1

2
q −Bq2 =

3− 4D

64B (1−D)
2 =

3

16

2π2 − 15

B (π2 − 6)
2 ≈

0.059344

B
. (66)

A.5.3 A welfare analysis: price discrimination

Here the general n-lock-in case is analyzed. Recall that non-lock-in is mathematically 2-lock-in. Recall that

the equilibrium prices and quality change are

p∗1 =
n2

B

(nψ1(n)− 1)
2

γ2
4

, p∗2 =
n2

2B

nψ1(n)− 1

γ2
4

, q∗e =
n

2B

nψ1(n)− 1

γ4
,

where γm = mn2ψ1(n) −mn − 1, note that γm > 0 for n ≥ 2, and m = 2, 3, 4. The asterisk subscript for

the equilibrium values is implied where needed.

Consumer surplus for high-end users equals

CSH =

∫ 1

p1
qe

(θqe − p1) dθ =
1

2qe
(p1 − qe)2

=
n

4B

(nψ1(n)− 1) γ2
2

γ3
4

. (67)

Consumer surplus per buyer for high-end users is then

CSH
NH

=
1− γ−2

4

32B
. (68)

Consumer surplus for low-end users consists of the surplus for those who buy with the frequency of

exactly n periods (p2
nqe

= θn,n+1 < θ < θ1,n = p1
qe

) and for those who buy even less frequently. The former

term equals ∫ θ1,n

θn,n+1

θqe −
p2

n
dθ =

1

2

(np1 − p2)
2

n2qe
,

and the latter equals
p2

2

qe

(
1

2n2
−Dn+1

)
.

Substituting the equilibrium values yields

CSL =
n2

2B

(nψ1(n)− 1)
2
γ2

γ3
4

. (69)

Consumer surplus per buyer for low-end users is then

CSL
NL

=
n
(
1− γ−2

4

)
16B

. (70)

Total consumer surplus equals

CS = CSH + CSL =
1− γ−2

4

32B
,

and total consumer surplus per buyer is CS/ND∗, where

ND∗ =
n(1 + 2n)ψ1(n)− 2(1 + n)

4n2ψ1(n)− 4n− 1
.

45

Finally, social welfare under imperfect foresight when the developer uses price discrimination with n-

lock-in equals

W =
1

2
qe −Bq2

e =
n

4B

(nψ1(n)− 1) γ3

γ2
4

.

A.6 Perfect foresight: single price developer

A.6.1 The user indifferent between switching every n and every n+ 1 periods

Assume that there is a single price p, the user purchased the product in the current period and now decides

on whether to switch every n or every n+ 1 periods. As the user will buy the product n(n+ 1) periods from

the current one in both cases, the decision is based on (the NPV of) the utility added between the current

period and the period n(n + 1) − 1 from now. Note that if a user buys a version T periods from now and

keeps it for S periods, then the utility added over the periods from T to T + S − 1 equals

U = βT
(
θTQ

1− βS

1− β
− p
)
.

The user switching every n + 1 periods buys in periods n + 1, 2(n + 1), . . . , (n − 1)(n + 1), and keeps

every version purchased for n+ 1 periods, so that the utility added equals

Un+1(θ) = θ

n−1∑
i=1

βi(n+1) (i (n+ 1))Q
1− βn+1

1− β
−
n−1∑
i=1

βi(n+1)p.

The user switching every n periods buys in periods n, 2n, . . . , n · n, and keeps every version purchased

for n periods, so that the utility added equals

Un(θ) = θ

n∑
i=1

βi·n (i · n)Q
1− βn

1− β
−

n∑
i=1

βi·np.

From these two, we can derive the indifferent user θn,n+1 after algebraic transformations:

θn,n+1 =
p

Q

(1− β)
2

n (1− β)− β (1− βn)
.

As for an alternative decision process, when the user has the version which is n periods old and chooses

between buying now and then every n periods and buying in the next period and then every n+ 1 periods,

the outcome is the same as the utilities to compare, β−nUn(θ) and β−nUn+1(θ) respectively.

Note that at β = 1, the term 1−βS

1−β is to be replaced with S, and then θn,n+1 = p
Q

2
n+n2 . Also note that

the threshold can be expressed as

θn,n+1 =
p

Q

1∑n
m=1mβ

n−m ,

so that θn,n+1 decreases in β.

Recall that the corresponding threshold for imperfect foresight is p
nq = p

Q
1−β
n , and the ratio of the two

equals

θn,n+1

(
p

Q

1− β
n

)−1

=
n(1− β)

n(1− β)− β(1− βn)
≥ 1

(equality holds only at β = 0), so that the perfect foresight threshold is not lower than the imperfect foresight

one. Therefore, the utility received by a user indifferent between switching every n and every n+ 1 periods,

which is zero in the imperfect foresight case, is non-negative, and positive if β > 0, under perfect foresight.

46

A.7 Perfect foresight: discrimination by upgrades

A.7.1 The user indifferent between switching every period at the upgrade price and every n
periods at the full price

Assume that the user purchased the product in the previous period, so two options are considered. First,

the user can exercise the right to buy at the upgrade price p1, and if this is optimal, then the same decision

will be made in all subsequent periods. Second, the user may decide to wait thus losing his eligibility for the

upgrade price, so that the user would wait n−1 periods and then switch every n periods at the full price p2,

where n is determined as in Appendix A.6.1 . The easiest way to derive the threshold is to compare infinite

discounted added utility flows from these two options. Note that if a user buys at price p a version T periods

older than the previously possessed, then the infinite added utility flow at the moment of purchase equals

U = θTq − p =
θTQ

1− β
− p.

The user switching every period from the current one inclusive at price p1 has an added utility flow of

U1(θ, p1) =

(
θQ

1− β
− p1

)(
1 + β + β2 + · · ·

)
=

θQ

(1− β)
2 −

p1

1− β
.

The user switching n − 1 periods from the current one and then every nperiods, always at p2, has an

added utility flow of

Un(θ, p2) =

(
θnQ

1− β
− p2

)(
βn−1 + β2n−1 + β3n−1 + · · ·

)
= βn−1

(
θnQ

(1− β) (1− βn)
− p2

1− βn

)
.

From these two, we can derive the indifferent user θ1,n after algebraic transformations:

θ1,n = (1− β)
p1 (1− βn)− p2 (1− β)βn−1

(1− βn − nβn−1(1− β))Q
.

Note that as β → 0, θ1,n → p1
Q , which is the imperfect foresight value of this threshold, and as β → 1,

θ1,n → 2(np1−p2)
n(n−1)Q .

If n is optimal at price p2, then θ1,nnq − p2 ≥ 0 as is shown in Appendix A.6.1 , so that θ1,nq − p1 ≥ 0.

A.7.2 S.O.C. and validity in non-lock-in

The profit function is

Π =

(
1− p1

Q
(1 + β) +

p2

Q
β

)
p1 +

1

2

(
p1

Q
(1 + β)− p2

Q
β − p2

Q (β + 2)

)
p2 +

p2

Q
L3p2 − B̄Q2,

and the validity conditions are θ1,2(p2) ≥ θ1,2(p1, p2) ≥ θ2,3(p2) and 1 ≥ θ1,2(p1, p2), which are assumed to

hold before being checked. F.O.C. result in

p∗1 =
4λ2

2

Λ2
2B̄

, p∗2 =
2 (2 + β) (1 + 3β)λ2

Λ2
2B̄

, Q∗ =
λ2

Λ2B̄
,

where

λ2 = (1 + β)2 − 2(2 + β)L3, Λ2 = 6 + 11β − β3 − 16(1 + β)(2 + β)L3,

so that the conditions θ1,2(p2) ≥ θ1,2(p1, p2) and 1 ≥ θ1,2(p1, p2) hold for every β, and the remaining

condition θ1,2(p1, p2) ≥ θ2,3(p2) holds for β ≤ B2 ≈ 0.325448.

47

The minors of the Hessian equal

−2(1 + β)

Q
,

Λ2

4Q2(2 + β)
, − B̄Λ2

2Q2(2 + β)
,

so that the solution is a maximum.

A.7.3 S.O.C. and validity in lock-in

The profit function is

Π =

(
1− p1

Q
Y +

p2

Q
Z

)
p1 +

1

n

(
p1

Q
Y − p2

Q
Z − p2

Q
X

)
p2 +

p2

Q
Ln+1p2 − B̄Q2,

and the validity conditions are θn−1,n ≥ θ1,n ≥ θn,n+1 and 1 ≥ θ1,n, which are assumed to hold before being

checked. F.O.C. result in

p∗1 =
n2λ2

n

Λ2
nB̄

, p∗2 =
n2(Y + nZ)λn

2Λ2
nB̄

, Q∗ =
nλn

2ΛnB̄
,

where

λn = X + Z − nLn+1, Λn = 2nY (2X + Z)− Y 2 − n2Z2 − 4n2Y Ln+1,

so that the conditions θn−1,n ≥ θ1,n and 1 ≥ θ1,n hold for every β, and the remaining condition θ1,n ≥ θn,n+1

holds for β ≤ Bn, where.Bn is tabulated in Appendix A.8.1 .

The minors of the Hessian equal

−2Y

Q
,

Λn
n2Q2

, −2B̄Λn
n2Q2

,

so that the solution is a maximum.

A.8 Numeric simulations

A.8.1 Functions L(β) and Bn

The calculations were performed in Mathematica, where L(β) was interpolated with step 10−3.

β L(β) n Bn
0 0.355066 2 0.325448
0.01 0.355942 3 0.377935
0.05 0.359394 4 0.415119
0.1 0.363599 5 0.441850
0.2 0.371653 6 0.461048
0.3 0.379247 7 0.474634
B2 0.381107 8 0.483997
0.4 0.386393 9 0.490227
0.5 0.393105 10 0.494211
0.6 0.399388 11 0.496661
0.7 0.405247 12 0.498115
0.8 0.410682 13 0.498954
0.9 0.415691 14 0.499427
0.95 0.418033 16 0.499833
0.99 0.419827 18 0.499953
1 0.420264 20 0.499989

As for Bn, it increases in n, and its limit can be shown to be 0.5.

48

A.8.2 CS per buyer under perfect foresight for small n

In the following table, we report the ranges of β in which the behavior of the total price discrimination

equilibrium CS per buyer is different from the general case, i.e., it is either lower than under single-price

monopoly or decreases in n. No such behavior occurs for n ≥ 8.

n CSPD < CSSP CSn > CSn+1

2 [0, 0.220619) (0.099358, B2]
3 [0, 0.270516) (0.211142, B3]
4 (0.010498, 0.289509) (0.303669, B4]
5 (0.045734, 0.285588) (0.379895, B5]
6 (0.078875, 0.262546) (0.442822, B6]
7 (0.117158, 0.222414) –

A.8.3 CS comparison under a single-price monopoly

In the following table, we report the maximal values of β until which CS is higher under perfect foresight

than under imperfect foresight when the developer charges the same price to all consumers. Note that CS is

higher under perfect foresight in all cases when 0 < β < 1
2 . The threshold for all users is the same because

the number of switching users is the same (N∗ = 1
2) in both cases.

All users High-end users Low-end users
CS 0.733526 0.797919 0.699392
CS per buyer 0.733526 0.875735 0.569339

49

Intellectual Property Rights Protection and
Enforcement in a Software Duopoly1

(Coauthored with Krešimir Žigić)

Abstract

We study the economic impacts of the interaction between a regulator’s Intellectual Property Rights

(IPR) protection policy against software piracy on the one side and the forms of IPR protection that software

producers may themselves undertake to protect their intellectual property on the other side. Two developers,

each offering a variety of different quality, compete for heterogeneous users who choose among purchasing

a legal version, using an illegal copy, and not using a product at all. Using an illegal version violates IPR

and is thus punishable when disclosed. If a developer considers the level of piracy as high, he can either

introduce a form of physical protection for his product or introduce a protection in the form of restricting

support and other services to illegal users. The quality of each developer’s product is exogenously given,

and the developers compete in prices. We examine the above issues within the framework of Bertrand and

Stackelberg competition while the monopoly set-up serves as a point of reference.

1All errors remaining in this text are the responsibility of the authors.

50

1 Introduction

During the last two decades violating Intellectual Property Rights (IPR) emerged as an important and

hot economic and political issue since most of the world brands face a problem of illegal imitation of their

products. The violation of IPR poses a threat to a wide range of products - from fashion such as Etro or

Vuitton to Intel chipsets or Yamaha motorbikes. According to the WCO (World Customs Organization),

7% ($ 512 billion) of world trade takes place with fake merchandise2 and most customers buy fake products

unknowingly.

Barely anybody in Moscow believes that a $20 Rolex watch from a stallholder is an authentic one, but,

on the other hand, hardly anyone assumes that a drug at a pharmacy, or car spare parts in dealer service

centers are fake. In some cases, even professionals have difficulties to identify a particular product as a fake.

The key factor contributing to the creation of illegal imitations are low costs and low technical require-

ments. Based on such a view, the natural leaders among illegal imitations are “information” products or

what are known as digital content products—software, movies, music, or e-books3. These products have two

idiosyncratic attributes: imitations are 100% identical to the original and costs of copying are negligible.

According to the report of the Business Software Alliance, the share of software that is pirated climbed to

41% of total units installed in 2008 and the global loss exceeded $50 billion4. Even in the US, where the

rate of illegal usage is the lowest, it amounts to 20%, while in Western Europe about one-third of installed

software is used illegally. The top of the list with 80% and more of illegal software installed is occupied by

Georgia, Pakistan, Indonesia, and China5.

The expansion of DVD burners accompanied with the penetration of broadband internet does not only

increase the opportunity for illegal copying6, but also eliminates mass illegal producers from market. Illegal

copies are, nowadays typically made (installed) by the end users themselves who do it wittingly and only

for themselves7. This attribute changes the essentials of the fight against IPR violation. While, say, in

pharmaceuticals, luxury goods, or electronics markets, end users might be often perceived as victims, in

“information” markets, end-users of illegal copies are predominantly the ones that actually carry out IPR

violation8. Thus, the fight in digital content markets is now aimed mainly against end users (meaning both

retail and corporate users)9.

In this essay, we focus on such digital content markets (like the software market) where only the end

2Two thirds of illegal imitations come from China, the rest mainly from Ukraine, Russia, Vietnam, the Philippines, according
to the WCO.

3For information about mp3, movie, or e-book protection and their illegal copying see www.ifpi.org, www.riaa.com, www.pro-
music.org.

4According to the IDC Global Software Piracy Study.
5see also The Economist, May 16th, 2009.
6Most of the illegal copies of digital content are easily accessible using P2P networks (direct connect, torrent trackers) or

data sharing (Rapidshare). Note that easy downloading could be accompanied by relatively complicated installation/usage of
illegal versions.

7We omit in the essay the problem of the black market with DVDs/CDs or software in the suburbs. These kinds of piracy
experienced a boom one decade ago and are now strongly declining especially in developed countries.

8However, companies try to distinguish between intentional piracy and the unconscious usage of an illegal version, e.g.,
Microsoft replaces fake versions with legal ones to users who bought a fake version of its software in good faith.

9A well-known examples aimed at end-users is suing students at US/EU universities for sharing software on university
servers. Note that these actions are often accompanied with legal actions against the means of sharing e.g. closing Napster as
the first famous case or the current hot suit against torrent tracker The Pirate Bay with the intention to close it.

51

users violate property rights. More specifically, we study the strategic interactions among software developers

that may undertake various forms of product protections (developer IPR protection) and also analyze the

impact of regulator (or government) IPR protection on such developer IPR protection. In particular, we

put forward a dynamic two-stage duopoly model, where the last stage competition is in prices, and where

each developer competes for users with different price sensitivity on the same market. That is, we rely on a

quality competition model (see, for instance, Shaked and Sutton, 1984, and Tirole, 198810). In the first stage

of the game, each developer has an option to choose a particular form of IPR protection. The government11

only sanctions illegal use of the product by means of imposing a penalty so those end users who illegally

appropriate the software will be punished, if discovered.

We consider the two most common forms that the developers use to protect their products: a) decreasing

product value to illegal users by, say, eliminating updates in antivirus or tune-up utilities12 and b) physical

product protection by means of special CDs (or encryption against cracking) like in games, where copies

created on a standard DVD burner do not work anymore. These measures are known in the literature as

“technical protection measures” which enhance copyright enforcement (see Scotchmer, 2004, for an excellent

survey on this topic) and one of the most known ways of protecting the digital content is DRM (Digital

Rights Management) system13.

To capture the regulator’s role in a simple manner, we assume that imposing a penalty is the only

instrument for reducing or eliminating the illegal usage of the product that is under copyright protection.

The government’s reliance on taxes and subsidies as an instrument of IPR protection are not considered

very realistic in the given context and is thus assumed away in the further analysis. Moreover, in order to

focus on the impact of the penalty in different market configurations and its interaction with the private

developers’ enforcement, we do not assign the regulator a particular objective function such as maximizing

social welfare, but we rather look at the penalty as exogenous and discuss its impact on developer equilibrium

values and on the developers’ choice of the form of IPR protection.

In most countries, governments are responsible for the creation of a legal environment for IPR enforce-

ment and prevention from piracy. Nevertheless, a government’s objective does not in general coincide with

the developers’. First, if the costs of copying are negligible, the more users use the product, the higher

social welfare is. Moreover, the original product can be an inspiration for other developers and its wide

spreading may raise further product development and consequently, social welfare. On the other hand, in

an environment where a product could be freely copied, the producers’ incentives to develop new products

10Shy (1999) addresses the same problem using a Hotelling-type spatial competition model.
11In the essay, we do not distinguish the role (objective) of government from the regulator’s role or from the role of private

authorities executing any monitoring as e.g. the RIAA (Recording Industry Association of America), the MPA (Motion Picture
Association), the BSA (Business Software Alliance).

12Illegal versions of some antivirus software, e.g., Symantec Antivirus, do not update their installed databases of viruses and
thus the PC is more vulnerable in the case of the latest virus attack, or tune-up utilities do not update their internal list of
supported problems, so some new errors cannot be corrected.

13DRM is an umbrella term for various technologies that limit the usage of digital content in an unintended way by the
developer. DRM is used by a lot of major content providers such as Microsoft, Sony, Amazon, or Apple. DRM is sometimes
considered a controversial approach to protecting the IPR since it often restricts the usage ways beyond the copyright laws
(e.g., not only against illegal copying, but even the legal usage, such as using the legally bought e-book on only one device).
DRM technologies, however, were effectively implemented in selected cases as, e.g., in the case of Apple (iTunes). Nowadays
most content providers experiment with DRM-free alternatives mainly in music. In movies or e-books, DRM is still quite used.
See Belleflamme and Peitz (2010).

52

are suppressed14. Thus, the regulator activity in setting IPR protection, exerting monitoring, and the scale

of penalty for users convicted from illegal usage usually balances the trade-off between the dissemination

of knowledge and products on the one side, and preserving the incentives to innovate on the other side.

In setting the level of IPR protection, a government may favour one of the developers, e.g., in the case

of a domestic dominant developer competing with a foreign developer, the government may, for instance,

adapt IPR enforcement to favour the domestic developer or vice versa15. Thus, to introduce explicitly the

regulator’s objective function, we would have to put “more structure” into our model. As already noted, the

choice of the optimal level of government IPR (or the optimal expected penalty) is out of the scope of our

analysis. We, however, briefly discuss in the conclusion the possible extensions of our analysis to normative

issues.

Since the legal environment as well as the regulator’s activity are publicly observable, users can estimate

the probability of being caught and then convicted for copyright violation and so correctly calculate the

expected size of the penalty. Thus, if a user decides to use an illegal version, he can evaluate the expected

penalty (EP), which can be considered as the cost of illegal usage.

The software market may distinguish itself from other digital content markets due to potentially high

Network Effects (NEs) coming from software usage. NEs mean that increasing the base of users by, say,

allowing the copying of a product to some other users, raises the utility of all users and thus adds extra value

to the product. We, on the other hand, consider NE unimportant, but we nevertheless briefly discuss how

NE can be easily incorporated in our set-up (see section 2.5).

It is important to stress at the outset that our approach is a bit different from the current literature on

software piracy. To put our analysis into context, we follow the very recent comprehensive and influential

survey of digital piracy by Belleflamme and Peitz, 2010 (see also Peitz and Waelbroeck, 2006). According to

this, our approach belongs to the i) end-user piracy models that ii) includes the competitive effects meaning

that there are two producers of substitutable and piratable digital products that directly compete with each

other (see Belleflamme and Peitz, 2011, p. 20).

As clearly seen from the Belleflamme and Peitz (2011), there are indeed only a few articles that deal

with the positive and normative issues of digital piracy while explicitly modeling direct firm competition.

Moreover, all of these papers, in general, rely on the notion of horizontal product differentiation. The

pioneering article seems to be the one of Shy and Thisse (1999), who analyze piracy in the Hotelling-type

duopoly competition where users have exogenous preferences for a particular developer. They show that a

developer’s decision to introduce protection against illegal copying depends mainly on the NEs, and that

under strong NEs, each developer decides not to implement protection in order to make his software more

attractive and to raise the users base. Jain (2008) builds upon the model of Shy and Thisse (1999) and

assumes that firms can choose a level of IPR protection so that only a proportion of consumers with low

product valuations (who are, by assumption, the only consumers interested in copying) can copy its product.

14There are other effects, such as tax losses, raising unemployment etc., which could be studied separately.
15For illustration, we could use a comparison among countries that have strong developers (e.g., the US) and quite a severe

protection of IPR with countries where no strong local developers exist, e.g., Finland, Sweden, or Norway, and their protection
of IPR is moderate and more “open.”

53

In the absence of network effects, Jain shows that in such a set-up piracy can change the structure of the

market and, thereby, reduce price competition between firms. The reason is that copying by low, more

price-sensitive types enables firms to credibly charge higher prices on the segment of consumers that do not

copy. Furthermore, this positive effect of piracy on firms’ profits can sometimes outweigh the negative impact

due to lost sales. So, even in the absence of network effects, firms may prefer weak copyright protection in

equilibrium.

Finally, there is a recent paper by Minnitti and Vergari (2010), who also rely on the Hotelling differentiated-

product duopoly framework. They, however, deal with a rather specific form of piracy like a private file

sharing community and study how its presence affects the pricing behavior and profitability of producers of

digital products.

It is also important to note that digital developers’ competition can also occur in a multi-product frame-

work, where piracy can generate a kind of indirect competition between horizontally differentiated digital

products as demonstrated by Belleflamme and Picard (2007). They show how the copying technology dis-

playing increasing returns to scale can create an interdependence between the demands for digital products

that would be unrelated otherwise. Moreover, the underlying demand is, much like in our approach, obtained

in a vertical differentiation manner. However, the vertical differentiation does not, like in our set-up, arise

from the different quality levels of the developers but from the existence of original and copied digital prod-

ucts in a market where the originals are assumed to be always of higher quality than the copies, and thus, all

consumers unambiguously prefer the original product over the copy. In this set-up Belleflamme and Picard

(2007) study how piracy affects prices and profits and, interestingly enough, they show that depending on

the parameters of the model, prices can be either strategic substitutes or strategic complements. If the fixed

cost of copying is low enough, there is no equilibrium in pure strategies. Firms may then randomize between

several prices, leading to price dispersion.

Following the approach of Belleflamme and Picard (2007), Choi, Bae, and Jun (2010) use a Hotelling

horizontal differentiation model as well and analyze the situation in which also the interdependence between

the firms stems from their strategies against piracy rather than from direct competition on prices. They, like

we do, consider the IPR efforts of the firms to be endogenous variables and study the interaction between

public and private protection against piracy.

Besides the different focus (direct versus indirect competition), the other key difference between ours and

the set-up of Belleflamme and Picard (2007) and Choi, Bae, and Jun (2010) is that in their settings the

original products have the same quality, while in our set-up, the original products are vertically differentiated

and thus have distinct qualities to begin with. Moreover, since we focus on the software market, we do not

allow for a different copying technology as it is usual in the case with multiple, initially independent digital

products. Thus, the cost of consuming illegal copies is constant in our setting, while it may be decreasing

with the number of different originals copied in the settings of Belleflamme and Picard (2007) and Choi,

Bae, and Jun (2010).

Finally, there are by now numerous scholarly articles that deal with the issue of digital piracy and

private or public IPR protection in the monopoly set-up (see, for instance, Banerjee, 2003; King and Lampe,

54

2003; Kúnin, 2004; Takeyama, 2009). Banerjee (2003) demonstrates that the socially optimal level of IPR

protection differs from a monopoly developer’s optimum and stresses the role of NEs. King and Lampe

(2003) show that the monopoly allows illegal users in the case when the network effect is present, while

Takeyama (2009) shows that under asymmetric information about product quality, the copyright has to

be imperfect in order to avoid adverse selection. Kúnin (2004) provides an explanation for why a software

manufacturer may tolerate widespread copyright infringement in developing countries and often even offer

local versions of their software. He showed that if NEs are present and there is an expected improvement

in copyright, then software manufacturers enter the market even if they incur losses in the beginning when

copyright enforcement is weak. For a deeper and systematic review of the literature on the piracy of digital

products, the interested reader is advised to look at the two excellent and comprehensive surveys in Peitz

and Waelbroeck (2006) and Belleflamme and Peitz (2011).

As already mentioned above, we focus our analysis on the developers’ strategic interactions and the

way how the size of the expected penalty affects market structure, market coverage, and the developers’

IPR protection. We especially put the emphasis on the latter, meaning on the interaction between the

government’s (or public) and the developer’s (or private) IPR protection. We show that when developers

restrict services to illegal users (section 3), the government’s and the developers’ IPR are always substitutes

in a sense that for the given developers’ optimal protection, the public IPR protection could be substantially

lower (compared to the situation with no private IPR protection) in order to fully eliminate illegal usage.

Moreover, the government can by choice of its IPR protection (that is, via the size of the expected penalty)

affect the market configuration and market coverage since the height of the expected penalty has an effect

on equilibrium prices and profits and thus on the toughness of price competition. For instance, for the size

of the expected penalty that falls between two prices, there might occur a market configuration with two

unconnected segments of legal users. In this case, the high quality developer serves the upper part of the

market and earns (constrained) monopoly profit, while the lower quality developer serves the lower tail of the

market. In the middle of these two segments, there is a “buffer” composed of illegal users16. If on the other

hand, the government sets penalty rather low so that both prices17 are bigger than the expected penalty,

then direct duopoly competition might be restored.

As for the situation when developers rely on the physical protection of their software (section 4), the

government’s and the developers’ IPR could be either substitutes or complements in a sense that a marginal

increase in the expected penalty can either decrease the optimal developer protection (implying substitutes)

or increase it (implying complements). Moreover, the size of the expected penalty is a key in determining

whether none, one, or both developers would introduce private IPR protection. If the expected penalty is so

low that both prices exceed it, then both developers would introduce protection, and a small increase in the

expected penalty would reinforce the developer protection indicating the complementarity of the two forms

of protection. If on the other hand, the expected penalty exceeds the price of the low quality good but is

still lower than the price of the high quality good, then only the high quality developer would introduce IPR

16A necessary condition for this case to arise is that an illegal copy of a high quality product has a higher value for users
than the quality of a legal, lower quality product.

17Meaning equilibrium prices in standard Bertrand competition, where illegal usage is eliminated.

55

protection. Now, however, a marginal increase in the expected penalty would decrease the optimal developer

protection implying substitutability between the two forms of protection.

The structure of the essay is the following: In the second chapter, we put forward our set-up that comprises

three basic types of market conduct: monopoly, Bertrand duopoly, and the Stackelberg leader-follower model.

We then analyze how the level of EP affects the developers conduct and market structure in the simplest

case when there is no product protection from the developers’ side whatsoever. In the third chapter, we

allow the developers to introduce product protection in the form of a lower product value for illegal users by

disabling them access to additional services. In the fourth chapter, we investigate the economic impacts of

another form of product protection in which a developer implements a physical protection for his product. In

both the third and fourth chapters, we study the effects of the particular form of developer’s IPR protection

within the three above mentioned market conducts. Chapter five concludes.

2 The basic model

We first analyze the cases where developers could eliminate the illegal usage of their products only by

decreasing prices. Developers cannot introduce any product protection or restrict associated product services

to the illegal users.

2.1 Model set-up

2.1.1 Industry set-up

Consider two developers A and B that compete in prices on a particular market and offer product varieties of

different quality18. Developer A releases a product of quality qA, while the quality of the second developer B

is qB and we assume, without loss of generality, in the rest of the essay that developer A offers higher quality

(qA > qB). Product qualities qA, qB , in the whole essay are assumed to be exogenous and cannot be changed

by developers19 The unit variable costs are assumed to be constant and normalized to zero. One may think

about developer A as an already established and known software producer that already operates on other

markets. This fact is, in turn, reflected in the preferences of the consumers, who strictly prefer software A

over software B if offered at the same price. Similarly, developer B can be thought of as a local developer

offering lower quality. In other words, we assume that both developers already existed before meeting and

competing on the market under consideration. Consequently, both developers are assumed to have already

incurred set-up fixed costs and fixed costs associated with software development (R&D costs). These fixed

costs are, from our perspective, general and not related to the developer’s presence on the particular market

under consideration, and therefore, we leave them out of the profit function. We, however, may allow for

the fixed costs of entry to the particular market under consideration, so we denote as FA and FB these

entry or set-up costs respectively (sinking these costs can be considered to take place at the first stage of the

18We will use the term “value” instead of “quality” when quality contains multiple dimensions.
19In the more elaborated versions of this kind of models, there is also a choice of qualities proceeding the pricing decision.

In this case, it is standard to assume that the bulk of the costs of generating quality falls on fixed costs so that quality or
R&D costs are in fact endogenously determined (see, for instance, Shaked and Sutton, 1982 and 1983; Kúnin and Žigić, 2006).
For each case that we analyze, it should be clear how to relax the model and allow the developers to choose and compete in
qualities too.

56

game). We will, however, omit these fixed costs from the profit functions for the purpose of transparency

and assume that the developers’ profits are positive net of these costs.

To summarize, we simply assume that:

1. Initially, both developers A and B already exist with established quality levels of their respective

varieties.

2. The focus is on a particular software market, which is not interrelated with the other markets on which

developers may operate (“segmented market hypothesis”).

Thus, it is convenient to think that two developers compete (or may compete) in some third market (that

is, the market that is not their home market). An important implication of these two assumptions is that

in our set-up one or even both developers may not be active in the market under the considerations. The

reason for this is that due to the absence of the developers’ own IPR protection and the possible lack of IPR

protection by the side of the regulator, it may not be profitable for the developer(s) to operate in the market

under considerations. We, however, assume that even if a developer does not enter the market, the users are

still able to obtain an illegal version via copying. This, in turn, makes entry deterrence not viable. We use

a sub-game perfect equilibrium as a solution concept throughout this paper in all multi-period games under

considerations.

2.1.2 The regulator’s role

We introduce a very simple regulator whose role is limited to monitoring software usage and to the penal-

ization of those users, who use products illegally and are disclosed. The probability of being caught using an

illegal version is the same for all users, and the level of the penalty is fixed. The penalty and the probability

of being caught is known and independent on used product and product prices20, thus all users and both

developers could calculate the expected penalty for using an illegal version, that we denote as X21. Moreover,

while we implicitly assume that the regulator choice of optimal IPR is governed by an underlying objective

function like the maximization of social welfare, we do not explicitly study the optimal choice of EP since

we focus on the forms of the developers’ IPR protection and their economic implications22. Thus, the whole

regulator’s framework23 is very simple in our model and translates into one parameter: expected penalty X

for illegal users.

2.1.3 The users’ set-up

There is a continuum of risk neutral heterogenous users on a particular market under the considerations

that differ in their personal value of product quality qi, captured by parameter θ, where θ follows a uniform

20The penalty in the real economy is dependent on the price of software as well as the social impact from such behavior and
real losses.

21We can expect that in a real economy, the fines for students compared to business companies differs as well as the regulator’s
monitoring rate among students/households is lower than in business. The extension of the model for different X for each
product (different users) would lead to technical complication, that from our focus would add only limited further insight.

22For instance, if the government maximizes social welfare, we would need to know which of the developers is the domestic
one and which is not in order to write down the objective functions. While these considerations are interesting per se, they are
not the focus of the essay. For the analysis of the optimal IPR from the side of the regulator, see for instance Žigić (2000).

23Including government behavior, legal environment, and the real execution of property rights.

57

distribution over the interval (0, θ̄). Following Tirole (1988), utility for a user θ from consuming product qi

with price pi and with expected penalty X from illegal usage is the following24:

Uθ(pi, qi, X) =

 θqi − pi ... if a user buys software
θqi −X ... if a user uses an illegal version
0 ... if a user does not use the software at all

(71)

From the users’ utility function, we immediately see that for pi 6= X, there are two groups of indifferent

users. The users, who are indifferent between buying a product and not using it at all (θqi− pi = 0), denote

them as θ0A = pA
qA

(respectively θ0B = pB
qB

) , and users who are indifferent between illegal usage and not

using it at all (θqi −X = 0), denote them as θ0P = X
qi
.

2.2 Monopoly

We start with the simplest set-up, where only developer A with a product of quality qA is present on the

market, and there is perfect IPR enforcement. This set-up means that the expected penalty X is higher than

monopoly the equilibrium price for the legal product p∗M (72), and thus, nobody uses the product illegally.

Developer A maximizes profit without any restriction, and from utility function (71), we see that θ0A = pM
qA

is the user indifferent between buying software and not using it at all. That leads to the following demand

for product A:

DM (pM , qA) = θ̄ − θ0A = θ̄ − pM
qA

,

so that the monopoly equilibrium price p∗M and profit π∗M = p∗MDM (p∗M , qA) are:

π∗M =
1

4
qAθ̄

2, p∗M =
1

2
θ̄qA. (72)

With such a price, developer A captures half of the market, 1
2 θ̄ (see Figure 8).

no product A

0 θ0A = pA
qA

θ

Figure 8: Monopoly market

Now for a while, assume that developer A operates on the monopoly market where IPR enforcement is

lower than would be desirable for him, that is, X < p∗M = 1
2 θ̄qA. In this case, users compare the expected

penalty X with price pM , so all users with θ ≥ X
qA

prefer illegal software usage. The only possibility for

developer A to capture some legal users on the market is to lower the price to the level p∗M = X. This is the

case when developer A has to adjust the price to the level “set” by the regulator (that is, to the the level

of X); otherwise, the developer is out of the market. Under such a situation, the regulator could effectively

influence the developer’s price pM , which results in the following profit for developer A:

π∗M =

(
θ̄ − X

qA

)
X, (73)

24To avoid the problem of a fully satiated market, we do not follow distribution over (θl, θh) as in Banerjee (2003). Allowing
the presence of users with θ → 0 ensures that for any price p > 0, there is a group of users who do not consume any product.

58

and the market share that the developer gains is
(
θ̄ − X

qA

)
, which is higher than 1

2 θ̄ from equilibrium (72).

2.3 Bertrand Competition

After the analysis of the basic case with a monopoly developer, consider now Bertrand competition in prices

between developers A and B. In this case, low X might not be a constraint only for developer A but even

for developer B. Thus, three basic cases of competition exist based on the presence of developer A in the

market and on the level of the expected penalty X with respect to equilibrium prices poA, poB , where these

prices come from pure Bertrand competition in (74):
1. poA, p

o
B ≤ X ... High X: none of developers are limited in price setting by the level of X.

2. X
qA
≤ poB

qB
≤ poA

qA
... Low X: both developers are limited in price setting by the level of X

3.
poB
qB
≤ X

qA
≤ poA

qA
... Medium X: only developer A is limited in price setting by the level of X

Notation 4 In indexing indifferent users, P will always refer to illegal usage, 0 to not using any product

at all, and A, B always refer to using (legally) the product A, B respectively. Moreover, we follow the rule

that the first index refers to a user “on the left-hand side” and the second index will refer to a user “on the

right-hand side.” For instance, θPB means that a user with a lower θ than θPB uses the product illegally,

while a user with θ higher than θBP legally uses product B. As for θBP , the same applies the other way

around.

2.3.1 Case 1: Bertrand competition under a high expected penalty poA, p
o
B ≤ X

This first basic case, where all piracy is eliminated, corresponds to the pure Bertrand competition25, where

both developers could freely compete in prices. Denote a user who is indifferent between product A and B

as θBA = pA−pB
qA−qB . Then profit functions for both developers are:

πA =
(
θ̄ − θBA

)
pA, πB = (θBA − θ0B) pB .

This situation corresponds to the market coverage as in Figure 9 .

no product B A

0 θ0B = pB
qB

θBA = pA−pB
qA−qB θ

Figure 9: Standard Bertrand Competition

From F.O.C. and S.O.C., stated in Appendix A.3.1 , we obtain equilibrium prices and profits for both

developers:

poA = 2θ̄qA
qA − qB
4qA − qB

, poB = θ̄qB
qA − qB
4qA − qB

. (74)

πoA = 4θ̄2q2
A

qA − qB
(4qA − qB)

2 , π
o
B = θ̄2qBqA

qA − qB
(4qA − qB)

2 . (75)

25It might be quite an unrealistic case that does not mimic an Operating System or Office Packages sub-markets (or other,
on retail focussed, markets), nevertheless specific business software markets, e.g. CAD systems, are close to such situation. In
such cases, the illegal usage of software often precedes official buying and exists mainly because of testing purposes.

59

Corollary 3 Equilibrium with poA, p
o
B ≤ X exists if and only if X ≥ 2θ̄qA

qA−qB
4qA−qB . This could be immediately

seen from (74).

Obviously, both the prices and the profits of each developer increases when value of his own product

increases or when a competitor’s product value decreases. We see directly from the equilibrium that the

relationships between prices and profits are the following:

poA
poB

= 2
qA
qB
,
πoA
πoB

= 4
qA
qB
.

We refer to this case as the pure Bertrand competition.

2.3.2 Case 2: Bertrand competition under low expected penalty: X
qA
≤ poB

qB
≤ poA

qA

Now we focus on the second case when the expected penalty X is lower than the level that would allow for

the pure Bertrand competition stated above (which means X
qA
≤ poB

qB
≤ poA

qA
). We assume here that developer

A cannot decrease the price at the level of (or below) X due to large entry costs, for instance, and developer

B cannot react on it as well. (The case when both developers could adjust the price accordingly to X is

analyzed as a special case in the next sub-section—Case 3). Putting poB from (74) into X
qA
≤ poB

qB
, we see

immediately that X must be lower than θ̄qA
qA−qB
4qA−qB . In this case, the expected penalty is so low that all users

prefer to use the product illegally. Since the expected penalty X is the same no matter which product is

used, all users illegally use the product of higher quality qA from developer A. It corresponds to the market

coverage as in Figure 10 .

no product Illegal A

0 θ0P = X
qA

θ

Figure 10: No legal version on the market

Remark 19 Though this situation might seem implausible because none of the developers may generate

profit unless they set their prices such that p = X, we could, nevertheless, find such a situation at which

IPR practically does not exist (X goes to zero), and a price reduction from the developers would not lead

to significantly higher sales26. At such markets, developers officially do not operate and are active on other

markets, so we observe only the demand side of the market. Alternatively in dynamic models, developers

may operate in those markets anticipating an improvement in IPR and so expecting to achieve profit in the

future based on the established market position today, see Kúnin (2000).

2.3.3 Case 3: Bertrand competition under medium expected penalty
poB
qB
≤ X

qA
≤ poA

qA

In this case, we assume that the expected penalty X influences only developer A since his equilibrium price

poA is higher than X (while still we have poB < X). From (74), we see that θ̄qB
qA−qB
4qA−qB ≤ X, and we assume

26Those are developing/emerging markets with very low IPR protection, where the percentage of illegal versions can be higher
than 95%—e.g., the illegal usage evaluated in Vietnam according to the BSA (Business Software Alliance).

60

for the moment that developer A is not present in the market due to, say, large set-up costs that exceed

profit. Then there are users who prefer to buy product B rather than face the risk of being caught as a user

of an illegal version, while potential users of product A prefer to use an illegal version of product A. In such

a market, developer B competes with an illegal version of software A in a sense that the upper part of the

market that belonged to developer A, as in Case 1, is now occupied by the illegal users of A. A user θ0B who

is indifferent between using product A illegally and product B legally satisfies θBP qA−X = θBP qB − pB . A

user indifferent between using product B legally and not using any product at all satisfies θ0BqB − pB = 0.

Thus, θBP = X−pB
qA−qB and θ0B = pB

qB
. This market situation leads to product coverage across users as in Figure

11 .

no product B Illegal A

0 θ0B = pB
q θBP = X−pB

qA−qB θ

Figure 11: Only developer B is on the market with a legal version

Developer B captures market share θPB − θ0B , while an illegal version of product A is used by θ̄ − θBP
users. In this case, only developer B makes some profit πB = (θBP − θ0B) pB . Equilibrium profits and prices

are derived in Appendix A.3.2 :

p∗B =
qB
2qA

X, π∗B =
qB
4qA

X2

(qA − qB)
. (76)

Developer A could decrease his price to a level pA = X, and this behavior does not affect market share or

the profit of developer B (see subcase 2.3.4 and Figure 12).

In real life, this market situation corresponds to the competition between a small local developer pro-

ducing a lower quality product with a global developer, who may even not formally operate on the market.

Close to this market situation, was the situation with system utilities and antivirus programs in Russia or

in China around the year 2000 when global developers were waiting for improvement in IPR protection and

making very negligible profit.

In this case where
poB
qB
≤ X

qA
≤ poA

qA
, developer A could decrease the price to level pA = X and compete

with developer B with this adjusted price, so we focus next on this interesting subcase.

2.3.4 Bertrand competition with the binding price p∗A = X

Note that in Cases 2 and 3 where X is low, developer A has the possibility to decrease the price to p∗A = X.

The costs of this is that developer A has to incur the set-up costs FA. Comparing it with Case 1, that price

adjustment puts pressure on developer B to also lower his price pB , so it results in a decreased profit for

both developers. This market situation leads to the following equilibrium prices and profits (see Appendix

61

A.3.3):

p∗A = X, p∗B =
1

2

qB
qA
X. (77)

π∗A =
1

2
X

(
X (qB − 2qA) + 2θ̄qA (qA − qB)

)
qA (qA − qB)

, π∗B =
qB
4qA

X2

(qA − qB)
. (78)

Nevertheless, this price adjustment forced by a lower X leads to a similar market distribution as in the first

case, where X ≥ p∗A, p∗B , but the total number of users is now higher. Market coverage is displayed in figure

12 .

no product B A

0 θB0 = pB
qB

θAB = X−pB
qA−qB θ

Figure 12: Competition with the adjusted price pA

Lemma 12 Relative prices are proportional to the corresponding quality levels and are the same as the ratio

of the price derivatives with respect to X. As for the respective profits, note that the profit for developer A

increases by a larger amount in X than the profit for developer B:

p∗A
p∗B

=
∂p∗A
∂X
∂p∗B
∂X

= 2
qA
qB
,

∂π∗
A

∂X
∂π∗

B

∂X

=
2θ̄

X

qA (qA − qB)

qB
− 2

(
2
qA
qB
− 1

)
.

Obviously an increase in X implies an increase in pA by the same amount (that is ∂pA(X)
∂X = 1), while the

induced rise in pB is much lower
(
∂pA(X)
∂X = 1

2
qB
qA

< 1
2

)
. Consequently, an increase in developer A’s profit

(due to a rise in X) is larger than the increase in developer B’s profit despite the fact that market coverage

of developer A shrinks at the expense of developer B. Note that developer B gains the lower tail of developer

A’s market, and this gain exceeds the loss of the lower tail of his own market. The latter occurs due to an

increase in pB induced by an increase in X. In other words, ∂
∂X (θBA − θ0B) = 1

2(qA−qB) > 0.

2.4 Stackelberg competition in prices

In this part, we focus on Stackelberg (Leader–Follower) competition and particularly only on the situation

when both developers are present on the market:
1. X > p∗A, p

∗
B ... high expected penalty X, that no developer is restricted by X.

2. pA = X ... Developer A is limited in price setting by the expected penalty.
The other cases are equivalent to the cases analyzed in Bertrand competition and monopoly set-up in the

previous part. Note, that in our analysis of the Stackelberg framework, we always assume that developer A,

who releases a higher quality product qA, is a price leader, while developer B is a price follower27.

27Assuming that developer B is the price leader could be possible for selected sub-markets that correspond to the situation,
where B is well established main stream player, while A is a niche player for a small proportion of high-end users, and A has
to adjust his price according to the main stream. However, analyzing this market structure would not add value to this essay.

62

2.4.1 Stackelberg competition with a high expected penalty p∗A, p
∗
B ≤ X

Since developer A is the price leader who knows the reaction function of developer B, he incorporates this

reaction function of developer B (that is pB(pA) = pA
qB
2qA

) into his profit function, and thus we obtain

equilibrium prices and profits:

p∗A =
qA − qB
2qA − qB

qAθ̄, p
∗
B =

1

2

qA − qB
2qA − qB

qB θ̄, (79)

π∗A =
1

2

qA − qB
2qA − qB

qAθ̄
2, π∗B =

1

4

qA − qB
(2qA − qB)

2 qBqAθ̄
2.

(For F.O.C. and S.O.C., see Appendix A.4.1 .)

Remark 20 Compared with Bertrand competition, the profit of developer B is always higher in Stackelberg

competition.

In the next section, we will show a case (a buffer case), where developer B is indifferent between Stack-

elberg and Bertrand competitions since both frameworks bring him exactly the same profit.

2.4.2 Stackelberg competition with binding price p∗A = X

Assume a market situation with a low expected penalty X which becomes binding (if X ≤ qA−qB
2qA−qB qAθ̄).

Then, equilibrium prices and profits are the same as in the case of Bertrand competition with binding X as

stated in 2.3.4 :

p∗A = X, p∗B = X
qB
2qA

, (80)

π∗A =
1

2

(
2θ̄qA(qA − 2θ̄qB)−X(qA − qB

)
)X

qA (qA − qB)
, π∗B =

1

4

qB
qA

X2

qA − qB
.

(For a derivation see Appendix A.4.1 .) In the Stackelberg case, the distribution of users on the market is

equal to the Bertrand competition. The market coverage is the same as in Figure 12 .

2.5 Possible Network Effect Extension

Before concluding this section and approaching an analysis of product protection, we make small remarks

on Network Effect since NE plays an important role on some software sub-markets. In these remarks, we

will show a possible incorporation of the Network effect into the model.

Capturing the significant base of users may allow a developer to extract additional value from those users.

In such a situation, the developer may tend to predatory behavior (entering the market with a low price to

capture base, and increasing the price later), when he deliberately supports illegal copying to raise the user

base and thus user value from a product and in the future, implement protection which results in “locking”

the base of users (see Farrell and Klemperer, 2006)28. In non-predatory competition, the NE could raise the

product’s value substantially. Our set-up would allow for the capturing of the NE by internalizing it into

the product quality. Assume now that qi is composed from:

qi = βA ·Qi + (1− βA)NEi,

28Usually solved by a two-period model, where in the first period a developer raises his user base and in the second period,
charges them for the additional value from the user base.

63

where Qi is the quality of product itself, and NEi is the value that a user puts into the user base, and

1 ≥ βA ≥ 0 is the weight of each component. In general, using the model with the NE we would search

for the optimal value of each component Qi, and NEi, and the equilibrium would consist of p∗i , Q
∗
i , and

NE∗i . Such an equilibrium would be strongly dependent on weights βA and the set-up cost functions

FA(QA), FB(QB). Given the main focus of the essay, an extension of the set-up for the NE would not bring

significant additional insights to our analysis.

Moreover, the NE starts to become a less important driving factor for most software submarkets recently,

and especially, the NE is even already quite suppressed for industrial software. The more important factor

becomes software compatibility among competitors and their mutual replacement ability (e.g. functions or

layout)29.

2.6 Key chapter results

From the analysis in Section 2, we see that imposing penalties has a strong impact on the resulting market

coverage. In the case of the high expected penalty X, there is standard competition in prices (either Bertrand

or Stackelberg), while in the case of the medium expected penalty X, the developer with the higher quality

product has to either leave the market or decrease the price. In such a market situation, X fosters the

competition and forces both developers to decrease prices, but at the same time, too low of an X could

squeeze one of the developers out of the market since he may not be able to recover his set-up costs any

longer. Thus, a very low X increases the toughness of price competition that in turn may result in a

monopoly market structure. From the government’s point of view, X may serve as an artificial price, set by

the regulator, that must either be accepted by developer A, or he has to leave the market. In the case of a

very low X, none of the developers would operate on the market.

3 Decreasing product value for illegal users

In the previous section, users did not perceive a quality (value) difference between the original product and

its illegal version, and thus, users always chose the version with a lower “cost” per quality unit (piqi in the

case of a legal version and X
qi

in the case of an illegal version). In this chapter, we assume that the legal

and illegal versions are no more perfect substitutes. That is, the value of the legal version differs from the

illegal version since a developer provides part of valuable services only to legal users (such as online help and

technical support, live updates, a discount for upgrades or even free training, access to user manuals, etc.).

Probably the most famous example of restricting services to illegal users, familiar to everybody, is the one

with Microsoft Windows. Microsoft’s Windows Genuine Program allows a user to run an illegal version of

the product only up to a certain point. In order to install selected patches/updates, the user has to validate

the originality of the program online. If a particular copy is identified as illegal, some functions are disabled,

and the illegal user is irritated with constant messages about buying the legal version. If a user decides

29Thus, in the case of analyzing the Network Effects, we should always distinguish cases where products A and B are mutually
incompatible, partially compatible, or fully compatible. The compatibility is then a factor that allows the competitors to exploit
the user base and to suppress the NE advantage of a particular product.

64

not to validate the program online, he cannot update his Windows further for selected components (e.g.

Windows Media Player or Internet Explorer)30. The implementation of such a restriction is technically easy

since the developer could use the standard tools that restrain access to those services31 that require user

authorization based on personal information verification. In the case of automatic access to those services,

a developer can use very reliable tools as authorization is based on the IP address or hard-locks.

3.1 Model set-up

3.1.1 Industry set-up

We now assume that developers cannot directly restrict illegal usage of the product itself but could restrict

part of the services related to the product. This restriction lowers the product value for illegal users. Denote

the value (perceived quality) of the legal version as qi. The exclusive part of the product value that only the

legal users can enjoy is 1− α, where α ∈ (α, 1), and α > 0 stands for technically the lowest possible level of

restriction beyond which it is impossible to further restrain services 32. Thus, the value of the product for

the illegal users is decreased33 to αqi. As for the developers’ costs of restricting services, it seems reasonable

to assume that these costs are negligible given that the developers already exist and have chosen their quality

levels and the accompanied level of consumer services previously. So, we assume these costs to be zero, but

we do discuss the implications of non-zero costs for the optimal choice of α in section 3.4 . For simplicity, we

assume that if both developers choose to restrict services, then they would choose the same α34. In a formal

sense, adding the possibility for the developer to choose the degree of service restrictions can be considered

as a two-stage game: In the first stage, one or both developers choose the degree of service restrictions α,

and in the second stage, the developers compete in prices.

In what follows, we focus on the second stage of the game in which a developer chooses the prices and

analyze the impact of different α on equilibrium prices and on the resulting market structure and coverage.

In the last sub-section of this chapter, we briefly discuss the optimal choice of service restrictions.

Note that in the case of a low expected penalty, X, that results in a “protecting” action from the developer,

we could perceive X as public protection while an action from a developer (in this case introducing α) as

private protection.

Remark 21 Note that developer B has somewhat limited incentives to restrain certain services to illegal

users. Since the expected penalty is the same for whatever product is used illegally, the users would always

prefer to use the illegal version of product A to illegal version of product B35. The only case when developer

30Another examples is antivirus programs (e.g., Symantec Antivirus), when often after updates, the program recognizes that
a particular installation is illegal and does not allow further updates of its virus database for new viruses. Finally, for many
computer games, online playing is allowed only for the legal users.

31A separate question is whether a developer could provide enough services/online content that would bring a user enough
additional value to offset the difficulties with accessing those services/content.

32Technically, the lowest possible α represents such α where quality qA to legal users is not affected. By decreasing α below
α, we assume that it would require such strong protection/verification tools (e.g. manual online authorization), which become
annoying even for legal users, and their value assigned to product qA would drop.

33Banarjee (2003) explains the difference between an original and illegal version as the probability of an occurrence of a defect
illegal version. In his framework, “not” defected illegal copy is the same for a user as a legal copy.

34Allowing for different α would in no way change qualitatively our analysis. It would make the results and analysis only less
transparent since it would always require a comparison between illegal version values, see Bertrand competition in 3.3 .

35In real life, the developer of a product with a lower quality competes strongly with an illegal version of a better product

65

B would have the incentive to introduce the restriction of his services is, as we will see, when X is “low,” and

A introduces strict restrictions of his services (low α). In that case, the lack of developer B implementing

protection would result in the illegal usage of product B (in this case, an illegal version of B has quality qB,

while an illegal version of A has αqA, which is lower than qB). In other words, no user would use product

B legally unless developer B also implements protection (see Case 2 below).

3.1.2 Users set-up

As in the previous chapter, we assume that every user has access to all the versions: to both legal versions

A,B and to the illegal versions of A,B and decides based on the product prices and values. Utility for a

user θ is then:

UP (θ) =

 θqi − pi ... if he buys software.
θαqi −X ... if he uses software illegally.
0 ... if he does not use software at all.

(81)

The important difference in Section 2 is developer A cannot make any profit if he sets the price pA higher

than X because its legal product is eliminated from the market. In this section, on the other hand, there

might be some users (top-end users with high θ) that may prefer to buy the legal version rather than the

restricted illegal one even if both versions (legal and illegal) are available and even when X goes to zero.

From utility function (81), we can identify 6 types of users indifferent between some two actions. Those

users appear on the market under different levels of X, qA, qB , and α. Only some of the indifferent users

exist on a particular market but never all of them. Here are the 6 types of indifferent users:
1. θPA ... The user indifferent between using legal product A and its illegal version.
2. θ0P ... The user indifferent between using illegal version A and using nothing at all.
3. θ0A ... The user indifferent between using legal product A and using nothing at all.
4. θ0B ... The user indifferent between using legal product B and using nothing at all.
5. θBP , θPB ... The user indifferent between using legal product B and using illegal version A.
6. θBA ... The user indifferent between using legal product A and using legal product B.

In this chapter, we will again use the notation introduced in Notation 4 . As in the previous chapter, for

a better illustration of the model behavior, we shall start with the monopoly case.

3.2 Monopoly

In the case of a monopoly market, developer A can compete only with an illegal version of his own product.

Similarly to the previous chapter, if the expected penalty X is high enough that nobody is willing to use

software illegally, we obtain the same market structure as in Section 1 (captured on Figure 8). This situation

occurs when 1
2 θ̄αqA ≤ X.

In the case where X ≤ 1
2 θ̄αqA, there are users who prefer to use the illegal version and so setting α as

low as possible is the right thing to do in order to increase the demand for the legal version In order to work

out the monopolist’s demand, we find user θPA, who is indifferent between the legal and illegal product,

and so this user is described by θPA = pM−X
qA−αqA . The demand for product A is then DA = (θ̄ − θPA), and

the monopolist profit is πM = (θ̄ − θPA)pM , while the demand for the illegal version is DP = (θPA − θ0P).

Equilibrium price and profit are:

developer. Both developers know that introducing sophisticated protection could only discourage legal users from their services,
while illegal users would always prefer to use a better product.

66

p∗M =
X + θ̄qA (1− α)

2
, π∗M =

1

4

(
X + θ̄qA(1− α)

)2
qA (1− α)

. (82)

This results in the distribution of users on the market as captured in Figure 13 .

no product Illegal A A

0 θ0P = X
qA

θPA = pA−X
qA−αqB θ

Figure 13: The decreased quality to illegal users on the monopoly market

Note that the monopolist that faces illegal usage but has an option to increase the number of legal users

by restricting additional services generates uniformly higher profit than the monopolist that could only set

p∗M = X.

Clearly, now the profit of the monopolist increases not only in the level of expected penalty but also in

the degree of restrictiveness to the additional services (that is, the lower the α, the higher the monopolist’s

profit). Thus, the maximal restrictions of services to the illegal users are optimal requiring the minimum

possible level of α that we label as α.

3.3 Bertrand competition

A user’s decision to use an illegal version now again depends on the user’s sensitivity to product quality θ

as well as on the expected penalty X. We first focus on the situation in which only a developer of a higher

quality product uses the restriction in services36. If X is high enough such that pB < pA < X, then37 illegal

usage is fully suppressed, and the market is divided between both developers, which is in fact, the case we

have already analyzed in pure Bertrand competition in Section 2, see Figure 12 . Assuming that illegal usage

is not eliminated, and legal versions are on the market, then there are two interesting cases in which both

developers operate on the market. The first one is pB < X < pA and qB < αqA (implying pB
qB
≤ X

αqA
≤ pA

qA
),

and the second one is X < pB < pA and αqA ≤ qB (implying X
αqA
≤ pB

qB
≤ pA

qA
). In all other cases, either

the legal version of product B is eliminated so there is a monopoly for developer A, or the illegal usage of

product A is eliminated and there is pure Bertrand competition.

In the first case when pB
qB
≤ X

αqA
≤ pA

qA
and qB ≤ αqA, developer A competes with an illegal version of his

own product to capture users with relatively high θ, while developer B competes with an illegal version of

product A to capture users with relatively low θ (See Figure 14). In the second case, when X
αqA
≤ pB

qB
≤ pA

qA

and αqA < qB , developer A competes with developer B for users with high θ, while developer B competes

with the illegal version of A for users with low θ (see Figure 15). The second case leads to a tougher

competition between developers A and B, where qA and qB are relatively close, while the first case describes

36In the case that developer B also introduces a restriction of, say, αB , then the product of developer B will not be used
illegally unless αB is significantly higher than α resulting in αBqB ≥ αqA as any user who decides on using an illegal product
would use the illegal product of the highest available quality since the expected penalty is X regardless of the product.

37In this part, whenever we write pB < pA we mean pB
qB

< pA
qA

, which is a necessary condition for product B to be in the

market.

67

a market where developer B produces a significantly less valuable product than developer A, and thus, he

can hardly compete with his legal version38.

3.3.1 Case 1: Bertrand competition when pB < X < pA and qB < αqA, second stage

(pBqB ≤
X
αqA
≤ pA

qA
)

This situation corresponds to a product distribution over the market in which there are three types of

indifferent users:

1. A user indifferent between buying product A and its illegal usage: θPA = pA−X
qA−αqA ,

2. A user indifferent between the illegal usage of product A and buying product B: θPB = X−pB
αqA−qB , and

3. A user indifferent between buying product B and not using any product at all: θ0B = pB
qB
.

All users with θ ∈ (θBP , θPA) use an illegal version of product A. The users of the illegal version split

the market into two sub-markets and to put it roughly, the illegal users recruit themselves from the middle

part of the market. The profit function for each developer is then πA =
(
θ̄ − θPA

)
pA =

(
θ̄ − pA−X

qA−αqA

)
pA,

and πB = (θBP − θ0B) pB =
(

X−pB
αqA−qB −

pB
qB

)
pB . Equilibrium prices and profits are the following:

p∗A =
θ̄qA (1− α)

2
+
X

2
, p∗B =

qB
2αqA

X (83)

π∗A =
1

4

(
θ̄qA (1− α) +X

)2
qA (1− α)

, π∗B =
1

4

qB
αqA

1

αqA − qB
X2. (84)

(F.O.C. and S.O.C. are stated in Appendix A.3.1), and resulting market coverage is the following:

B Illegal A A

0 θB0 = pB
qB

θBP = X−pB
αqA−qB θPA = pA−X

qA−αqA θ

Figure 14: BC with illegal users in the middle of the market

Lemma 13 The only necessary and sufficient condition with respect to X for this kind of equilibrium to

exist is:

0 < X < Xα1 =
θ̄αqA (αqA − qB) (1− α)

(2− α)αqA − qB
.

Proof. see Appendix B.3.2

In this special case, only developer A has the incentive to choose service restriction in the first stage.

Moreover, note that the developers do not directly compete against each other because users who are using

product A illegally create a “buffer” between the legal users of products A and B. Thus, the profit of

38E.g., competition between the Microsoft Office 2010 package against small alternative developers such as 602 and its package
known as “OpenOffice.org Software 602 Edition.”

68

each developer is independent on competitor’s price and the driving factors of the profit are the level of

the expected penalty X, and the level of restricted services α. Moreover, note that the market coverage,

equilibrium price, and, consequently, profit of developer A are the same as if he was a monopolist constrained

by X ≤ p∗A (implying that X ≤ 1
2 θ̄αqA, see sub-section 3.2).

Remark 22 Developer A’s decision to implement α and then set the price to pA = X is never optimal in

the given set-up.

Lemma 14 In the case of duopoly competition when pB
qB
≤ X

αqA
≤ pA

qA
and qB ≤ αqA, the equilibrium profit

and price of developer A as well as developer B are decreasing in α as long as qB ≤ αqA holds.

Proof. The behavior of p∗A (α), p∗B (α), π∗B (α) can be seen immediately from equilibrium (83) and (84

), proof that dπ∗A (α) /dα < 0 could be also easily derived.

Intuitively as α decreases, the illegal usage becomes more costly and consequently shrinks. Since both

developers compete directly only with an illegal version of product A, this improves their competitive ad-

vantage by making legally accessible quality more attractive compared to the illegal one allowing in turn

both prices to increase in equilibrium.

3.3.2 Case 2: Bertrand competition when X < pB < pA and qB > αqA, second stage

(X
αqA
≤ pB

qB
≤ pA

qA
)

Note that in this set-up, developer B would also be forced to introduce the IPR protection of α in order to

stay in the market. Otherwise the users who do not buy a legal version of product A, would prefer to use the

illegal version of product B, whose quality would be qB > αqA. As a consequence of IPR implementation

by both developers, there would be a direct competition between the two developers, but their payoffs

depend on the level of X and the developers’ IPR protection α. A user indifferent between A and B is

θBA = pA−pB
qA−qB , and a user indifferent between illegal usage of A and buying B is θPB = pB−X

qB−αqA . Users with

θ ∈
(

X
αqA

, pB−X
qB−αqA

)
use an illegal version of product A. The profits for developers are: πA =

(
θ̄ − θBA

)
pA

and πB = (θBA − θPB) pB . This situation leads to the following distribution on the market:

BIllegal A A

0 θ0P = X
αqA

θBP = pB−X
qB−αqA θAB = pA−pB

qA−qB θ

Figure 15: BC with illegal users at the low end of the market

This results in the following equilibrium prices and profits:

p∗A = (qA − qB)
θ̄2qA (1− α) +X

4qA − 3αqA − qB
, p∗B = (qA − qB)

θ̄ (qB − αqA) + 2X

4qA − 3αqA − qB
. (85)

69

π∗A = (qA − qB)

(
2θ̄qA (1− α) +X

4qA − 3αqA − qB

)2

, (86)

π∗B = (qA − qB) (1− α) qA

(
θ̄ (qB − αqA) +X

)2
(qB − αqA) (4qA − 3αqA − qB)

2 .

Lemma 15 A necessary condition for the existence of an equilibrium is satisfied only for X and α such

that:

0 ≤ Xα2 =
θ̄ (qA − qB) (qB − αqA)αqA

4qAqB − q2
B − 2αq2

A − αqAqB
.

Proof. see Appendix B.3.3

Lemma 16 The equilibrium profit and price of developer A as well as developer B are decreasing in α when

qB > αqA holds.

Recall that the competition in Case 2 is tougher than in Case 1 since developers now compete directly

with each other, and the increase in market share of one developer automatically implies a decline in the

share of the other developer.

3.3.3 Stackelberg competition

In Case 1 above, the illegal version of product A serves as a “buffer” between the two legal products, and

the prices chosen by the developers do not depend on each other, i.e., the reaction functions pi (pj) do not

depend on pj . Therefore, the Stackelberg outcome in this case is the same as the Bertrand outcome above.

As for Case 2, the Stackelberg outcome is in Appendix B.4 .

3.4 Optimal service restrictions: the first stage

The optimal service restriction is rather simple in our set-up given the assumption of no costs for restraining

services. (Recall that profit functions in both Cases 1 and 2 decrease in α.) Thus, the optimal service

restriction is always such that α∗ = α irrespective of the level of X (provided that the size of X is such that

it requires the imposition of a service restriction by at least one developer, that is, X < pA). What is more

interesting here is to see how the levels of optimal α and X affect the emerging market structure and market

coverage in the second stage equilibrium. We start with the buffer case: Case 1.

3.4.1 α∗ =α, and pB < X < Xα1

This case appears in equilibrium when α is relatively large (α∗qA > qB), and this is typically the case when

the quality of the first developer is “substantially” larger than the quality of the second developer. The

interesting (comparative static) question to ask here is what would happen if the regulator increases X to be

at Xα1 or larger. If X exceeds Xα1, then piracy becomes too costly and, consequently, the buffer of illegal

users is completely eliminated (that is, αqAθ̄−X < 0 for all θ). Thus an expected penalty high enough (such

that X > Xα1), restores pure Bertrand competition, and so, a pair of private and government protections

70

{α, Xα1} are able to restore the competition without illegal users. Recall that without private protection,

the regulator would have to set a much higher excepted penalty to achieve the same outcome (that is, X

has to be such that X > pA).

An alternative way in which the pure Bertrand competition would appear in equilibrium is the situation

when αqA = qB (or αqA is ”close” enough to qB). The intuition is similar to the one above; the usage of an

illegal version becomes non-attractive when α falls so low that a legal version of product two has the same

(or only slightly lower) value for consumers but is offered at a lower price, pB < X. Thus, again the illegal

usage is completely eliminated.

3.4.2 α∗ =α, and X < pB < Xα2

Clearly, this situation appears when α is relatively small so that αqA < qB , and there is direct duopoly

competition (Case 2 above) in which illegal usage occurs only at the lowest tail of the market. This would

likely be the case when quality of the first developer is not ”much” larger than the quality of the second

developer. Note that it would be now optimal for both developers to introduce service restrictions. Moreover,

both developers choose the technically minimal possible α, i.e., α∗A = α∗B = α. Let us assume again that the

regulator sets the expected penalty that exceeds the critical value for Case 2 to occur, (that is, X > Xα2).

In that case, X
αqA

> pB
qB

(or θ0P > θ0B) implying that no one would use an illegal version and again, the

competition would be back to the pure Bertrand. Thus, in this set-up too, a pair of (α,Xα2) restores a pure

Bertrand competition and much like in the case of 3.4.1 above, Xc2 is substantially lower than the expected

penalty that would alone achieve complete elimination of illegal usage.

So in both cases, private and government IPR protection are substitutes in the sense that introducing

private protection in the form of service restrictions, enables the regulator to eliminate the illegal usage of

software with a much lower (and less costly) expected penalty.

Finally, if we alternatively assume that:

1. It would be costly for the developers to incur service restrictions,

2. Optimal α can be anywhere in the interval (0, 1), and

3. The corresponding cost function for implementing α, C (α) is convex enough to generate an interior

maximum, then α∗ can be such that either α∗qA > qB or α∗qA < qB depending on the size of X and

the shape of the cost function, C(α) such that ∂
∂αC(α) > 0 and ∂2

∂α∂αC(α) > 0.

3.5 Key section results

In the case of the monopoly set-up, we show that developer A competes against an illegal version of his own

product, and it is optimal for him to maximally restrict the additional software services for illegal users. He

always operates in the market and is always better off than the monopolist that sets the price to an expected

penalty when faced with illegal usage (as in Section 1).

In the case of Bertrand competition, the interaction between the developers’ and the regulator’s IPR

(as well as the nature of the competition) depends critically on whether IPR protection, X, is “High,”

71

“Medium,” or “Low.”

1. A “High” expected penalty can be defined as the one in which pB ≤ pA ≤ X. In this case, the devel-

opers’ IPR protection is redundant, and obviously the regulator’s IPR protection acts as a substitute

for the developers’ IPR.

2. The regulator IPR protection is “Medium” if pB ≤ X ≤ pA. In that case, we see that the situation

of the highest interest is the one where pB
qB
≤ X

αqA
≤ pA

qA
and qB < αqA. We call it a buffer case.

Developer A earns the same profit as a (constrained) monopoly that is positively affected by the level

of the expected penalty X. The optimal service restriction is always such that α∗ = α irrespective of

the size of X.

3. Finally, there is a third case of “Low” IPR protection, in which X ≤ pB ≤ pA. The most interesting

situation occurs when X
αqA
≤ pB

qB
≤ pA

qA
and αqA < qB . In this situation developers, compete directly

against each other, and the level of X positively affects the profit functions of both developers. More-

over, developer B has also to introduce the restriction of services to the degree αB for the illegal users

who would otherwise prefer to use product B illegally. The developers choose the maximal possible

level of IPR protection (α = α).

4. Marginal changes in X do not affect optimal choices of α given that the costs of the service restriction

are zero. If, on the other hand, these costs are substantial yielding the inverse U-shaped profit function

and interior maximum for α, then the marginal change in X does affect the optimal choice of service

restriction.

5. Finally in both cases, private and government IPR protection are substitutes since the introduction of

private protection enables the regulator to eliminate the illegal usage of software with a lower expected

penalty.

6. In the case of the Stackelberg competition, we show that developer B has no advantage from setting

his price as the second one in the “buffer” case. There is a “second mover advantage,” only in the case

of direct competition like in Case 2 above.

4 Physical product protection against copying

In this section, we focus on a situation where the developers can eliminate illegal usage by implementing

physical protection against copying. By physical protection we understand that installing an illegal version

of the software is more difficult either because of a low availability of the illegal version or because of the

high requirement on the users’ skill to install (or use) the illegal version. An example of such a protection is

the DVD with games where a version coming from standard copying with a DVD burner cannot be installed

on a PC any longer39. Another example is requiring users to authenticate their copy on the developer’s

39The illegal copy is not working since the original DVD is intentionally produced with certain kinds of mistakes, and during
copying, these mistakes are always corrected by the “burning” software. At the same moment, during the installation process,
those mistakes are mandatory for the successful completion of the installation.

72

web pages during installation, which could be technically complicated to avoid (e.g., only by installing a

“crack” to a particular directory and a set of steps to complete the installation). All such tools create

obstacles in installing an illegal version, and thus limit its availability to common users. After installation,

however, a user often may not distinguish an illegal version from the legal one. As already mentioned in the

introduction, some forms of DRM can also serve as examples of such a protection. Thus, a user’s perception

of software quality is often intact.

As noted in the introduction, most of the research papers on IPR protection in software markets have

analyzed the trade-off between the perfect protection and the costs of its implementation. In this section, we

focus on what impact the size of the expected penalty X has on the developers incentives to introduce some

kind of physical protection against illegal copying. We also study the impact of such protection on mutual

competition between developers.

4.1 Model set-up

4.1.1 Developers’ problem

We assume now that both developers have access to technology that allows product protection against

copying and illegal usage 40. The developers’ decisions are dependent only on the profitability of such a

step. The protection against copying is imperfect, which means that a fraction of the users still have access

to the illegal version41. This fraction of users is uniformly distributed over the whole interval 〈0, θ̄〉. We say

that a developer implements protection at level c, if for each θ ∈ 〈0, θ̄〉 the fraction of users with the ability

to use the illegal version is (1− c), and the remaining fraction of users (c) could only use the legal version.

Protection c is from interval 〈0, 1〉, and if c tends to 1 we say that protection becomes perfect, while c tending

to 0 represents the full public availability of an illegal version42. We further assume that both developers

could implement this kind of protection, and that they could differ among themselves in the protection level

c. Much like in the previous section, we can think about a two-stage game in which one or both developers

choose the level of private protection in the first stage, and then they compete in prices in the second stage.

Unlike in the case of restricting services to illegal users, it is now reasonable to assume that implementing

physical protection is costly, and that these costs rise more than proportionally as c increases tending to

infinity as c approaches 1. Thus, the costs of implementing protection c, labelled as C = h(c), possess the

following properties:

1. h(0) = 0, limc→1 h(c) = +∞;

2. ∂
∂ch(0) = 0, ∂

∂ch(c) > 0;

3. ∂2h(c)
∂c2 > 0 and

40Neither legal nor licence restrictions are assumed for the developer in the case of implementing protection against copying.
41By eliminating public availability we mean both no access to an illegal version or access to an illegal version accompanied

by the limited user’s skill to install/use the illegal version.
42The availability of an illegal version and the ability to break it differs significantly among users and is more dependent on

technical skill than on the sensitivity to price θ. The uniform distribution is an analytical simplification not harming the nature
of the essay.

73

4. Π∗i = π∗i (ci)− h(ci) is a concave function reaching its maximum at c∗i ∈ (0, 1). (We use the symbol Π

for net profit, when protection costs are accounted for, while π stands for the price-competition stage

profit.)

Note that much like in the previous section with restricting services, we are not so interested in the actual

optimal value of protection, c but rather in its interaction with the expected penalty X and, consequently,

its impact on equilibrium prices, profits, and market coverage.

4.1.2 The consumer problem

Recall that in the previous sections, all users have access to illegal versions, and the user’s decision to use

an illegal version was always based on the expected utility coming from usage of such a version compared to

the utility from using a legal version. In this section, we assume that only some users have access to both a

legal and an illegal version, while some users have access only to a legal version. The users with access to

both versions prefer the legal version only if the utility from it is higher and their proportion is 1− c. The

utility function of user θ is the following:

UP (θ) =

 θqi − pi ... if he buys the legal version of the software.
θqi −X ... if he uses the software illegally.
0 ... if he does not use the software at all.

(87)

Users without access to the illegal version could compare only the expected utility from purchasing the legal

version and not using it at all. Their proportion is c, and the utility function of user θ is:

UP (θ) =

{
θqi − pi ... if he buys the legal version of the software.
0 ... if he does not use the software at all.

(88)

4.1.3 The market environment

As we already noted, both developers could implement physical protection for their product, and so three

basic combinations of product protection could occur in the market :

1. None of the developers implement protection. This situation arises when X does not bind in the

maximization problems of either A or B so that in the equilibrium, we have p∗B ≤ p∗A ≤ X.

2. Developer A implements protection while developer B does not. This situation occurs when pure

Bertrand equilibrium is not possible because X would be binding for developer A since p∗B ≤ X ≤ p∗A.

3. Both developers implement protections.43 Finally for low X, both developers would have to introduce

protection since pure Bertrand equilibrium would result in X ≤ p∗B ≤ p∗A.

Before analyzing the above cases in more detail, we, as in the previous two sections, first start with the

monopoly case that helps us to illustrate the flavor of the model.

43Note that the case in which only developer B implements protection never occurs. If B has to implement protection due
to the low expected penalty X, then developer A must also implement physical protection because his product would be the
primary target of illegal usage.

74

4.2 Monopoly

As in the previous two sections, we start with a monopoly case that will help us to illustrate the flavor of the

model. Consider now developer A who introduces a level of protection at c for his product qA and sets the

price pM . In analyzing monopolist behavior, we could focus only on the case when the expected penalty is

such that X < pM , since the case where X > pM is already described in the Section 2, and in this case, no

user has the incentive to use an illegal version. Users’ demand for the legal product of monopoly developer

A is DA = c
(
θ̄ − pM

qA

)
and leads to the following market coverage:

0 θ0P = X
qA

θ0A = pA
qA

θ

no product
c . . . no product

1-c . . . Illegal A
c . . . A

1-c . . . Illegal A

Figure 16: Monopoly market with product protection c

Monopoly equilibrium is analogous to the one in Section 1, as could be immediately derived from (72):

p∗M =
1

2
θ̄qA, π

∗
M = c

1

4
θ̄2qA. (89)

Note that under the assumptions regarding h(c), Π∗M = π∗M − h(c) has a unique maximum, c∗M ∈ (0, 1).

A monopoly developer A always has an option to decrease the price to X instead of implementing protection

c. By comparing developer A’s profit in the case of lowering the price to X as in Section 2, see monopolist

profit in (73), with his profit after implementing protection, we find out that developer A prefers physical

protection as long as the expected penalty, X, is below a certain critical level. More specifically, even with

protection costs h(c) = 0, it is more profitable to lower the price to X instead of implementing protection if

X > θ̄qA
1−
√

1−c∗M
2 .

4.3 Bertrand competition

As in the previous part, we omit the case when the expected penalty X is high enough (poB ≤ poA ≤ X),

and developers have no incentives to introduce physical protection against copying (this case we already

analyzed in Section 2). In analyzing this set-up, first, we focus on the case where only developer A has the

incentive to introduce protection p∗B ≤ X ≤ p∗A and then, finally, on the case where both developers have

such incentives, that is, X ≤ p∗B ≤ p∗A. Note that in our set-up, prices are as usually strategic complements

(see Tirole, 1989, and Bulow et al., 1985), that is, ∂2πi

∂pB∂pA
> 0.

4.3.1 Only developer A implements protection c

In this case, where p∗B ≤ X ≤ p∗A, only developer A has the incentive to implement physical protection since

the product of developer B would be used only legally. As we already mentioned in our model set-up, the

illegal version of product A is available only to the fraction 1 − c of the users’ base. Product A is used

illegally only by users with X
qA
≤ θ, while users with θ ≤ X

qA
prefer not to use the product at all. The

75

demand for product B consists of users with low sensitivity θ to purchasing product A, who, at the same

time, have no access to an illegal version of A, but their θ is high enough to buy product B. These users

have θ ∈ (pBqB ,
pA−pB
qA−qB), and their fraction is c. As for the users with access to an illegal version of product A,

there are two sub-cases that could occur in equilibrium depending on the size of the expected penalty:

1. The first sub-case occurs when there are some users who have illegal access to product A but still want to

buy product B, or more formally, the measure of these users is strictly positive with θ ∈
(
pB
qB
, X−pBqA−qB

)
,

and so, X−pB
qA−qB > pB

qB
. These users would like to purchase product B if X is not so “low” (in the sense

that X > pB
qA
qB

). The market coverage is given in Figure 17 .

2. The second sub-case occurs when illegal users always prefer an illegal version of A to the legal version

of B, that is, when θqA − X > θqB − pB for all θ since illegal usage is then more profitable even

for the consumer with the lowest valuation. So, X has to be “low” enough, that is, X−pB
qA−qB ≤

pB
qB

(or

equivalently X ≤ pB
qA
qB

) given that p∗B ≤ X still holds. The market coverage of this case is presented

in Figure 18 .

0 θ0B = pB
qB

θBP = X−pB
qA−qB θBA = pA−pB

qA−qB θ

no product B
c. . . B

1-c. . . illegal A
c. . . A

1-c. . . illegal A

Figure 17: BC, when developer A introduces protection c (Case 1).

0 θ0P = X
qA

θ0B = pB
qB

θBA = pA−pB
qA−qB θ

no product illegal A
c. . . B

1-c. . . illegal A
c. . . A

1-c. . . illegal A

Figure 18: BC, when developer A introduces protection c (Case 2).

As for Sub-case 1, we obtain demand for legal versions of both products by putting all fraction of users

together:

DA = c

(
θ̄ − pA − pB

qA − qB

)
, (90)

DB = c

(
pA − pB
qA − qB

− pB
qB

)
+ (1− c)

(
X − pB
qA − qB

− pB
qB

)
=

=
cpA + (1− c)X − pB

qA − qB
− pB
qB
.

76

In Sub-case 2, only the users without access to an illegal version of A buy product B so the demand

functions are now:

DA = c

(
θ̄ − pA − pB

qA − qB

)
,

DB = c

(
pA − pB
qA − qB

− pB
qB

)
.

Note that Sub-case 2 is practically identical to the pure Bertrand case yielding the same equilibrium

prices, see (74), and yielding the same market coverage as well as the equilibrium profits that are only sized

down by factor c, see (75). Most importantly, small changes in the expected penalty have no impact on the

size of optimal private protection nor on the other equilibrium values.

Thus, we focus on the more interesting Subcase 1. We start with determining the range of the expected

penalty values X such that this sub-case is the Nash equilibrium in prices. Namely, sub-case 1 is not an

equilibrium if (i) at least one developer’s profit, given the other developer’s price choice, does not have a

local maximum in the relevant price range. Moreover, it is also not an equilibrium if (ii) there is a local

maximum in the relevant range, but at least one developer is better off deviating to a price outside the

range (e.g., developer A can be better off deviating to pA = X). Intuitively for developer A to charge a high

price pA > X, the value of X should be small enough so that developer A prefers introducing protection

than to simply lowering the price to X. As for developer B to charge a low price pB < X qB
qA

, X should

be large enough so that developer B prefers charging a low price to both charging an intermediate price

X qB
qA
≤ pB ≤ X and introducing protection or charging a high price pB > X.

For (i), we show in Appendix C.3.4 that a necessary condition on X is Xcl < X < Xcu, where Xcl =

θ̄cqA(qA−qB)
2(1+c)qA−cqB , and Xcu = 2θ̄qA

qA−qB
4qA−qB ; note that the upper bound Xcu, intuitively, coincides with the

equilibrium price poA from the case of the pure Bertrand equilibrium (74). Then both developers’ profits

reach the internal local maxima in the price ranges corresponding to our sub-case, with the prices equal to

p∗A =
X (1− c) qB + 2θ̄qA (qA − qB)

4qA − cqB
, p∗B = qB

2X (1− c) + θ̄c (qA − qB)

4qA − cqB
. (91)

For (ii), we verify that neither developer has an incentive to unilaterally deviate given that the other

developer sets the equilibrium price, p∗i . For developer A, it can be profitable to deviate to pA = X (given

that developer B sets p∗B) if the decrease in price from p∗A to X is more than compensated for by an increase

in the number of consumers that is no longer confined to fraction c, and for X large enough, such a deviation

would yield a higher profit even without protection costs, h(c) = 0. As for developer B, if p∗B is close enough

to X qB
qA

, then it may pay off to jump to a higher price pB ∈ (X qB
qA
, X) given that developer A sets p∗A as

in this case, the effect of such a price increase would more than offset the loss of the consumer base. The

analysis in Appendix C.3.4 shows that for an equilibrium to exist, X should not be “too large” for developer

A, so that X < X+
c < Xcu, nor should it be “too small” for developer B, so that X > X−c > Xcl. While

values Xcl and Xcu always define a non-empty range, the condition X−c < X < X+
c defines a non-empty set

only if c >
√

5−1
2 ≈ 0.618034, and if the quality ratio is not too high44, then the lower bound on c can be

44Here “not too high” means that qB/qA is below the threshold value, which is itself above 0.9, so we can be almost sure
that this is the case and consider it as the general situation.

77

improved to c > c ≈ 0.704402. If X ∈ (X−c , X
+
c), then none of the developers have an incentive to deviate,

and the prices above constitute an equilibrium.

As for the comparative statics analysis with respect to c, it is straightforward to show that equilibrium

prices p∗A(c), p∗B(c) and the profit π∗B (c) increase as the level of physical protection c increases, so developer

A acts strategically and softens the price competition and (in jargon) displays pacifistic “fat cat” behavior

(see Fudenberg and Tirole, 1984).

We now focus on our key issue of how private and public protection interact. More specifically, we study

the effect of the expected penalty X on the optimal developer’s protection, c∗. The direction of this effect is

determined by the impact of the expected penalty on the marginal profitability of private protection (more

technically, on the sign of
∂2π∗

A

∂c∂X) and also by the existence of the interval (X−c , X
+
c). As we stated above,

the necessary condition for that interval to be non-empty is that c∗ >
√

5−1
2 , and this, in turn, implies (or is

sufficient for)
∂2π∗

A

∂c∂X < 0 entailing that the rise in the expected penalty decreases marginal profitability. This

situation is described in jargon as “strategic substitutability” between c∗ and X so that dc∗

dX < 0.

Proposition 12 Private and public protection are always strategic substitutes, that is, dc∗

dX < 0.

Proof. see Appendix C.3.5

With c∗ being “large,” the “cost effect” dominates the effect on revenue in the sense that the gains of

additional public protection are lower than the ensuing private costs of protection. So developer A cuts back

his private protection in response to the increased public protection, decreasing thus its private protection

costs, and harming developer B (recall that
dπ∗

B(c)
dc > 0).

The nature of the interaction between the private and public IPR protection enables us to further study

the comparative statics effects of X on equilibrium prices and profits.

Lemma 17 The effect of X on p∗A(X) and p∗B(X) is a priori undetermined.

Proof. Note that dpi
dX (c (X) , X) = ∂pi

∂c
dc
dX + ∂pi

∂X . Straightforward differentiation shows that direct effect

of X on prices is positive, that is, ∂pi
∂X > 0. From the analysis above, we know that ∂pi

∂c > 0, but dc
dX < 0.

Thus, the indirect effect, ∂pi
∂c

dc
dX < 0.

Lemma 18 The effect of X is positive on π∗A(X) but the respective effect on π∗B(X) is a priori unclear.

Proof. Note that
dπ∗

A(X)
dX (c (X) , X) =

∂π∗
A

∂X > 0. Note further that
dπ∗

B(X)
dX (c (X) , X) =

∂π∗
B(X)
∂c

dc∗

dX +
∂π∗

B

∂X ,

where
∂π∗

B(X)
∂c

dc
dX < 0 since dc∗

dX < 0 and
∂π∗

B

∂X > 0. Thus, the direct and indirect effects have a conflicting

impact on developer B’s profit.

As we see, developer A reacts aggressively on an increase in X and cuts back in his private protection in

response to increased public protection. As for developer B, if the net outcome of the above two conflicting

(direct and indirect) effects is negative, the profit of developer B and equilibrium prices fall making price

competition tougher. As a result, a “fat cat” strategy in this case becomes a bit diluted due to the enhanced

78

public protection while, on the other hand, consumers of both goods benefit due to the decrease in equilibrium

prices45.

4.3.2 Both developers A and B implement protection

If the regulator sets up a very low expected penalty (X ≤ p∗B ≤ p∗A), then, naturally, both developers have

to either implement physical protection or decrease prices to X; otherwise, they would be out of the market.

We denote protection used by developer A as cA and protection used by developer B is cB . Further, we

assume that users may have access either to an illegal version of product A, an illegal version of product B,

or to both illegal versions. Moreover, we assume that access to an illegal version of product A and B are

mutually independent so there are users on the market that have access to illegal versions of product A but

not to illegal versions of product B and vice versa. Then there are the following fractions of users on the

market:

1. cAcB ... The fraction of users with access only to legal products;
2. cA(1− cB) ... The fraction of users with access to an illegal version of product B;
3. (1− cA)cB ... The fraction of users with access to an illegal version of product A;
4. (1− cA)(1− cB) ... The fraction of users with access to illegal versions of both products.

We have now the following types of users:

1. θ ∈ (pA−pBqA−qB , θ̄) ... Users who buy product A if they do not have access to any illegal version;

2. θ ∈ (pBqB ,
pA−pB
qA−qB) ... Users who buy product B if they do not have access to an illegal version of A;

3. θ ∈ (XqA , θ̄) ... Users who use an illegal version of A if they have access to it;

4. θ ∈ (pA−XqA−qB , θ̄) ... Users who buy A if they have access only to an illegal version of B.

Given the above set-up, it seems that two sub-cases could arise. The first one would be such that θ̄ ≤
pA−X
qA−qB , implying that there is no user who would buy product A if he has illegal access to product B. This,

however, never occurs since in the equilibrium, developer A sets the price low enough that users with θ close

to θ̄ always prefer to buy the legal version of A (see Appendix C.4.1). The second situation appears when

pA−X
qA−qB < θ̄, implying that such users exist, and their number is higher than zero. So next, we discuss this

only feasible sub-case.

Both competitors introduce physical protection and pA−X
qA−qB < θ̄. In this case, there are users who

prefer the legal version of the higher quality product qA even though they have access to the illegal version

of product B, but not of product A. This leads to the following market coverage:

From the distribution of users on the market, we obtain the following demand for the individual products:

DA = cAcB

(
θ̄ − pA − pB

qA − qB

)
+ cA(1− cB)

(
θ̄ − pA −X

qA − qB

)
(92)

=
cA
(
X(1− cB) + θ̄(qA − qB) + cBpB − pA

)
qA − qB

,

DB = cAcB

(
pA − pB
qA − qB

− pB
qB

)
.

45It is straightforward to show that entry deterrence by means of c is not feasible in the set-up under consideration.

79

0 θ = X
qA

θ = X
qB

θ = pB
qB

θ = pA−pB
qA−qB θ = pA−X

qA−qB θ

no product

1-cA. . . illegal A
cA. . . no product

1-cA. . . illegal A
(1-cB)cA. . . illegal B

cAcB . . . no product

1-cA. . . illegal A
(1-cB)cA. . . illegalB

cAcB . . . B

1-cA. . . illegal A
(1-cB)cA. . . illegal B

cAcB . . . A

1-cA. . . illegal A
cA. . . A

Figure 19: Both developers introduce protection, and pA−X
qA−qB < θ̄

As in the previous section, we start with determining the range of the expected penalty values X such

that this sub-case is a Nash equilibrium in prices. Recall that for the existence of a price equilibrium in the

case when only developer A adopts protection, X has to be low enough from the perspective of developer A,

but it has to be high enough from the view point of developer B. Now in the case under consideration, there

are no such opposing requirements on X, since for both developers to charge high prices (above X), they both

“need” X to be low46. Intuitively, if X is close to zero, then both developers would implement protection

and charge prices above X rather than adjust their prices to X or below. We show in Appendix C.4.4 that

a strictly positive X < X0 = θ̄qB(qA−qB)
4qA−qB (note that X0 equals poB of the pure Bertrand equilibrium) exists

such that the following prices constitute an equilibrium:

p∗A = 2qA
θ̄ (qA − qB) +X (1− cB)

4qA − cBqB
, (93)

p∗B =
θ̄ (qA − qB) +X (1− cB)

4qA − cBqB
qB .

As for a comparative statics analysis with respect to cA and cB , it is straightforward to show that

equilibrium prices do not depend on cA and increase in cB . While the positive effect of cB is not unexpected,

the independence of the equilibrium prices on cA might seem less intuitive. However, if both developers charge

prices above X, any consumer not controlled by developer A would use an illegal version of product A, and

a small change in cA would only have a market size effect, i.e., both demands would change proportionally

to the change in cA. As there are no production costs, the change in marginal incentives will be also

proportional to the change in cA, so that the prices do not change. Note also that both developers prefer

the good protection of a competitor’s product, that is
∂Π∗

A

∂cB
> 0 and

∂Π∗
B

∂cA
> 0. The intuition is that an

increase in either cA or cB increases the number of legal users for both developers, as it could be seen by

visual inspection that ∂DA

∂cB
> 0 and ∂DB

∂cA
> 0 and also by looking at the market coverage in Figure 19 .

Before proceeding to the central issue of our analysis—the interaction between the private and public

IPR protection—we make two additional assumptions: 1)
∣∣∣ ∂2π∗

i

∂ci∂ci

∣∣∣ > ∣∣∣ ∂2π∗
i

∂ci∂cj

∣∣∣, and 2) cB ≤ 1
2 . Assumption 1)

46Certainly, if the developers could costlessly choose X, they would set it sufficiently high to exclude illegal use, so “need” is
used in the sense of pure mathematical conditions for an equilibrium in the given range. Also note that since these mathematical
conditions for both developers stipulate an upper bound, the analysis is to some extent simpler than in the case of developer A
alone implementing protection as it is impossible that the intersection of conflicting requirements on X results in an empty set.

80

is a rather standard implying the uniqueness of the equilibrium values of c∗A and c∗B as well as its stability.

As for assumption 2), we argue here that the most plausible optimal values of cB are in the range of
(
0, 1

2

)
.

The reason for this is rather a tough price competition in the vertically differentiated market. Consequently,

the lower quality producer charges a substantially lower price and usually earns only a small fraction of the

high-quality developer’s profit in equilibrium. Thus, developer B cannot afford to expand cB much above

zero due to the increasing marginal cost of private protection (recall that ∂2h
∂c2i

(ci) > 0).

Proposition 13 Let the protection cost function h(c) be such that assumptions 1) and 2) above hold, then

an increase in X leads to an increase in the optimal protection of both developers, that is,
dc∗A
dX > 0 and

dc∗B
dX > 0. Thus, private and public IPR protections are strategic complements.

Proof. see Appendix C.4.6

The sign and the size of interaction between the public and private IPR protection,
dc∗i
dX , depends on the

impact of the expected penalty, X, on the marginal profitability of both developers’ private protection, or,

more technically, on the signs of both
∂2π∗

A

∂cA∂X
and

∂2π∗
B

∂cB∂X
. It turns out that

∂2π∗
A

∂cA∂X
> 0 for all permissible

values, and ∂2πB

∂cB∂X
> 0 for (at least) all values of cB such that cB ≤ 1

2 (see Appendix C.4.6).

So in the situation when the expected penalty is low (that is, X ∈ (0, X]), there is strategic comple-

mentarity not only between the private and public protections but also between the two private protections

that reinforce each other (recall that
∂2π∗

i

∂cA∂cB
> 0). In this case, an increase in the private protection of one

developer induces the increase in the optimal protection of the other developer. Thus, the “cost effect” is

not dominant here unlike in the case when only the high-quality developer adopts protection (see section

4.3.1) because here an increase in X leads to an increase of both cA and cB causing an upward spiral in

private protections until the new equilibrium is reached.

As before, the nature of the interaction between private and public IPR is the key ingredient in analyzing

the comparative statics effects of X on equilibrium prices and profits.

Lemma 19 An increase in X leads to a rise in both prices and profits for both developers.

Proof. Directly from equilibrium prices (91) and from profit comparison (in Mathematica file).

Note also that as both protections cA, cB tend to perfect protections, the equilibrium prices and profits

go to profit from pure Bertrand competition.

4.4 Key section results

In this section, we concentrated on how the change in expected penalty affects developers’ equilibrium values

when producers implement physical protection. Predictably, the initial size of the expected penalty plays

the decisive role in shaping the behavior of the market participants. We concentrate on the cases where X

has an impact on the optimal protection c∗ at the margin.

Thus, if X zero or small, then both developers introduce protection, and an increase in X reinforces

cAand cB , that is, dc∗A

dX > 0 and
dc∗B
dX > 0. This means the regulator’s and developers’ IPR are strategic

81

complements. It is important to note that even for a zero or low expected punishment, it is never the

case that all of the users that have access to the illegal versions would use only these illegal versions in

equilibrium. (If this were the case, X would have no impact on the users’ and consequently on the the

developers’ decisions on either cA or cB .) Thus, in an equilibrium with low X, some of the users with a high

appreciation for quality who have illegal access to product B would still buy legal versions of product A. An

increase in X would make product A more attractive for those users. As an optimal response, developer A

would increase cA that would in turn lead to larger profit. At the same time an increase in X would leave

more room for developer B to increase his prices and profit via an increase in cB .

For some intermediate values of X, only A introduces protection. Here, however, an increase in X leads

to a direct increase in competitor B’s demand, and thus has a substantially larger impact on B’s price and

profit than on A’s corresponding values. So it is optimal for A to decrease c∗ as a response to an increase in

X harming competitor B and improving A’s profit by lowering his protection costs, h(c). So, the regulator’s

and the developers’ IPR are strategic substitutes, that is dc∗
dX < 0 and this case, as we showed, appears only

for a large enough c∗.

When X ≥ poA, there is no need for protection by any developers, so the regulator’s IPR protection is in

a sense an effective full substitute for the private developers’ IPR protection.

Finally, we omit the Stackelberg competition as it happens to produce no new insights than those of the

Bertrand competition.

5 Conclusion

In this essay, we study the interaction between the two instances of IPR protection in a duopoly software

market. The first instance is associated with the level of a government’s or regulator’s protection that

comes in the form of an expected penalty for violating IPR. The second instance represents the private

IPR protection at the level of the developer. The latter appears in two forms: i) a restriction of additional

consumer services for the illegal users and ii) in the physical protection of software. While i) discourages

illegal usage and makes it less attractive, ii) makes illegal usage harder. Thus, we examine the market

equilibria with the above two forms of developer protection. Before that, we considered as a benchmark case

the situation when developers do not use any form of IPR.

We show that the expected penalty may affect both the market coverage and the corresponding market

equilibria in all considered set-ups. In the benchmark case, for instance, when the developers do not imple-

ment any protection and the level of the expected penalty is low enough, the expected penalty serves as a

price regulation instrument putting the cap on the price. Furthermore, the low expected penalty may force

one of the developers, mainly the one with the lower product quality, to leave the market and establish the

second one as the monopolist. In the case of a high expected penalty, where no user has the incentive to use

a product illegally, it does not play any role, no matter whether the developers use IPR protection or not.

In the case of medium and low levels of an expected penalty when developers implement some form of

protection, the resulting effect of the expected penalty crucially depends on the framework under consider-

82

ation.

Thus, if the protection based on restriction of services happens to be the developer’s optimal choice,

we show that the illegal users of the product may recruit themselves either from price sensitive users (the

low-end of the market) or from the middle part of the market. In the latter case, the illegal users create a

“buffer” between the two groups of legal users, the one with the highest valuation for quality and the other

with the lowest preference for quality. In this case, a marginal price change of one developer does not affect

the profit of the other developer and, moreover, the high-quailty developer generates the same profit as if

he were a monopolist constrained only by the size of the expected penalty. In any case, when firms protect

their IPR by means of service restrictions, the expected penalty has an impact on market conduct and the

developer’s IPR protection only if it exceeds or goes below a certain threshold.

In the case where the protection comes in the form of physical protection, however, the very marginal

change in the expected penalty in general affects the developers’ optimal choice. Furthermore, when there is

an implementation of physical protection against copying, the expected penalty, depending on its size and

on the particular set-up, can be either a complement or a substitute to the developers’ IPR protection.

We did not explicitly compare the two forms of private protections nor was it the aim of our analysis. It

is clear, however, that the decision whether to implement physical protection or protection based on service

restrictions, depends on the respective profitability of these two forms that in turn depend on the cost of

implementing physical protection, the respective levels of such protection, and the height of the expected

penalty for illegal usage. In the case of restricting product services, the high-quality developer seems to target

better the users with the highest sensitivity to quality. More specifically, implementing physical protection

instead of implementing a service restriction (or decreasing prices to an expected penalty), leads to losing

some of the high-end (quality sensitive) users since a fraction of these users have access to an illegal version.

(Note that the users with the highest quality are usually the most important source of a developer’s profit).

Moreover, implementing physical protection involves direct costs unlike the two other options. Thus, it

seems that the physical protection would be optimal only if a developer can relatively cheaply achieve a high

fraction of users who could use the product only legally and, when at the same time, the expected penalty

is low enough, and the protection via additional services is not very effective.

As for the possible extensions of our analysis, the normative considerations would seem to be the most

natural ones. In other words, the optimal regulator’s choice of IPR protection and its economic impacts

would be an issue. This would, in turn, require putting “more structure” in our model and consequently

specifying the regulator’s objective function. Since in our context, it was suitable to think of the two foreign

developers competing on a third host market, the simplest case would be that the host regulator maximizes

the consumer surplus net of the costs of implementing a particular level of expected penalty. This would

further mean that the regulator would prefer to induce the most competitive set-up by means of the expected

penalty, given the costs of reaching a particular level of expected penalty (whereby the costs of reaching a

particular level are convex, that is above proportionally increasing in it). However, in our set-up where the

users have access to an illegal version of the product, the choice of an optimal expected penalty seems to be

trivial; in order to maximize the consumer surplus, the regulator will simply set the expected penalty to zero

83

(or to some minimal level if zero is not feasible due to, say, an international standard and requirements for

a minimal IPR protection). Thus, the set-up in which one or both developers are the domestic ones would

be surely more interesting to analyze.

Another interesting extension would be to allow for the explicit trade-off between the increased developer

IPR protection and the decreasing functionality of the product and to study the social welfare consequences

and policy implications of such a trade-off.

84

References

Banerjee, D.S. (2003): “Software Piracy: A Strategic Analysis and Policy Instruments,” International

Journal of Industrial Organization, Vol. 21(1), pp. 97–127.

Belleflamme, P. (2001): “Oligopolistic Competition, IT Use for Software Differentiation and the Produc-

tivity Paradox,” International Journal of Industrial Organization, Vol. 19, pp. 227–248.

Belleflamme, P., and Peitz, M. (2010) “Digital Piracy: Theory,” CESifo Working Paper Series, No. 3222.

Belleflamme, P., and Picard, P.M. (2007): “Piracy and Competition,” Journal of Economics and Manage-

ment Strategy, Vol. 16, pp. 351–383.

Boom, A. (2001): “On the Desirability of Compatibility with Software Selection,” Journal of Industrial

Economics, Vol. 49, pp. 85–96.

Bulow, J., Geanakoplos, J., and Klemperer, P. (1985): “Multimarket Oligopoly: Strategic Substitutes and

Strategic Complements,” Journal of Political Economy, Vol. 93, pp. 488–511.

Choi, P., Bae, S.H., and Jun, J. (2010): “Digital Piracy and Firms’ Strategic Interactions: The Effects of

Public Copy Protection and DRM Similarity,” Information Economics and Policy, Vol. 22, pp. 354–364.

Economides, N.(1992): “Competition and Integration among Complements and Network Market Struc-

ture,” Journal of Industrial Economics, Vol. 40, pp. 105–123.

Economides, N. (1996): “The Economics of Networks,” International Journal of Industrial Organization,

Vol. 16, pp. 673–699.

Farrell, J., and Klemperer, P. (2006): “Coordination and Lock-In: Competition with Switching Costs and

Network Effects,” CPC UC Berkeley Working Paper, No. 179157.

Fudenberg, D., and Tirole, J. (1984): “The Fat Cat Effect, the Puppy Dog Ploy and the Lean and Hungry

Look,” American Economic Review, Vol. 74, pp. 361–368.

Jain, S. (2008): “Digital Piracy: A Competitive Analysis,” Marketing Science, Vol. 27, pp. 610–626.

King, S.P., and Lampe, R. (2003): “Network Externalities, Price Discrimination and Profitable Piracy,”

Information Economics and Policy, Vol. 15, pp. 271–290.

Kúnin, M. (2004): “Why do Software Manufacturers Tolerate Piracy in Transition and Less Developed

Countries?” CERGE-EI Working Paper, No. 231.

Kúnin, M., and Žigić, K. (2006): “Strategic Trade Policy and Vertical Product Differentiation: Intra-

industry Trade between Developed and Developing Countries,” CERGE-EI Working Paper, No. 230.

Minnitti, A., and Vergari, C. (2010): “Turning Piracy into Profits: A Theoretical Investigation,” Informa-

tion Economics and Policy, Vol. 22(4), pp. 379–390.

85

Peitz, M. and Waelbroeck, P. (2006): “Piracy of Digital Product: A Critical Review of the Theoretical

Literature,” Information Economics and Policy, Vol. 21(4), pp. 449–476.

Quélin, B.V., Abdessemed, T., and Bonardi, J.P. (2001): “Standardization of Network Technologies: Mar-

ket Processes or the Result of Inter-firm Co-operation,” Journal of Economic Survey, Vol. 15, pp.543–569.

Scotchmer, S. (2004): Innovation and Incentives, The MIT Press.

Shaked, A., and Sutton, J. (1984): Natural Oligopolies and International Trade: An Introduction, Oxford

University Press.

Shapiro, C. (2003): “Antitrust Limits to Patent Settlements,” RAND Journal of Economics, Vol. 34, pp.

391–411.

Shy, O., and Thisse, J. (1999): “A Strategic Approach to Software Protection,” Journal of Economics &

Management Strategy, Vol. 8(2), pp. 163–190.

Stavins, J. (1995): “Model Entry and Exit in a Differentiated-Product Industry: The Personal Computer

Market,” The Review of Economics and Statistics, Vol. 77, pp. 571–584.

Sutton, J. (1991): Sunk Cost and Market Structure, The MIT Press.

Takeyama, L.N. (2009): “Copyright Enforcement and Product Quality Signaling in Markets for Computer

Software,” Information Economics and Policy, Vol. 21(4), pp. 291–296.

Tirole, J. (1988): The Theory of Industrial Organization, The MIT Press.

Werden, G.J. (2001): “Network Effects and Conditions of Entry: Lessons from the Microsoft Case,” An-

titrust Law, Vol. 69, pp. 87–111.

Žigić, K. (2000): “Strategic Trade Policy, Intellectual Property Rights Protection, and North-South Trade,”

Journal of Development Economics, 2000, Vol. 61(1), pp. 27–60.

Internet Sources: www.tomshardware.com, www.idg.com, www.zive.cz, www.ifpi.org, www.ria.com,

www.pro-music.org.

86

APPENDIX

A Basic Model

A.1 General notes for all appendices

Most of the calculations in this paper were performed using Mathematica and other similar software. The

Mathematica file is available upon request.

In almost all model situations here, profit functions are concave (quadratic, or, in singular cases, linear)

in the respective choice variables, so that an interior solution is always a (local) maximum. In the remaining

situations, profit functions are explicitly assumed concave in the main text. Thus, second-order conditions

always hold in equilibrium, so they are omitted everywhere below.

A.2 Indifferent users

From the user utility function it follows that indifferent users are characterized by the following quality

sensitivities. The notation θY Z , where Y and Z can be one of {0, A,B} implies that the users with θ < θY Z

strictly prefer Y to Z, and the users with θ > θY Z strictly prefer Z to Y . Then

θ0A =
pA
qA
, θ0B =

pB
qB
, θBA =

pA − pB
qA − qB

.

For the situations wherein developer B competes with either developer A’s product priced at X or the illegal

version thereof, also priced at X, we use the threshold θBP = X−pB
qA−qB .

A.3 Bertrand competition

A.3.1 Pure Bertrand competition

Profit functions are πA =
(
θ̄ − θBA

)
pA, and πB = (θBA − θ0B) pB , and from F.O.C., it follows that

poA = 2θ̄qA
(qA − qB)

4qA − qB
, poB = θ̄qB

(qA − qB)

4qA − qB
,

so that the equilibrium profits are

πoA = 4θ̄2q2
A

qA − qB
(4qA − qB)

2 , π
o
B = θ̄2qAqB

qA − qB
(4qA − qB)

2 .

A.3.2 Bertrand competition, where only developer B makes profit

The profit function of developer B is πB = (θBP − θ0B) pB , so that

p∗B =
qB
2qA

X, π∗B = X2 qB
4qA (qA − qB)

. (94)

A.3.3 Bertrand competition with binding price pA equal to X

Developer A is limited to setting the price p∗A = X. Thus, the profit functions are πA =
(
θ̄ − θBP

)
X, and

πB = (θBP − θ0B) pB , so that p∗B , π
∗
B are the same as in (94), and

π∗A = X
2θ̄qA (qA − qB)−X (2qA − qB)

2qA (qA − qB)
.

87

A.4 Stackelberg competition in prices

A.4.1 Stackelberg competition in prices

First assume that the condition pA ≤ X is not binding. Then the profit functions are πA =
(
θ̄ − θBA

)
pA and

πB = (θBA − θ0B) pB , and developer B’s reaction function is pB(pA) = pA
qB
2qA

. Substituting this into πA

and maximizing, we obtain

p∗A = θ̄qA
qA − qB
2qA − qB

,

so that

p∗B =
θ̄

2

qA − qB
2qA − qB

qB , π
∗
A = θ̄q2

A

qA − qB
2 (2qA − qB)

, π∗B = θ̄qAq
2
B

qA − qB
4 (2qA − qB)

2 .

Recall that if pA ≤ X is binding, then the Stackelberg outcome coincides with the Bertrand outcome.

B Lower quality to illegal users

B.1 Indifferent users

As usual, the notation θY Z , where Y and Z can be one of {0, A,B, I} implies that the users with θ < θY Z

strictly prefer Y to Z, and the users with θ > θY Z strictly prefer Z to Y . Throughout this appendix,

“product P” refers to the illegal version of product A.

As in the basic model, for thresholds not involving the illegal version of product A,

θ0A =
pA
qA
, θ0B =

pB
qB
, θBA =

pA − pB
qA − qB

.

For thresholds involving product P but not involving product B,

θ0P =
X

αqA
, θPA =

pA −X
qA − αqA

.

As for the threshold between B and P , two cases have to be distinguished. First, the quality reduction

to illegal users can be relatively low so that P is still better than B, i.e., qB < αqA. Second, the quality

reduction to illegal users can be relatively high so that illegal A becomes worse than B, i.e., qB > αqA. (If

qB = αqA, then it is impossible that both B and P are in the market, and we concentrate on the cases

where all three products are present.) In the first case, users with their sensitivity below the threshold use

B whereas those above use P , so we use notation θBP . In the second case, the situation is the opposite so

we use notation θPB . These are equal to

θBP =
X − pB
αqA − qB

, θPB =
pB −X
qB − αqA

.

(Mathematically, these two are identical.)

B.2 Monopoly

The relevant thresholds are θ0A, θ0P , and θPA. Two cases are possible. First, if pA ≤ X
α , then θPA ≤ θ0A ≤

θ0P (equality holds everywhere or nowhere) so that P is out of the market and users buy either A or nothing.

Second, if pA >
X
α , then θPA > θ0A > θ0P so that both P and A are in the market as in Figure 13 .

88

The monopolist’s profit can be shown to be unimodal, and three outcomes can be distinguished.

First, if X ≥ 1
2 θ̄αqA, then the unconstrained monopoly price is such that the illegal product is ousted,

so that

p∗A =
θ̄qA
2
, π∗A =

θ̄2qA
4

.

Second, if X < θ̄αqA
(1−α)
2−α , then both A and P are present so that

p∗A =
X + θ̄qA (1− α)

2
, π∗A =

1

4

(
X + qAθ̄ (1− α)

)2
qA (1− α)

.

Third, if θ̄αqA
(1−α)
2−α ≤ X < 1

2 θ̄αqA, then while the monopolist has to lower the price due to the possibility

of illegal use, this illegal use is still eliminated at the optimum, namely

p∗A =
X

α
, π∗A =

X

α

(
θ̄ − X

αqA

)
.

B.3 Bertrand competition

B.3.1 Market structure

The following user distributions across products are possible depending on the prices.

Remark 23 Unless the fixed costs are prohibitive, the developers can always choose their prices so that both

legal products are in the market, so that we neglect the price combinations such that either A or B (or both)

are out.

If pA ≤ X
α , then P is out of the market and the outcome is the same duopoly as in the basic model.

If pA >
X
α , then P can be in the market, and it is necessary to distinguish between the general cases of

qB < αqA and qB > αqA (we neglect the equality as singular). Let

pPB =
X

α

qB
qA
, pTB =

X(qA − qB)− pA(αqA − qB)

qA − αqA
,

and note that pTB Q pPB iff qB Q αqA.

Case qB < αqA: In this case, if pB ≤ pTB , then P is out of the market, and if pTB < pB < pPB , then all three

products are present and the market structure corresponds to Figure 14 , i.e., the relevant thresholds are

θ0B , θBP , and θPA.

Case qB > αqA: In this case, if pB ≤ pPB , then P is out of the market, and if pPB < pB < pTB , then all three

products are present and the market structure corresponds to Figure 15 , i.e., the relevant thresholds are

θ0P , θPB , and θBA.

Remark 24 In this paper, we concentrate on the cases where all three products, both the legal ones and

illegal A, are in the market. Thus, we only consider equilibria such that p∗A >
X
α , and p∗B is strictly between

pTB and pPB.

89

B.3.2 Case qB < αqA

The profit functions are πA =
(
θ̄ − pA−X

qA−αqA

)
pA and πB =

(
X−pB
αqA−qB −

pB
qB

)
pB , so that

p∗A =
X + θ̄qA (1− α)

2
,p∗B =

XqB
2αqA

,

π∗A =
1

4

(
θ̄qA (1− α) +X

)2
qA (1− α)

,π∗B =
1

4
X2 qB

αqA (αqA − qB)
.

The conditions p∗A >
X
α and pTB < p∗B < pPB hold iff X > 0, and

X < Xα1 =
θ̄αqA (αqA − qB) (1− α)

(2− α)αqA − qB
.

Both profits are decreasing in α when 0 < X < Xα1.

B.3.3 Case qB > αqA

The profit functions of the developers are πA =
(
θ̄ − pA−pB

qA−qB

)
pA, and πB =

(
pA−pB
qA−qB −

pB−X
qB−αqA

)
pB , so that

p∗A =
(qA − qB)

(
θ̄2qA (1− α) +X

)
(4qA − 3qAα− qB)

,

p∗B = (qA − qB)
θ̄ (qB − qAα) + 2X

(4qA − 3qAα− qB)
,

π∗A = (qA − qB)

(
2θ̄qA (1− α) +X

4qA − 3qAα− qB

)2

, and

π∗B = (1− α)
(qA − qB) qA
(qB − αqA)

(
θ̄ (qB − αqA) + 2X

4qA − 3qAα− qB

)2

.

The conditions p∗A >
X
α and pPB < p∗B < pTB hold iff X ≥ 0, and

X < Xα2 = θ̄
(qA − qB) (qB − qAα)αqA

4qAqB − q2
B − 2αq2

A − αqAqB
.

Both profits are decreasing in α when 0 ≤ X < Xα2.

B.4 Stackelberg competition

The only relevant case is qB > αqA. Developer B’s reaction function is

pB (pA) =
(XqA −XqB + pA (qB − αqA))

2qA − 2αqA
. (95)

Substituting this into the profit function of developer A and solving for pA, we obtain

p∗A =
1

2

2θ̄qAα− 2θ̄qA −X
αqA − 2qA + qB

(qA − qB) ,

so that

p∗B =
1

2

(qA − qB)
(
X (qB − 4qA + 3αqA) + θ̄2qA (α− 1) (qB − αqA)

)
(2qA − 2αqA) (qB − 2qA + αqA)

,

π∗A =
1

8
(qA − qB)

(
2θ̄qA(1− α) +X

)2
(2qA − αqA − qB) qA (1− α)

, and

π∗B =
1

16qA

(
2θ̄qA (qB − αqA) (1− α) +X (4qA − 3qAα− qB)

)2
(qA − qB)

(−qB + αqA) (−1 + α) (−2qA + αqA + qB)
2 .

90

The conditions p∗A >
X
α and pPB < p∗B < pTB hold iff X ≥ 0, and

X < XαS = θ̄
2 (qA − qB) (qB − qAα)α(1− α)qA

(8− 7α+ α2)qAqB − (4− 3α)(q2
B + αq2

A)
.

Both profits are higher than under Bertrand competition and decrease in α when 0 ≤ X < XαS .

C Developers implement physical protection

C.1 Indifferent users

As usual, the notation θY Z , where Y and Z can be one of {0, A, P,B, I} implies that the users with θ < θY Z

strictly prefer Y to Z, and the users with θ > θY Z strictly prefer Z to Y . Throughout this appendix, “product

P” refers to the illegal version of product A, and “product I” refers to the illegal version of product B.

As in the basic model, for thresholds not involving the illegal products,

θ0A =
pA
qA
, θ0B =

pB
qB
, θBA =

pA − pB
qA − qB

.

For thresholds involving product P , note that all consumers prefer P to I, and the decision between P and

A is made on the basis of prices alone. The remaining thresholds are

θ0P =
X

qA
, θBP =

X − pB
qA − qB

.

For thresholds involving product I, note that the decision between I and B is made on the basis of prices

alone. The remaining thresholds are

θ0I =
X

qB
, θIA =

pA −X
qA − qB

.

Also recall that the illegal products are available only to the fractions of consumers not controlled by the

corresponding firms.

C.1.1 The price-quality ratio rule

The following general result can be easily shown to hold.

Lemma 20 If there is a good of quality qA available at price pA and a good of quality qB < qA available at

price pB, then a necessary condition exists for consumers to buy good B, namely the price per unit of quality

is strictly lower for the lower quality good, i.e., pB
qB

< pA
qA

.

Proof. The claim directly follows from θBA − θ0B > 0.

This result was implicitly used in previous chapters, and the equilibrium prices complied with it. However,

in this chapter, profit functions are not unimodal, and an analysis of deviations requires the Lemma above

explicitly.

Corollary 4 No consumer with access to P prefers B to P if pB ≥ X qB
qA

.

Corollary 5 No consumer with access to I prefers I to A if pA ≤ X qA
qB

.

91

C.2 Duopoly: general notes

Recall that the physical protection settings imply that every consumer is controlled by firm A with probability

cA, and independently by firm B with probability cB . Thus, four groups of consumers exist.(In all cases, it

is assumed that θ̄ is high enough.)

1. Consumers controlled by both firms, cAcB : These consumers view the market as a standard duopoly,

so that the following applies according to the price-quality ratio rule.

(a) If pBqB < pA
qA

, then the consumers with θ < θ0B use nothing, those with θ0B < θ < θBA buy product

B, and those with θBA < θ < θ̄ buy product A.

(b) If pB
qB
≥ pA

qA
, then the consumers with θ < θ0A use nothing, and those with θ0A < θ < θ̄ buy

product A.

2. Consumers controlled by firm A alone, cA(1 − cB): If pB ≤ X, then product I is irrelevant, and the

outcome is a standard duopoly as in group 1. If pB > X, then these consumers choose between A and

I so that the following applies.

(a) If pA > X qA
qB

, then the consumers with θ < θ0I use nothing, those with θ0I < θ < θIA use product

I, and those with θIA < θ < θ̄ buy product A.

(b) If pA ≤ X qA
qB

, then the consumers with θ < θ0A use nothing, and those with θ0A < θ < θ̄ buy

product A.

3. Consumers controlled by firm B alone, (1 − cA)cB : If pA ≤ X, then product P is irrelevant, and the

outcome is a standard duopoly as in group 1. If pA > X, then these consumers choose between P and

B so that the following applies.

(a) If pB < X qB
qA

, then the consumers with θ < θ0B use nothing, those with θ0B < θ < θBP buy

product B, and those with θBP < θ < θ̄ use product P .

(b) If pB ≥ X qB
qA

, then the consumers with θ < θ0P use nothing, and those with θ0P < θ < θ̄ use

product P .

4. Consumers controlled by neither firm, (1− cA)(1− cB): The outcome in this group is the same as in

group 3 due to the price-quality ratio rule. Namely, all consumers not controlled by firm A have access

to a good of quality qA at a price of no more than X. Then no such consumer will be interested in a

product of quality qB if offered at a price above X qB
qA

< X, so it is irrelevant whether these consumers

are controlled by firm B.

Thus, the last two groups can be united into a single group of those not controlled by A, with the total

measure of cA. Also note that if pA ≤ X, then the outcome is that of a standard duopoly as both illegal

products are dominated by product A.

92

Note that in this model, the duopoly is always viable in the sense that the low-quality developer can

always set a price such that the demand for B is strictly positive, e.g., pB = min{pA,X}qB
2qA

. Therefore,

situations such that developer B is out of the market, e.g., pB ≥ pA, can be neglected except in reaction

functions.

From the above, it follows that every consumer depending on the firms controlling and the relative

position of the prices w.r.t. X, faces one of the following three situations.

• Case I: a standard duopoly, the choice between A at pA and B at pB .

• Case II: the choice between P at X and B at pB .

• Case III: the choice between A at pA and I at X.

The correspondence between these three cases, the consumer groups, and price settings, is the following

(pB < pA assumed).
pA ≤ X pB ≤ X < pA X < pB

cAcB I I I
cA(1− cB) I I III
1− cA I II II47

The approach to equilibrium verification is the following. First, the reaction functions are investigated,

where it is assumed that the other developer’s price satisfies the given constraints, and then it is checked

whether it is optimal for this developer to charge a price in the relevant range. Second, equilibrium prices are

computed from the corresponding first-order conditions, and constraints on parameters are finalized. This

approach is necessary as the profit functions feature discontinuity and non-unimodality.

C.3 Bertrand competition where only A implements protection cA = c

As stated in Chapter 4, we are interested in the subcase pB < X qB
qA

, X < pA.

C.3.1 Reaction function of developer A

Let pB < X qB
qA

. Then developer A’s demand function is described by the following.

1. Case (D): If X < pA ≤ pB + θ̄ (qA − qB), then the situation that we focus on in the main text takes

place,

DA = c
(
θ̄ − θBA

)
.

2. Case (d): If pB
qA
qB

< pA ≤ X, then the outcome is that of an unconstrained duopoly,

DA = θ̄ − θBA.

3. Case (m): If pA ≤ pB qA
qB

, then developer A is unconstrained,

DA = θ̄ − θ0A.

93

Given the range of pB , this demand function is continuous between cases (d) and (m) but not at pA = X

unless c = 1. The resulting profit function πA = pADA is unimodal between (d) and (m), and is discontinuous

at pA = X.

An interior solution in case (D) can occur only if

X < Xd =
θ̄ (qA − qB) qA

2qA − qB
.

(Note, however, that Xd is always larger than the pure Bertrand duopoly price, that is Xd > poA = Xcu.)

In this case, the reaction function and the corresponding profit are given by

rA (pB) =
θ̄ (qA − qB) + pB

2
, πA (pB) =

c
(
θ̄ (qA − qB) + pB

)2
4 (qA − qB)

,

and an interior solution in (D) implies here that the maximum outside (D) is reached at pA = X. Therefore,

the profit above has to be compared with the profit in case (d), which equals

πdA = X

(
θ̄ − X − pB

qA − qB

)
.

While it is possible to make a direct comparison between πA(pB) and πdA and obtain the conditions such

that there is no deviation to (m), the calculation of it would be rather cumbersome, so we postpone it to the

equilibrium analysis. However, it is immediately clear that the protection duopoly profit is higher at X = 0

unless c = 0.

C.3.2 Reaction function of developer B

Let X < pA. Then developer B’s demand function is described by the following.

1. Case (X): If X qB
qA
≤ pB < X, then no user not controlled by A buys B as all such users prefer P ,

DB = c (θBA − θ0B) .

2. Case (D): If pB < X qB
qA

, then the situation that we focus on in the main text takes place,

DB = c (θBA − θ0B) + (1− c) (θBP − θ0B) .

Strictly speaking, this analysis should include situation pB < pA − θ̄(qA − qB), but in equilibrium

pA < θ̄(qA − qB), so this can be neglected.

This demand function is continuous; however, the resulting profit function πB = pBDB is generally

non-unimodal between (X) and (D).

An interior solution in case (D) occurs if pA <
(
1 + 1

c

)
X, in which case the reaction function and the

corresponding profit are given by

rB (pA) =
qB
2qA

(cpA + (1− c)X) , πB (pA) =
qB (cpA + (1− c)X)

2

4qA (qA − qB)
.

However, in (X), where the reaction function is the pure Bertrand reaction function rB (pA) = qB
2qA

pA, the

condition X qB
qA
≤ pB < X means that an interior maximum occurs if 2X < pA < 2 qAqBX, so that πB is

94

not unimodal around pB = X qB
qA

if 2X < pA <
(
1 + 1

c

)
X. If the constraint pB ≤ X is neglected, then

the global maximum of πB is attained in (D) when pA ≤
(

1 + 1√
c

)
X. Then it can be shown that if(

1 + 1√
c

)
X ≤ 2 qAqBX, i.e., if c ≥

(
qB

2qA−qB

)2

, then the condition pA ≤
(

1 + 1√
c

)
X for the global maximum

in (D) is both necessary and sufficient. If c <
(

qB
2qA−qB

)2

, then the global maximum occurs in (D) for

pA ≤ p̄DA , where
(

1 + 1√
c

)
X < p̄DA <

(
1 + 1

c

)
X and

πB
(
p̄DA
)

= πXB
(
p̄DA
)

= cX

(
p̄DA −X
qA − qB

− X

qB

)
,

which is the profit from deviation to pB = X.

C.3.3 Equilibrium calculation

Assuming that all conditions on the prices hold, the equilibrium prices and profits are the following.

p∗A =
2θ̄qA (qA − qB) +X (1− c) qB

4qA − cqB
,

p∗B = qB
2X (1− c) + θ̄c (qA − qB)

4qA − cqB
,

π∗A = c

(
2θ̄qA (qA − qB) + qBX(1− c)

)2
(4qA − qBc)2

(qA − qB)
, and

π∗B = qAqB

(
2X (1− c) + θ̄c (qA − qB)

)2
(4qA − qBc)2

(qA − qB)
.

C.3.4 Derivation of bounds on X and c

All conditions for these prices and profits to be interior local maxima are met if

c
θ̄qA(qA − qB)

2(1 + c)qA − cqB
= Xcl < X < Xcu = 2

θ̄qA(qA − qB)

4qA − qB
,

where X < Xcu follows from p∗A > X, and X > Xcl follows from p∗B < X qB
qA

, with the latter equivalent to

p∗A < X
(
1 + 1

c

)
. (Note that Xcl < Xcu.) It remains to be checked whether these maxima are global, i.e.,

that no developer prefers switching to a price corresponding to another market structure.

Developer A can be shown not to switch to pA = X given pB = p∗B if

X ≤ X+
c =

2θ̄qA (qA − qB)
(
4qA − c(2− c)qB −

√
1− c (4qA − cqB)

)
16q2

A − 8qAqB + (3c− 3c2 + c3) q2
B

,

which is smaller than Xcu when c < 1. It turns out that Xcl Q X+
c iff c R

√
5−1
2 ≈ 0.618034, i.e., the

(sub)case in question cannot occur if c ≤
√

5−1
2 .

As for developer B, cases c ≥
(

qB
2qA−qB

)2

and c <
(

qB
2qA−qB

)2

are distinguished. In the former case, the

condition to check is p∗A ≤ X
(

1 + 1√
c

)
, which is equivalent to

X ≥ X−c = 2

√
cθ̄qA(qA − qB)

(1 +
√
c)(4qA −

√
cqB)

,

which is bigger than Xcl when c < 1. It can be shown that X−c Q X+
c iff c R c, where

c =
1

3

(
4− 8

(
6
√

33− 26
)−1/3

+
(

6
√

33− 26
)1/3

)
≈ 0.704402,

95

so the lower bound on c can be improved to c when c ≥
(

qB
2qA−qB

)2

. In the other case, c <
(

qB
2qA−qB

)2

, a

direct comparison between π∗B and πXB (p∗A) yields a lower bound on X located between Xcl and X−c , which

translates into a lower bound on c located between
√

5−1
2 and c. Note that given the lower bounds on c, case

c ≥
(

qB
2qA−qB

)2

occurs with certainty if qB
qA

is not too high, namely, if qB
qA
≤≈ 0.912622.

C.3.5 The effect of X on c

By the implicit function theorem,

dc

dX
= −

∂2ΠA

∂c∂X
∂2ΠA

∂c∂c

,

so that the sign of ∂c
∂X is the same as the sign of:

∂2Π∗A
∂c∂X

= 2qB
2θ̄qA (qA − qB) (4qA + cqB − 8cqA) +XqB (1− c)

(
(4− 12c)qA + (c+ c2)qB

)
(qA − qB) (4qA − cqB)

3 .

The sign of this expression depends on the sign of (4qA + cqB − 8cqA) and
(
(4− 12c)qA + (c+ c2)qB

)
. As

qB < qA, both of these expressions can be shown to be negative for c ≥ 4
7 ≈ 0.571429. Since it is shown

above that the subcase in question can occur only if c ≥
√

5−1
2 > 4

7 , both
∂2Π∗

A

∂c∂X and dc
dX are negative.

C.3.6 The impact of X on prices and profits

First observe that
dΠ∗

A

dX is clearly positive since
∂Π∗

A

∂c = 0 at the point of optimum. Thus,

dΠ∗A
dX

=
∂Π∗A
∂c

dc

dX
+
∂Π∗A
∂X

=
∂Π∗A
∂X

> 0.

In the case of developer B, the impact of X on developer B’s profit is

dΠ∗B
dX

=
∂Π∗B
∂c

dc

dX
+
∂Π∗B
∂X

.

Since the indirect effect is negative and the direct one is positive, it cannot be told a priori which effect

dominates. The same applies to both equilibrium prices.

C.4 Bertrand competition where both developers implement protection

As stated in Chapter 4, this case occurs if X < pB < pA.

C.4.1 The non-existence of subcase pA ≥ X + θ̄(qA − qB)

In this subcase, only the users controlled by both developers buy any legal products, so that the demands

for the products are constant multiples of the standard duopoly demands, DA = cAcB
(
θ̄ − θBA

)
and DB =

cAcB (θBA − θ0B). Therefore, if the solution is interior, then the equilibrium prices are identical to the

standard duopoly equilibrium prices. In particular,

p∗A = 2θ̄qA
qA − qB
4qA − qB

< θ̄(qA − qB) ≤ X + θ̄(qA − qB),

which is a contradiction. Hence, the solution must be corner with ∂πA

∂pA
< 0 at pA = X + θ̄(qA − qB) + 0.

However, it can be shown that this implies ∂πA

∂pA
< 0 at pA = X + θ̄(qA − qB)− 0 as well (see the analysis of

the profit and reaction functions below), so that pA ≥ X + θ̄(qA − qB) is never optimal.

96

C.4.2 The reaction function of developer A

Let X < pB < qB
qA

(
X + θ̄ (qA − qB)

)
. (The upper limit on pB here follows from pA < X + θ̄(qA − qB) and

the price-quality ratio rule.) Then developer A’s demand function is described by the following.

1. Case (d): If pA ≥ X + θ̄ (qA − qB), then all users of product A are completely controlled,

DA = cAcB
(
θ̄ − θBA

)
.

2. Case (D): If pB
qA
qB

< pA < X + θ̄ (qA − qB), then the situation that we focus on in the main text takes

place,

DA = cAcB
(
θ̄ − θBA

)
+ cA (1− cB)

(
θ̄ − θIA

)
.

3. Case (I): If X qA
qB

< pA ≤ pB qA
qB

, then no one uses B,

DA = cAcB
(
θ̄ − θ0A

)
+ cA (1− cB)

(
θ̄ − θIA

)
.

4. Case (M): If X < pA ≤ X qA
qB

, then no one uses B or I,

DA = cA
(
θ̄ − θ0A

)
.

5. Case (m): if X ≥ pA, then developer A is unconstrained,

DA =
(
θ̄ − θ0A

)
.

Given the range of pB , this demand function is continuous between cases (d) and (M) but not at pA = X

unless cA = 1. The resulting profit function πA = pADA is strictly decreasing in pA in (d), unimodal between

(d) and (M), and is discontinuous at pA = X.

Denote XA = X (1− cB) + θ̄ (qA − qB). For cases (d), (D), (I), and (M), an interior solution in case (D)

can occur only if

X < XD =
θ̄ (qA − qB) qB

2qA − qB
, X < pB < pDB =

qB
2qA − cBqB

XA.

In this case, the reaction function and the corresponding profit are given by

rA (pB) =
XA + cBpB

2
, πA (pB) =

cA
(
XA + cBpB

)2
4 (qA − qB)

.

Now these values have to be compared with the monopoly profit in case (m). Since X < XD implies

X < θ̄qB
2 in the relevant case, the monopoly profit is maximized at the highest pA in the range, i.e.,

πmA = X

(
θ̄ − X

qA

)
.

While it is possible to make a direct comparison between πA(pB) and πmA and obtain the maximal value

X̄(pB) such that there is no deviation to (m), the result is rather cumbersome. However, it is immediately

clear that the duopoly profit is higher at X = 0.

97

C.4.3 The reaction function of developer B

Let X qA
qB

< pA < X + θ̄ (qA − qB). Then developer B’s demand function is described by the following.

1. Case (D): If X < pB < pA
qB
qA

, then the situation that we focus on in the main text takes place,

DB = cAcB (θBA − θ0B) .

2. Case (X): If X qB
qA
≤ pB ≤ X, then no one uses I,

DB = cA (θBA − θ0B) .

3. Case (x): If pB < X qB
qA

, then there are consumers who prefer B to P (cf. the case when only A

implements protection),

DB = cA (θBA − θ0B) + (1− cA) (θBP − θ0B) .

Strictly speaking, this analysis should include situations pB < pA− θ̄(qA−qB) and even pB < X− θ̄(qA−

qB), but in equilibrium X < pA < θ̄(qA − qB), so these can be neglected.

This demand function is continuous between cases (X) and (x) but not at pB = X unless cB = 1. The

resulting profit function πB = pBDB is discontinuous at pB = X and can be non-unimodal between (X) and

(x).

An interior solution in case (D) can occur only if X < XD (same as for developer A), in which case the

reaction function and the corresponding profit have the same form as under a standard duopoly and are

given by

rB (pA) =
qB
qA

pA
2
, πB (pA) = cAcB

p2
AqB

4qA (qA − qB)
.

If the maximum in (D) is interior, then the maximum in (X) must be corner and the profit in (X) is maximized

at pB = X, i.e.,

πXB = cAX

(
pAqB −XqA
(qA − qB)qB

)
.

As for (x), the maximum is interior there if pA < X
(

1 + 1
cA

)
, then πxB = qB(cA(pA−X)+X)2

4qA(qA−qB) . It can be

shown that if pA < X
(

1 + 1
cA

)
and cA > cB , then deviation to (x) from (D) is always profitable (note that

deviation to (X) can be even more profitable). If pA ≥ X
(

1 + 1
cA

)
, then πB strictly increases in pB in (x),

so that the maximal deviation profit is πXB above.

98

C.4.4 Equilibrium calculation

Assuming that all conditions on the prices hold, the equilibrium prices and profits are the following.

p∗A = 2qA
θ̄ (qA − qB) +X (1− cB)

4qA − cBqB
,

p∗B =
θ̄ (qA − qB) +X (1− cB)

4qA − cBqB
qB ,

π∗A = 4cAq
2
A

(
θ̄ (qA − qB) +X (1− cB)

)2
(4qA − qBcB)

2
(qA − qB)

, and

π∗B = cAcBqAqB

(
θ̄ (qA − qB) +X (1− cB)

)2
(4qA − qBcB)

2
(qA − qB)

.

All condition for these prices and profits to be interior local maxima are met if

X < X0 =
θ̄qB(qA − qB)

4qA − qB
.

It remains to check whether these maxima are global, i.e., that no developer prefers switching to a price

corresponding to another market structure. As developer B will always switch to a price below X qB
qA

if

pA < X
(

1 + 1
cA

)
and cA > cB , a necessary condition for no such deviation at pA = p∗A is

X <
2cAqA(qA − qB)θ̄

2(2 + cA + cAcB)qA − (1 + cA)cBqB
,

which is below X0 when cA <
qB

2qA−qB .

As for deviations to p = X by either developer, let δA(X) = π∗A(X)−πmA (X) and δB(X) = π∗B(X)−πXB (X)

be the differences between the duopoly and deviation profits. The functions δi(X) are positive at X = 0

and decreasing in X for 0 < X < X0. If cA is high enough, then it is possible that developer A does not

switch for all applicable X; however, developer B always switches at X = X0, i.e. δB (X0) < 0. From this,

it follows that ∃X, 0 < X < X0, such that the prices and profits above form an equilibrium.

C.4.5 The effect of protection on prices and profits

From the expressions for the equilibrium prices and profits, it is immediately seen that cA has no effect on

prices. By algebraic derivation it can be shown that if X < X0 (and recall that the actual boundary is

X < X0), then both equilibrium prices and the net profit Π∗A = π∗A− h(cA) increase in cB , and that the net

profit Π∗B increases in cA.

C.4.6 The effect of X on cA and cB

Applying the implicit function theorem, we obtain:

∂Π∗A
∂cA

(cA (X) , cB (X) , X) ≡ 0 =⇒ ∂2Π∗A
∂cA∂cA

dcA
dX

+
∂2Π∗A
∂cA∂cB

dcB
dX

+
∂2Π∗A
∂cA∂X

≡ 0,

∂Π∗B
∂cB

(cA (X) , cB (X) , X) ≡ 0 =⇒ ∂2Π∗B
∂cB∂cA

dcA
dX

+
∂2Π∗B
∂cB∂cB

dcB
dX

+
∂2Π∗B
∂cB∂X

≡ 0;

or, in matrix form: (
∂2Π∗

A

∂cA∂cA

∂2Π∗
A

∂cA∂cB
∂2Π∗

B

∂cB∂cA

∂2Π∗
B

∂cB∂cB

)(
dcA
dX
dcB
dX

)
=

(
− ∂2Π∗

A

∂cA∂X

− ∂2Π∗
B

∂cB∂X

)
.

99

For simplicity, denote the first matrix as H; thus, H =

(
∂2Π∗

A

∂cA∂cA

∂2Π∗
A

∂cA∂cB
∂2Π∗

B

∂cB∂cA

∂2Π∗
B

∂cB∂cB

)
. Applying Cramer’s rule:

dcA
dX

=
|HA|
|H|

=
1

|H|

∣∣∣∣∣ − ∂2Π∗
A

∂cA∂X
∂2Π∗

A

∂cA∂cB

− ∂2Π∗
B

∂cB∂X
∂2Π∗

B

∂cB∂cB

∣∣∣∣∣ ,
dcB
dX

=
|HB |
|H|

=
1

|H|

∣∣∣∣∣ ∂2Π∗
A

∂cA∂cA
− ∂2Π∗

A

∂cA∂X
∂2Π∗

B

∂cB∂cA
− ∂2Π∗

B

∂cB∂X

∣∣∣∣∣ .
Differentiating the equilibrium profits yields

∂2Π∗
A

∂cA∂cA
= −h′′ (cA) < 0,

∂2Π∗
A

∂cA∂X
> 0, and

∂2Π∗
A

∂cA∂cB
> 0 for

X < X0, and by our assumptions
∂2Π∗

B

∂cB∂cB
< 0 as well. As for

∂2Π∗
B

∂cB∂cA
,

∂2Π∗B
∂cB∂cA

= qAqB
(
θ̄ (qA − qB) +X (1− cB)

) θ̄ (qA − qB) (4qA + qBcB)−X
(
12cBqA − c2BqB − 4qA − qBcB

)
(4qA − qBcB)

3
(qA − qB)

,

which looks ambiguous, note that
∂2Π∗

B

∂cB∂cA
=

∂2π∗
B

∂cB∂cA
, and

∂2π∗
B

∂cB∂cA
= 1

cA

∂π∗
B

∂cB
; then, F.O.C.

∂Π∗
B

∂cB
= 0 implies

∂π∗
B

∂cB
= h′ (cB), so that

∂2Π∗
B

∂cB∂cA
> 0. Finally, for

∂2Π∗
B

∂cB∂X
,

∂2Π∗B
∂cB∂X

= −2qBqAcA
θ̄ (qA − qB) (4qA(2cB − 1)− qBcB) + (1− cB)X (4qA(3cB − 1)− qBcB(1 + cB))

(4qA − qBcB)
3

(qA − qB)
,

it can be shown that for X < X0 and cB ≤ 1/2,
∂2Π∗

B

∂cB∂X
> 0. While the condition cB ≤ 1/2 cannot be

loosened, this is a typical situation that we expect to occur in equilibrium, in which clearly c∗B < c∗A. Thus,

we postulate c∗B < 1/2 so that
∂2Π∗

B

∂cB∂X
(c∗B) > 0.

Now consider the matrix H and recall that |H| = ∂2π∗
A

∂cA∂cA

∂2π∗
B

∂cB∂cB
− ∂2π∗

A

∂cA∂cB

∂2π∗
B

∂cB∂cA
. The first term is always

positive since
∂2π∗

A

∂cA∂cA
< 0 and

∂2π∗
B

∂cB∂cB
< 0. The second term is also always positive since

∂2π∗
B

∂cB∂cA
> 0 and

∂2π∗
A

∂cA∂cB
> 0. Thus, we make a standard stability assumption here that

∣∣∣ ∂2π∗
i

∂ci∂ci

∣∣∣ > ∣∣∣ ∂2π∗
i

∂ci∂cj

∣∣∣, which ensures

that |H| > 0. Given the above, the determinants |HA| and |HB | are positive, so that dcA
dX > 0 and dcB

dX > 0.

C.4.7 The effect of X on equilibrium prices and profits

As for the prices,

dp∗A
dX

(cA (X) , cB (X) , X) =
∂p∗A
∂cA

dcA
dX

+
∂p∗A
∂cB

dcB
dX

+
∂p∗A
∂X

,

dp∗B
dX

(cA (X) , cB (X) , X) =
∂p∗B
∂cA

dcA
dX

+
∂p∗B
∂cB

dcB
dX

+
∂p∗B
∂X

;

since
∂p∗A
∂cA

=
∂p∗B
∂cA

= 0, and the remaining terms are strictly positive (as is shown above or can be shown by

direct differentiation),
dp∗A
dX > 0 and

dp∗B
dX > 0.

As for the profits,

dΠ∗A
dX

=
∂Π∗A
∂cA

dcA
dX

+
∂Π∗A
∂cB

dcB
dX

+
∂Π∗A
∂X

,

dΠ∗B
dX

=
∂Π∗B
∂cA

dcA
dX

+
∂Π∗B
∂cB

dcB
dX

+
∂Π∗B
∂X

;

by virtue of the envelope theorem,
∂Π∗

A

∂cA
= 0 and

∂Π∗
B

∂cB
= 0, and the remaining terms are again strictly

positive, so that
dΠ∗

A

dX > 0 and
dΠ∗

B

dX > 0.

100

	20110227 JS Intro.pdf
	Essays on Pricing, Product Quality, and Intellectual Property Rights Protection in the Software Market
	Prague, March 2011

	Essays on Pricing, Product Quality, and Intellectual Property Rights Protection in the Software Market

