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Another advantage of a mathematical statement is that it is so definite
that it might be definitely wrong. . . Some verbal statements have not
this merit.

F.L.Richardson (1881-1953)
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1 Introduction

Despite the concerted effort of generations of excellent mathematicians, the
fundamental problems in partial differential equations related to continuum
fluid mechanics remain largely open. Solvability of the Navier-Stokes sys-
tem describing the motion of an incompressible viscous fluid is one in the
sample of millenium problems proposed by Clay Institute, see [3]. In con-
trast with these apparent theoretical difficulties, the Navier-Stokes system
became a well established model serving as a reliable basis of investigation in
continuum fluid mechanics, including the problems involving turbulence phe-
nomena. An alternative approach to problems in fluid mechanics is based
on the concept of weak solutions. As a matter of fact, the balance laws,
expressed in classical fluid mechanics in the form of partial differential equa-
tions, have their origin in integral identities that seem to be much closer
to the modern weak formulation of these problems. Leray [6] constructed
the weak solutions to the incompressible Navier-Stokes system as early as
in 1930, and his “turbulent solutions” are still the only ones available for
investigating large data and/or problems on large time intervals. Recently,
the real breakthrough is the work of Lions citeLI4 who generalized Leray’s
theory to the case of barotropic compressible viscous fluids (see also Vaigant
and Kazhikhov [9]). The quantities playing a crucial role in the description
of density oscillations as the effective viscous flux were identified and used
in combination with a renormalized version of the equation of continuity
to obtain first large data/large time existence results in the framework of
compressible viscous fluids.

The main goal of the this lecture series is present the mathematical theory
of compressible barotropic fluids in the framework of Lions [7], together with
the extensions developed in [4]. We focus on the crucial question of stability
of a family of weak solutions that is the core of the abstract theory, with
implications to numerical analysis and the associated real world applications.
For the sake of clarity of presentation, we discuss first the case, where the
pressure term has sufficient growth for large value of the density yielding
sufficiently strong energy bonds. We also start with the simplest geometry of
the physical space, here represented by a cube, on the boundary of which the
fluid satisfies the slip boundary conditions. As is well-known, such a situation
may be reduced to studying the purely spatially periodic case, where the
additional difficulties connected with the presence of boundary conditions is
entirely eliminated.
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2 Mathematical model

As the main goal of this lecture series is the mathematical theory, we avoid
a detailed derivation of the mathematical model of a compressible viscous
fluid. Remaining on the platform of continuum fluid mechanics, we suppose
that the motion of a compressible barotropic fluid is described by means of
two basic fields :

the mass density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .% = %(t, x),
the velocity field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u = u(t, x),

functions of the time t ∈ R and the spatial position x ∈ R3.

2.1 Mass conservation

Let us recall the classical argument leading to the mathematical formulation
of the physical principle of mass conservation, see Chorin and Marsden [1].
Consider a volume B ⊂ R3 containing a fluid of density %. The change of the
total mass of the fluid contained in B during a time interval [t1, t2], t1 < t2
is given as ∫

B
%(t2, x) dx−

∫
B
%(t1, x) dx.

One of the basic laws of physics incorporated in continuum mechanics as
the principle of mass conservation asserts that mass is neither created nor
destroyed. Accordingly, the change of the fluid mass in B is only because of
the mass flux through the boundary ∂B, here represented by %u · n, where
n denotes the outer normal vector to ∂B:∫

B
%(t2, x) dx−

∫
B
%(t1, x) dx = −

∫ t2

t1

∫
∂B
%(t, x)u(t, x) · n(x) dSx dt. (2.1)

One should remember formula (2.1) since it contains all relevant piece
of information provided by physics. The following discussion is based on
mathematical arguments based on the (unjustified) hypotheses of smoothness
of all field in question. To begin, apply Gauss-Green theorem to rewrite (2.1)
in the form:∫

B
%(t2, x) dx−

∫
B
%(t1, x) dx = −

∫ t2

t1

∫
B

divx

(
%(t, x)u(t, x)

)
dx dt.
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Furthermore, fixing t1 = t and performing the limit t2 → t1 we may use
the mean value theorem to obtain∫

B
∂t%(t, x) dx = lim

t2→t

1

t2 − t

∫
B
%(t2, x) dx−

∫
B
%(t, x) dx (2.2)

= − lim
t2→t

1

t2 − t

∫ t2

t1

∫
B

divx

(
%(t, x)u(t, x)

)
dx dt

= −
∫

B
divx

(
%(t, x)u(t, x)

)
dx.

Finally, as relation (2.2) should hold for any volume element B, we may
infer that

∂t%(t, x) + divx

(
%(t, x)u(t, x)

)
= 0. (2.3)

Relation (2.3) is a first order partial differential equation called equation of
continuity.

2.2 Balance of momentum

Using arguments similar to the preceding part, we derive balance of momen-
tum in the form

∂t

(
%(t, x)u(t, x)

)
+divx

(
%(t, x)u(t, x)⊗u(t, x)

)
= divxT(t, x)+ %(t, x)f(t, x),

(2.4)
or, equivalently (cf. (2.3),

%(t, x)
[
∂tu(t, x) + u(t, x) · ∇xu(t, x)

]
= divxT(t, x) + %(t, x)f(t, x),

where the tensor T is the Cauchy stress and f denotes the (specific) external
force acting on the fluid.

We adopt the standard mathematical definition of fluids in the form of
Stokes’ law

T = S− pI,

where tnS is the viscous stress and p is a scalar function termed pressure.
In addition, we suppose that the viscous stress is a linear function of the
velocity gradient, specifically S obeys Newton’s rheological law

S = S(∇xu) = µ
(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxuI, (2.5)
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with the shear viscosity coefficient µ and the bulk viscosity coefficient η, here
assumed constant, µ > 0, η ≥ 0.

In order to close the system, we suppose the fluid is barotropic, mean-
ing the pressure p is an explicitly given function of the density p = p(%).
Accordingly,

divxT = µ∆u + (λ+ µ)∇xdivxu, µ > 0, λ ≥ −2

3
µ,

and equations (2.3), (2.4) can be written in a concise form as

Navier-Stokes system

∂t%+ divx(%u) = 0, (2.6)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = µ∆u + (λ+ µ)∇xdivxu + %f . (2.7)

The system of equations (2.6), (2.7) should be compared with a “more
famous” incompressible Navier-Stokes system, where the density is constant,
say % ≡ 1, while (2.6), (2.7) “reduces” to

divxu = 0, (2.8)

∂tu + divx(u⊗ u) +∇xp = µ∆u + f . (2.9)

Unlike in (2.7), the pressure p in (2.9) is an unknown function determined
(implicitly) by the fluid motion! The pressure in the incompressible Navier-
Stokes system has non-local character and may depend on the far field be-
havior of the fluid system.

2.3 Spatial domain and boundary conditions

In the real world applications, the fluid is confined to a bounded spatial do-
main Ω ⊂ R3. The presence of the physical boundary ∂Ω and the associated
problem of fluid-structure interaction represent a source of substantial diffi-
culties in the mathematical analysis of fluids in motion. In order to avoid
technicalities, we suppose that the motion is space-periodic, specifically,

%(t, x) = %(t, x+ a), u(t, x) = u(t, x+ a) for all t, x,
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where the period vector a ∈ R3 is given. Equivalently, we may assume that
Ω is a flat torus,

Ω = [0, a1]|{0,a1} × [0, a2]|{0,a2} × [0, a3]|{0,a3}.

The space-periodic boundary conditions have a nice physical interpreta-
tion in fluid mechanics, see Ebin [2]. Indeed, if we restrict ourselves to the
classes of functions defined on the torus Ω and satisfying the extra geometric
restrictions:

%(t, x) = %(t,−x), ui(t, ·, xi, ·) = −ui(t, ·,−xi, ·), i = 1, 2, 3,

ui(t, ·, xj, ·) = ui(t, ·,−xj, ·) for i 6= j,

and, similarly,

fi(t, ·, xi, ·) = −fi(t, ·,−xi, ·), fi(t, ·, xj, ·) = fi(t, ·,−xj, ·) for i 6= j,

we can check that

• the equations (2.6), (2.7) are invariant with respect to the above trans-
formations;

• the velocity field u satisfies the so-called complete slip conditions

u · n = 0, [Sn]× n = 0 (2.10)

on the boundary of the spatial block [0, a1]× [0, a2]× [0, a3].

We remark that the most commonly used boundary conditions for viscous
fluids confined to a general spatial domain Ω (not necessarily a flat torus)
are the no-slip

u|∂Ω = 0.

As a matter of fact, the problem of the choice of correct boundary conditions
in the real world applications is rather complex, some parts of the boundaries
may consist of a different fluid in motion, or the fluid domain is not a priori
known (free boundary problems). The interested reader may consult Priezjev
and Troian [8] for relevant discussion.
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2.4 Initial conditions

Given the initial state at a reference time t0, say t0 = 0, the time evolution of
the fluid is determined as a solution of the Navier-Stokes system (2.6), (2.7).
It is convenient to introduce the initial density

%(0, x) = %0(x), x ∈ Ω, (2.11)

together with the initial distribution of the momentum,

(%u)(0, x) = (%u)0(x), x ∈ Ω, (2.12)

as, strictly speaking, the momentum balance (2.7) is an evolutionary equation
for %u rather than u. Such a difference will become clear in the so-called weak
formulation of the problem discussed in the forthcoming section.

3 Weak solutions

A vast class of non-linear evolutionary problems arising in mathematical
fluid mechanics is not known to admit classical (differentiable, smooth) solu-
tions for all choices of data and on an arbitrary time interval. On the other
hand, most of the real world problems call for solutions defined in-the-large
approached in the numerical simulations. In order to perform a rigorous
analysis, we have to introduce a concept of generalized or weak solutions,
for which derivatives are interpreted in the sense of distributions. It rn rep-
resented by viscosity should provide a strong regularizing effect. Another
motivation, at least in the case of the compressible Navier-Stokes system
(2.6), (2.7), is the possibility to study the fluid dynamics emanating from
irregular initial state, for instance, the density %0 may not be continuous.
As shown by Hoff [5], the singularities incorporated initially will “survive”
in the system at any time; thus the weak solutions are necessary in order to
describe the dynamics.

3.1 Equation of continuity - weak formulation

We consider equation (2.6) on the space-time cylinder (0, T ) × Ω, where
Ω is the flat torus introduced in Section 2.3. Multiplying (2.6) on ϕ ∈
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C∞c ((0, T ) × Ω), integrating the resulting expression over (0, T ) × Ω, and
performing by-parts integration, we obtain∫ T

0

∫
Ω

(
%(t, x)∂tϕ(t, x) + %(t, x)u(t, x) · ∇xϕ(t, x)

)
dx dt = 0. (3.1)

Definition 3.1 We say that a pair of functions %, u is a weak solution
to equation (2.6) in the space-time cylinder (0, T )×Ω if %, %u are locally
integrable in (0, T )× Ω and the integral identity (3.1) holds for any test
function ϕ ∈ C∞c ((0, T )× Ω).

3.1.1 Weak-strong compatibility

It is easy to see that any classical (smooth) solution of equation (2.6) is also a
weak solution. Similarly, any weak solution that is continuously differentiable
satisfies (2.6) pointwise. Such a property is called weak-strong compatibility.

3.1.2 Weak continuity

Up to now, we have left apart the problem of satisfaction of the initial con-
dition (2.11). Obviously, some kind of weak continuity is needed for (2.11)
to make sense. To this end, we make an extra hypothesis, namely,

%u ∈ L1(0, T ;L1(Ω;R3)). (3.2)

Taking

ϕ(t, x) = ψ(t)φ(x), ψ ∈ C∞c (0, T ), φ ∈ C∞c (Ω)

as a test function in (3.1) we may infer, by virtue of (3.2), that the function

t 7→
∫
Ω
%(t, x)φ(x) dx is absolutely continuous in [0, T ] (3.3)

for any φ ∈ C∞c (Ω). In particular, the initial condition (2.11) may be satisfied
in the sense that

lim
t→0+

∫
Ω
%(t, x)φ(x) dx =

∫
Ω
%0(x)φ(x) dx for any φ ∈ C∞c (Ω).
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Now, take

ϕε(t, x) = ψε(t)ϕ(t, x), ϕ ∈ C∞c ([0, T ]× Ω),

where ψε ∈ C∞c (0, τ),

0 ≤ ψε ≤ 1, ψε ↗ 1[0,τ ] as ε→ 0.

Taking ϕε as a test function in (3.1) and letting ε → 0, we conclude,
making use of (3.3), that∫

Ω
%(τ, x)ϕ(τ, x) dx−

∫
Ω
%0(x)ϕ(0, x) dx (3.4)

=
∫ τ

0

∫
Ω

(
%(t, x)∂tϕ(t, x) + %(t, x)u(t, x) · ∇xϕ(t, x)

)
dx dt

for any τ ∈ [0, T ] and any ϕ ∈ C∞c ([0, T ]× Ω).
Formula (3.4) can be alternatively used a definition of weak solution to

problem (2.6), (2.11). It is interesting to compare (3.4) with the original
integral formulation of the principle of mass conservation stated in (2.1). To
this end, we take

ϕε(t, x) = φε(x),

with φε ∈ C∞c (B) such that

0 ≤ φε ≤ 1, φε ↗ 1B as ε→ 0.

It is easy to see that∫
Ω
%(τ, x)ϕε(τ, x) dx−

∫
Ω
%0(x)ϕε(0, x) dx→

∫
B
%(τ, x) dx−

∫
B
%0(x) dx as ε→ 0,

which coincides with the expression on the left-hand side of (2.1). Conse-
quently, the right-hand side of (3.4) must posses a limit and we set∫ τ

0

∫
Ω
%(t, x)u(t, x) · ∇xφε(x) dx dt→ −

∫ τ

0

∫
∂B
%(t, x)u(t, x) · n dSx dt.

In other words, the weak solutions possess a normal trace on the boundary
of the cylinder (0, τ)×B that satisfies (2.1), see Chen and Frid [?] for more
elaborate treatment of the normal traces of solutions to conservation laws.
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3.1.3 Total mass conservation

Taking ϕ = 1 for t ∈ [0, τ ] in (3.4) we obtain∫
Ω
%(τ, x) dx =

∫
Ω
%0(x) dx = M0 for any τ ≥ 0, (3.5)

meaning, the total mass M0 of the fluid is a constant of motion.

3.2 Balance of momentum - weak formulation

Similarly to the preceding part, we introduce a weak formulation of the bal-
ance of momentum (2.7):

Definition 3.2 The functions %, u represent a weak solution to the mo-
mentum equation (2.7) in the set (0, T )× Ω if the integral identity∫ T

0

∫
Ω

(
(%u)(t, x)∂tϕ(t, x) + (%u⊗ u)(t, x) : ∇xϕ(t, x)

+p(%)(t, x)divxϕ(t, x)
)

dx dt (3.6)

=
∫ T

0

∫
Ω

(
µ∇xu(t, x) : ∇xϕ(t, x)

+(λ+ µ)divxu(t, x)divxϕ(t, x)− %(t, x)f(t, x) · ϕ(t, x)
)

dx dt

is satisfied for any test function ϕ ∈ C∞c ((0, T )× Ω;R3).

Of course, we have tacitly assume that all quantities appearing in (3.6)
are at least locally integrable in (0, T )× Ω.
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