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Introduction

Let  C R3 be a bounded domain with smooth boundary 0. In the present paper we
construct a method for the approximate solution of the nonstationary Navier-Stokes equations
for incompressible fluid flow contained in €2 for 0 < ¢ < T'. The approach is based on a coupling
of the Lagrangian and the Eulerian representation of the fluid.

The Lagrangian representation of stationary fluid flow is given by a function
t — x(t) =: X(t, o) solving the autonomous system

a(t) =v(z(),  2(0) =, (1)

where 7p € Q and v :  — R3 is a continuous velocity field. This function represents the
trajectory of a particle of the fluid, which at initial time ¢ = 0 is located in z(. The initial value
problem (1) has a uniquely determined global solution if we assume v € C’éip (Q),ie. visa
lipschitz continuous function with compact support in €.

Due to the uniqueness of the solution the set of mappings {X(¢,-) : Q — Q|t € R} de-
fines a commutative group of C'' — diffeomorphisms in the closure 2 with the inverse mapping
X(t,-)~t = X(—t,-). Moreover, if in addition we require V - v = 0 in 2, then from Liouville’s
differential equation 0;det VX (t, ) = det VX(t, ) Vx - v(X(¢t,z)) = 0 we obtain the
identity det VX (¢, x) = det VX(0,2) = det Vo = 1. This property of the mappings X (¢, -)
means the conservation of measure. As a consequence, for v € LP(€2), 1 < p < oo, we find
[|lo(X (¢, )|, = ||v||p, where || - ||, denotes the norm in LP(€2) ([2]).

Besides the representation of steady flow by the trajectories ¢t — z(t) = X (¢, ), for non-
stationary flow we use the Eulerian representation in form of the nonlinear Navier-Stokes equa-
tions concerning the unknown velocity field (¢, ©) — v(t, ) = (v1(t, z),vo(t, ), v3(t, T))
and an unknown pressure function (¢, x) — p(t, z) satisfying

ov—vAv+v-Vo+Vp=f in (0,7T) x Q,
V-u=0 in (0,T)xQ, @)
Vo =0,  vfe=o =10o.

The constant v > 0 (kinematic viscosity), the external force density f, and the initial velocity
Vg are given data.

Results
Due to the strong nonlinearity of the convective term the system (2) does not allow a global

unique solution. Since the convective term v(t, z) - Vu(t, x) arises from a material derivative
we use material differences for approximation and replace the convective term by

2i€ {U(t, Xs<€7 ZL‘)) - U(t7 Xs(—&f, CL‘))}
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It can be shown ([1]) that this term tends to v(¢,z) - Vu(t,x) as ¢ — 0 if v is divergence free
and sufficiently smooth.

Now assume 0 < T'€ R, N € N(N > 2), ¢ := %, ty = ke. Then for t € [tg, txi1) We
can replace the nonlinear term v - Vv as follows:

1
o(t,2)- Volta) ~ o (v(t, X)) — vt X,;l)) —: LEu(t).
€
Here X := Xy(e, x), where Xy (¢, x) denotes the solution of

(t) = vi(x(t)) = v(ts, x(t)), z(0) = x¢.

The resulting discontinuity caused by the piecewise constant interpolation above can be
avoided using piecewise linear interpolation as follows: For ¢ € [ty t;11] replace the nonlinear
term v - Vo by
t— 1t

t —t
Lho(t) + 2 pETy() = ZFo(1).

v(t,z) - Vo(t,z) ~ 6

This leads to the following regularized piecewise linear Navier-Stokes system:

ov—vAv+ Zv+Vp = f in Qp,

V-v = 0 in Qr, (3)
Ylaq 0,
U‘tgo Vo -

Here for (¢,2) € [ty tpp] X Q, k=0,1,...,N — 1 we use Z.v(t,z) := ZFv(t, ).

If H™(2) denotes the usual Sobolev space of functions with weak derivatives up to and

including the order m in L*(Q), and if H°(Q) := C5°, () ', H'(Q) := ngU(Q)”V'” denote

the closure of divergence-free Cj°-vector functions having compact support in 2 with respect
to the L2- and the H'—norm, respectively, then our main result reads as follows:

Theorem. Let vy € H3(Q), f € L*(0, T, H'(2)). Then there exists a uniquely determined
solution v € C'([0, T], H*(Q)NH'(Q)) with dyv € C([0, T], H°(£2)) and a uniquely determined
function Vp € C([0,T], L*(Q)) of (3). The solution satisfies for all ¢ € [0, T the energy
equation

t

o) + 20 / V()| Pdr = [Jool? + / (f(r), v(r))dr.
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