REDUCTION THEOREMS FOR OPERATORS ON THE CONES OF
MONOTONE FUNCTIONS

AMIRAN GOGATISHVILI AND VLADIMIR D. STEPANOV

ABSTRACT. For a quasilinear operator on the semiaxis a reduction theorem is proved on the
cones of monotone functions in LP — L7 setting for 0 < g < 00,1 < p < 00. Thecase 0 < p < 1is
also studied for operators with additional properties. In particular, we obtain critera for three-
weight inequalities for the Hardy-type operators with Oinarov’ kernel on monotone functions
in the case 0 < g <p < 1.

1. INTRODUCTION

Let Ry := [0,00). Denote 9M™ the set of all non-negative measurable functions on R, and
M- Mt (M € MT) the subset of all non-increasing (non-decreasing) functions. For the
last two decades the weighted norm LP — L9 inequalities have extensively been studied. In
particular, much attention was paid to the inequalities restricted to the cones of monotone
functions, see for instance [1], [21], [25], [26], [6], [12], [22], survey [5], the monographs [15],
[16] and references given there. At the initial stage the main tool was the Sawyer duality
principle [21] (see also [23], [24]), which allowed to reduce an L” — L? inequality for monotone
functions with 1 < ¢ < 00,0 < p < o0 to a more menageable inequality for arbitrary non-
negative functions. The case p < ¢,0 < p <1 was alternatively characterized in [25], [26], [6],
[3]. Later on some direct reduction theorems were found [9], [10] [4] involving the supremum
operators which work for the case 0 < g <p < 1.

Let T : MM — 9T be a positive quasilinear operator such that

(i) T(Af) = AT f for all A > 0 and f € MT,
(i) T(f+g) <c(Tf+Tg) for all f,g € M with a constant ¢ > 0 independent on f and
9,
(iii) Tf(z) < T'g(zx) for almost every x € R, if f(z) < g(x) for almost every = € R with
a constant ¢ > 0 independent on f and g.

Let v and w be weights, that is non-negative locally integrable functions on R, . The first
our result is a reduction of the inequality

(1.1) ( | (Tf(t))qw(t)dt); <c ( / oo(f(t))%(t)dt); fem!
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to a similar one on 9™ in the case 0 < ¢ < 00,1 < p < oo (see Teorems 2.1-2.4). When
0<p<q<o0,0<p<1wesupplement these results in Section 3 by an extension of [3] and
[26].

It is well known that the case 0 < ¢ < p < 1 is the most difficult for a characterization of
inequalities like (1.1) (see [2], [4], [5], [9], [7] [11], [13], [22]). We study this case in Section 4
including the three-weight inequality of the form

(12) ([ f(t)u(t)dt)qw@)dx)‘l’ <o/ m(f(t))pv@)dt)’l’

for all f € 9! and give three alternative reductions and a criterion (see Theorem 4.1) and
section 5 contains a characterization of (1.2) for 0 < p,¢ < oo (see Theorems 5.1 and 5.3)
Also we study the inequality

(1.3) (/OOO (/Oxk(x,t)f(t)u(t)dt)qw(:c)dx>(11 <c (/Ooo(f@))pv(t)dt)'l’ fem,

where k(z,t) > 0is Oinarov’s kernel and give a full description for 0 < p, ¢ < oo (see Theorems
4.5 and 5.7).

We use signs := and =: for determining new quantities and 7Z for the set of all integers. For
positive functionals F' and G we write F' < G, if F' < ¢G with some positive constant ¢, which
depends only on irrelevant parameters. F' ~ G means FF < G < F or F = ¢G. xg denotes
the characteristic function (indicator) of a set E. Uncertainties of the form 0 - co, 2 and 2
are taken to be zero. We use notations C' or C' with lower indices for the constants (possibly
different in different occasions) in the inequalities like (1.1). O stands for the end of proof.

2. QUASILINEAR OPERATORS

Put V(t) := ft

o v and denote 1 the function on R, identically equal to 1.

Theorem 2.1. Let 0 < g < 00,1 < p < 00 and let T : MT — M™ be a positive quasilinear
operator, satisfying (1)-(iii). Then the inequality (1.1) holds iff the following two inequalities
are valid:

s (L)) () e

and

(2.2) (/Ooo(ﬂ)qw)égc:(/ooov);.

Proof. Let 0 < ¢ < oo. Necessity. Let h € 9T be integrable on [z, 00) for all 2 > 0. Then
f(z) = fxoo h € M' and by (1.1) and Hardy’s inequality we have

(L CU)) < ol (o)
<o)

(2.2) follows from (1.1) with f = 1.
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Sufficiency. Suppose that V(oo) = co and f € M. Then
_f@)Viz) _ * v
o) =150 — (7 55) fave)

IN

Applying (iii) and (2.1) with

: v(t)
h(t) =
0=([ )7
and applying Hardy’s inequality, we find

1

() < o([F([r) somy

1

< C(/Ooofpv)p.

If V(o0) < oo, then by Hélder’s inequality

AN
<

B 11 . V(x)
10 = i~ v OV @)+ g 1@

< ([ i) [ ros Ve

= (/w (/ ; ) V2 >) (fV/f«x)v)/ = [

Applying (i), (ii), (2.1), (2.2) and Hardy’s inequality, we obtain

([ = ([ (8w os( [
<e(([ (s )
< C( /O h fpv)p.

The case ¢ = oo is treated similarly.

To study the case p = 1 we suppose that an operator T : Mt — IMT satisfies the following

axiom:

(iv) If {f,} c M and f.(z) T f(x) € M for almost every z € R, then T'f,(x) T Tf(z)

for almost every x € R,.
We also need the following simple case of ([23], Lemma 1.2).

Lemma 2.2. Let f € ML, Then there exist the sequence of non-negative finitely supported

integmble functions {h,} C 9T such, that the functions

(B[ el ()i

)é

f hn(s)ds are increasing with respect ton for any x > 0 and f(x) = lim f hon(

for almost all x > 0.

n—oo
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Theorem 2.3. Let 0 < g < oo,p=1 andlet T : MT — IM™ be a positive quasilinear operator,
satisfying (1)-(iv). Then the inequality (1.1) holds iff the inequality (2.1) is valid.

Proof. The necessity is obvious. For sufficiency we suppose that f € 9! and by Lemma 2.2
there exists {h, } € L'(R;) such that

) = [ " haly)dy T f(@)

Then by (i)-(iv) and Fatou’s lemma

(o) = ([ (mre)s)

Analogously we reduce the inequality for non-decresing functions of the form

23 ( | (Tf(t))qw(t)dt) "<c ( / Oo(f(t))pv@)dt); feat

provided the axiom (iv) is replaced by

(iv') If {f,} € M and f,(x) T f(z) € M for almost every z € Ry, then T'f,(z) T Tf(z)
for almost every x € R.

Put Vi(t) := [~ v.

Theorem 2.4. Let 0 < g < 00,1 < p < 00 and let T : MT — M™ be a positive quasilinear
operator, satisfying (1)-(iii). Then the inequality (2.3) holds iff (2.2) and the inequalitiy

(2.4) (/OOO(T(/;}Q)qw);gC’(/OOOhPVfUlp);,hezm+

are valid.

Theorem 2.5. Let 0 < g < oo,p =1 and let T : MT — IM™ be a positive quasilinear operator,
satisfying (1)-(iii) and (iv’). Then the inequality (2.3) holds iff the inequalities (2.4) and (2.2)
are valid.
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3. THE CASE 0 < p < g < 0
Let f € M-, Then there exist {z,} C R, such that

Z 27" X[0,0n] (x)
= > 27" (@)

N:Tp >x

Y ge)e

(3.1) ::/[ )h(s)ds,

where d;(s) is the Dirac delta-function at a point ¢. Observe that

(3.2) <Z2 X[0.00] (2 > 22 "Xio.za] (), T > 0.

Theorem 3.1. Let 0 < p < g < oo and let T : MT — MM be a positive quasilinear operator,
satisfying (1)-(iil), such that

(3.3) T (Z fn> < (Z [Tfn]p> p

for any f, > 0. Then the inequality (1.1) is equivalent to the wvalidity one of the following

condtions:
P

(3.4) ( [T (] sy h<s>ds)g w(x)dx) cop [Twvnemr
o[ ) e
6o ([ [y vwator 4] stone)

(3.5) ( /0 ) :i}ilg Txp0,5(2) f (S)} q w(flf)dfv)

Q3

gCZj/ hV, h € M,
0

or

(3.7) D :=sup (/ [TX(0.4 (ﬁ)}qw(x)dx) ! V*%(t) < 00.
t>0 0

Moreover,

(38) C%CZZD%CE),:C;L.

Proof. (3.5)<(3.6) follows by Lemma 2.2 with equality C3 = Cy. (3.5)=(3.7) follows by
applying (3.5) to a test function fi(s) := xpg(s), ¢ > 0. Similarly, we obtain (1.1)=(3.7).
From the properties (i)-(iii) we find, that for all s >0

Tf(z) =2 T(xp.sf)(x) = Txp.s(2)f(s)
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and (1.1)=-(3.5) follows. Let

k(z,s) == [Tx,()]"

and
Kh(z) := / k(x,s)h(s)ds.
0
Then (3.4) is equivalent to the boundedness K : Li, — L and

Cy = HKII = D"

LP

Let us show that (3.4)= (1.1). It follows from (3.2) and (3.3), that
(777) @) ~ (7 (Z 2”><[o,xn]<a:>>; (x)

T (Z 277 Xo.eu] <w>> ()

< <22 [TX (0,00 (2 )]”)

Observe that (1.1) is equivalent to

(/OOO (Tfé)%)z gcp/:ofv, femt,

Now, using (3.2), we find

Q

RS

q

P

(/OOO (Tf;>qw)q < / <22 [T X0, (2 )]p>pw(x)dx
- ( [ ([ mroaer ioas) w(x)@;) E
Cy /0 e > 27V (w,)

n

I3
SIS

IN

Q

Consequently, C' < C5 and (3.8) follows.

Similarly, we characterize the case of non-decreasing functions.

Theorem 3.2. Let 0 <p < ¢ < oo and let T : MT — M be a positive quasilinear operator,
satisfying (1)-(iii) and (3.3). Then the inequality (2.3) is equivalent to one of the following
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conditions:
P

(39) ( [ ([ @l nss) % w(x)dx) sop [T e

(3.10) (/OOO [supTX[s,oo)(x)f(s)]qw(x)dx); < (C4 (/Ooo fpv>;, femt,

s>0

(3.11) </ [sup (TX[s,oo)(x))p/ h] ! w(x)dx> < Cf/ RV, h e M*,
0 s>0 0 0
(3.12) D, :=sup (/ [TX[t’OO)(x)}qw(ZL')dx) ! Vi 7 (t) < o0.
t>0 0
Moreover,

Now we study the converse inequality

(3.14) (/Oooqufg()(/om(Tf)%);, fem!

Put W(t) == [Jw, W.(t):= [~ w.

Theorem 3.3. Let 0 < p < g < oo and let T : MT — MM be a positive quasilinear operator,
satisfying (1)-(iil), such that

(3.15) (Z [Tfn]q> q <T (Z fn>

for any f, > 0. Then the inequality (3.14) is equivalent to the validity of the inequality

31o) [T <y ( | ( | v <x>]”h<s>ds) |

v(:z)d:v) , hemt,

Q

or

(3.17) D := sup W%(t) (/ [T)([M(x)}pv(x)da:) " <.
t>0 0

Moreover,

(3.18) C~Cy=2.

Proof. The implication (3.14)=-(3.17) is clear. Let us show (3.17)=-(3.16). By Minkowskii’s
inequality we have

/ooohW = ¥ /OOO ( /0 i [TX[o,m)]”v(x)dx)gh(t)dt

D1 ( /0 h v(x) < /0 h [Tx0,9(2)]* h(t)dt) : dx>

q
P

IN
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Now, (3.14) is equivalent to

(3.19) /Ooofwgc*(/ooo(Tfi)pv)Z, fem!

Using (3.16), (3.1), (3.2) and (3.15), we write

[ [

[\
S2
VR
c\g

hSESY

IA
$2

Q Q
2 Q
TN
0\8 O\
8
~
=3 ~
Q= /\
~—
3
=~ M
N—— l\I‘D |
ha I3
=
=
.
N~
Ql
=
=
=
=
Y
s
SIS

and (3.18) follows. O

Similarly we characterize the inequality

(3.20) (/Oooquygc*(/ooo(Tf)pv);, fem

Theorem 3.4. Let 0 < p < g < oo and let T : MT — M be a positive quasilinear operator,
satisfying (i)-(ili) and (3.15). Then the inequality (3.20) is valid iff

q

(3.21) /OOO W, < CY (/OOO ([TXs.00) (x)]”h(s)dsﬁ w(:n)d:v) " hemt

or

(3.22) D, = sup W/ (1) (/ [Tx[mo)(x)]pv(x)dx) " <.
t>0 0

Moreover,

(3.23) CrCy=1D,.
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Remark 3.5. Let T' be an integral operator
(3.21) Tf(a) = [ b))y
0

with a non-negative kernel. Then the condition (3.3) is valid for all p € (0, 1] and by Theorems
3.1 and 3.2 we obtain ([26], Theorem 4.1), ([18], Theorem 2.1 (a)) and ([3], Theorem 1).
Analogously, the condition (3.15) holds for all ¢ > 1 and by Theorems 3.3 and 3.4 we obtain
an extension of ([26], Theorem 4.2) ([18], Theorem 2.1 (b)) for a larger interval.

4. THE CASE 0 <g<p<1

Let u, v and w be weights. Denote V(¢ fo v, W(t fo w,U(y,z) := [’ u. For simplicity
we supposethat 0<V(t) <o0,0< W( ) < oo for allt>0and V(00) = 00, W(00) = 0.

Theorem 4.1. Let 0 < g <p < 1,1/r:=1/q— 1/p. The following are equivalent:

W (L o) e
(42) ( [ ([ ana)

43) ( [ (s [ h)zw(:c)d:c>g <o [Tw e
@ ([ o)) ze([ ) rom

P

w(x)dx) §C§/ RV, h € M+,
0

Th+1 5 r
(4.5) B" = supz (/ Uq(xk+1,y)w(y)dy> Ve (2g41) < 00.
(w1} kez \Vaw
Moreover,
(46) Cl CQ 03 04 ~ B.

Proof. Observe first, that (4.4)<(4.5) follows from ([27], Theorem 4.4). (4.4)=-(4.3) is obvious
and (4.3)=(4.4) follows by applying Lemma 2.2 and Fatou’s lemma. For any f € 9t

/ fu > sup fu > sup U(y, ) f(y).

Y2z Jx y=x

Hence, (4.1)=(4.4). The inequality (4.1) is equivalent to

w ([ sa([ ) e

Let f(x f h. Then by Minkowskii’s inequality

/x Fru— /:o (/OO h); w(z)dz < (/oo Up(y,x)h(y)dy)'l’

and (4.2)=-(4.1) follows by Lemma 2.2.
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Thus, the only (4.3)=-(4.2) remains to prove. To this end let us denote the left hand sides

of (4.2) and (4.3) as As and B4, respectively. Suppose, that (4.3) is true and denote {z,}
such a sequence, that W(z,) = 2",n € Z. Put A,, := [z, Z41). Then

q

4= S ([ e ame) v
([ o)
- ([ rmnon)

- X i / Up<y,acn>h<y>dy)Z

B

Q

2
™
3
M 1
\ B
@
:ae
&
—
LS}

B

Applying well known equivalence

(4.8) Z " (Z ) ~y 2%

=n n

valid for any sequence {a,} of non-negative numbers and s > 0, we obtain

g

(19) <y ( [ v (e (s)y )

By Jensen’s inequality and (4.8)

0o i—1 p »
n i=n+1 \j=n i
0 i—1 %
< Do YD U (g, ay) / h(y)dy>
n i=n+1 j=n A
= Z 2" Z UP (211, 75) / h(y)dy)
n j=n Tj+1

(4.10)

X
)

3
VR
=
N

3
x
B
3
N~—
8
>=
—~
s
QL
Nd
~
LSl
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Similarly, for the constant B we have

Here we applied >, 2" (sup;s, a;)° ~

o= | (e [0)

- 3, (e >/fh)

Q

Y>Tn

= 22” sup sup UP(y, x,

i>n yeA;

Q

2
[\
3
w
jan
o}
Q
=
)
3
@\8
>

(
(
(e
2
2
(¢

= B1 + Bg.

Suppose, that (4.3) holds. Then

(4.11)

By (4.10)

(4.12)

By Holder’s inequality

A

~
~

IN

IN

Bi<<0§</ hv)p, i=1,2.
0

A2<<B2<<C§</ hV)
0

n

n

(Z 2% (ys;g U(y, )V (9)

q

D1 </0th)p

22" sup sup UP( y,xl)/

oo

Yy

hSIS

)

q
P

22” sup UP(y, x,) h)p
y

)

w(z)dx

w(z)dx

h

> (/. U2V )V )

e (aperner-io) ([ )

11

>, 2", valid for any sequence a, > 0 and s > 0.
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It follows from (4.11), that
TN N
(4.13) 22” (sup Up(y,xn)/ h) < ¢4 (/ hV) :
n yEAR Yy 0

Let H, : L,[A,] — L*®[A,] be operator of the form

Tp41
Hoh(y) == UP(y, 2) / h.
Y
Then

dn = HHnHL\I/[An]—»LOO[An] = Sup Up(y,l’n)v_l(y)
yGAn

Let h, € LL,[A,] be such that

yEA, 2

d,
sup UP(y, 2,)V "1 (y) > / BV,
An

Then by (4.13)

g

5,2 (s, U7l [ 1)’

C§{ > sup 7
()’
> 2mak (supyeAn UP(y, x,) fyx"“ h) g
> sup q
h= anhn P
ol (S0 [, 1)
> 20k (a [y, hV)’
> sup - = DY,

h=%,, anhn <Zn tn [a, hV) E

Hence, D <« (5 and

Ay < D (/ hv)p < ¢4 (/ hV)p.
0 0
This and (4.12) imply (4.3)=(4.2).
Symmetric version of the previous theorem is the following.

Theorem 4.2. Let 0 < g < p < 1. The following are equivalent:

(4.14) </OOO (/Oxfu>qw(x)dx>§§01 (/Ooofpvy, fem

P

( [/ Up<w,y>h<y>dy)Pw<x>dx> <cy [Twv e,

0 0 0

</ (sup Up(x,y)/ h)pw(x)da:> < _3{’/ hV,, h € M+,
0 \0<y<w 0 0

Q3
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(/000 <O§£IU(%y)f(y)>qw(:c)d:c> e (/OOO f%)p e

B :=sup » (/xk“ Uq(y,xk)w(y)dy) 5 Vi ? (ax) < oo,

{oa} ez \Jan

=
=

Moreover,
01%62%03204%1@.
Remark 4.3. The result of Theorem 4.2 supplements [12].

Definition 4.4. A measurable function k(x,y) > 0 on {(z,y) : > y > 0}, we name Oinarov
kernel, k(z,y) € O, if there exist a constant D > 1, independent of z,y and z such, that

D7 (k(x, 2) + k(2,9)) < k(z,y) < D (k(z, 2) + k(z,y))
forallz > 2>y > 0.

Let k(x,z) > 0 be a measurable kernel. Put
y
K(z,y) = / k(z, 2)u(z)dz.
0

Theorem 4.5. Let 0 < ¢ < p < 1,1/r := 1/q — 1/p. Let k(z,y) be a continuous Oinarov
kernel. The following inequalities are equivalent:

as ([7(/ ’CW,y)f(y)u(y)dy)qw(mm)‘? o[ fpv)’l’ fem,
(4.16) (/000 (/Oz KP?(z,y)h(y)dy + KP(z, x) /:O h(y)dy) : w(m)dm) %

SC§/ RV, h € M,
0

(4.17) (/ (Sup Kp(x,y)/ h)pw(x)dx> §C§/ RV, h € M+,
0 0<y<z y 0

(4.18) (/OOO (Oilyus)mK(a:,y)f(y))qw(x)dx)le < (/OOO fpv) " fem,

Tk+1 2 ,

(4.19) B" .= supz ( Kq(y,xk)w(y)dy) V7o () < oo.
{zx} kEZ Tk

Moreover,

(420) Cl ~ CQ ~ C3 = 04 ~ B.
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Proof. We will prove the following implications (4.16)=(4.15)= (4.18) < (4.17)= (4.19)=
(4.16).
The inequality (4.15) is equivalent to

(121) (/OO (/O“”k(x,wf;(y)u(y)dy)"w(@dx)5gcf(/o fv>1,f69ﬁl

Let f(x f h. Then by Minkowskii’s inequality

/0 k(e 2) f (2)u()dz = /0 ’ ( / h h) " b, Jule)d
S(/(m(/mX(zoo)(y ) Wy )
</ KP(z,y)h dy+Kpa:x/ooh )

and (4.16)=-(4.15) follows by Lemma 2.2.
For any f € 9!

/Ox k(x,z)f(z)u(z)dz > sup /Oy k(x, z)u(z)dzf(y) > sup K(z,y)f(y).

O<y<zx O<y<z

Hence, (4.15)=(4.18). (4.18)=>(4.17) is obvious and (4.17)=>(4.18) follows by applying Lemma
2.2 and Fatou’s lemma.

Suppose, that (4.17) is true and let {z,} C (0, 00) be an increasing sequence. For any k € Z,
let e € (zx, xk41) be such that V' (e;) < 2V (zy) and for any sequence {ax} C (0, 00) of positive
numbers we define the function h(z) := 3 ;s - X (.2, (@). If we put the function in the
inequality (4.17), we get

2
q

(4.22) (Zak /mkﬂ Kz, 2)w(z )d:c) <208 @V ()

kEZ keZ

and by the Landau theorem it implies B < C}.
Thus, the only (4.19)=(4.16) it remains to prove. Using the definition of Oinarov’s kernel,
we see that

K(z,y) ~ k(z.y) / Cu(z)dz + / "y, 2Ju(z)dz = ke 9)U(y) + K (y,y)

and it implies, that (4.16) is equivalent to the following three inequalities:
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SIS

(4.23) ( /0 b ( /0 ’ k(x,y)pU(y)ph(y)dy) @z ) <o /O T WV, hemt,

1S
Sl

(4.24) (/OOO (/OxK(y,y)ph(y)dy) wx)de | <C? /Ooo WV, b et

(4.25) ( /O N ( / N h(y)dy) * Ko, 2)w(e)ds

By [17, Theorem 5] (4.23) holds if and only if

SIS

gcg/ hV, h e M+,
0

(4.26) By :=sup»_ (/wk+ k(y,xk)qw(y)dy) ' sup U(y)'V s (y) < oo

{er} ez \Jak yE(@k—1,2k)
Tr4+1 g T
(4.27) By :=supy ( / W(y)dy) sup K" (zy, y)U(y)" V"7 (y) < o0
{xk} keZ T ye(xk—lvxk)

as well as (4.24) holds if and only if

T+1 2 r
Bj = sup E (/ w(y)dy) (SUP K(y,y)"V " r(y) < oo
ye

{xk} keZ Tk xk‘*lvxk)

and by the dual form of [17, Theorem 5] (4.25) holds if and only if

T

B :=sup ) (/mk K(y,y)"w(y)dy> V() < oo

{or} kez

Let yp € (zx_1, k) be such that

YE(TR_1,2k)
Then
Tk41 g o
( / k(y,ww(y)dy) s Uly)V i)
kEZ Tk YE(Tr—1,2k)
Yk+2 5 o
< ([ Kwwret) v
keZ Yk
Y2k+2 g .
< (/ K(%?/Qk)qw(y)dy) V7o (yar)
kezZ Y2k
Y2k+3 g o
+ / Ky, you1)'w(y)dy | V7P (yors1) < B
keZ Y2k+1
Therefore,

B, < B.
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Let yp € (zx_1, k) be such that

sup K (2, )U(W)V 7 (y) = K (2, y) U(ye) V7 (1)

yE(TK—1,7k)
Then
Tpt1 7 o
> (/ w(y)dy) sup K" (z, y)U(y)"V "2 (y)
keZ Tk yE(Th—1,k)
Yk+2 2 o
< ([ Kewrutar) Vi
kez Yk
Y2k+2 2 o
<) (/ K(y7yzk)qw(y)dy) V7o (yor)
keZ Y2k
Y2k+3 5 -
+Z / K(y, y2i1) " w(y)dy | V7 (yarsr) < B
kcZ Y2k+1
Hence,

By < B.
Let yx € (zx_1, ) be such that

sup  K'(y,y)V o (y) = K (yr, )"V 7 (ur)

YE(Th—1,2k)
Then
Tht1 7 o,
> (/ w(y)dy) sup K (y,y)"V " »(y)
keZ Tk YE(Tk—1,Tk)
Yk+2 2 o
< ([ Kwwret) v
kez NV Yk
Y2k+2 2 o
<) (/ K(%yzk)qw(y)dy) V7o (yai)
kez Y2k
Y2k+3 2 o
T Z / K(y, yar1) " w(y)dy | V77 (yars1) < B
keZ Y2k+1
Consequently,
Bs < B
Since K (y,y) < K(y,xk-1), y € (21, Tx), we have that B, < B. Combining the above upper
bounds we conclude that C5 << B and finish the proof. |

Analogously, we obtain the dual version of the previous theorem.

Theorem 4.6. Let0 < g <p<1,1/r:=1/9g—1/p and k(x,y) is a continuous Oinarov kernel
and K, (y,z) = fyoo k(z,x)u(z)dz. Then the following inequalities are equivalent:

(/Ooo (/:O k(y,x)f(y)u(y)dy>qw(z)d:]c)‘11 <o </0<>° f%);, -
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r
q

(/ (/ K?(y, x)h(y)dy + K?(x, ) /Oxh(y)dy)p w@)d:U)

sCé’/ WV, he MY,
0

LSRSY

(L Gsrn [0
(/ (z‘iI;K Y, T )f(y))qw(l")da:); <Oy (/0 fpv)l fem

T

= sup Kq (g, y)w(y)dy V*_g(xk) < 0.
{ox} ez \/n

w(a:)d:z:) §C§/ hV., h € M",
0

Moreover,

Cl C’2 C’3 04 ~ B* .

5. FURTHER RESULTS

Keeping the notations and assumptions of the previous section we obtain the complete
characterization of the inequality (4.1).

Theorem 5.1. Let 0 < q,p < oo Then the inequality (4.1) with the best constant Cy holds for
every f € ML if and only if:
()0<p<1l,p<g<oo

Cy =Cy:= sup (/ U%x,y)w(y)dy) ' V*%(ac) < 00.
2€(0,00) 0

(i) 0<qg<p<l,

T

Tk+1 q r Lr
Cy~Cs = Supz (/ Uq($k+1,y)w(y)dy) V7o (2ge1) < 00.

{oe} jez,
(i) 1l <p<qg<oo, 1/p):=1—1/p. Then C, = Cy + Cy, where

1
I

Crim s i) ([0 v i) <

z€(0,00)

(iv) 1 < ¢ <p< o0,

Cy = ( | ( | Uq<x,y>w<y>dy) "V @)
Cy 1= ( | Wi ( | Up’<y,:c>vp’<y>v<y>dy>’:’dx> <o,

Q|
N——
AN
8
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and Cl ~ 05 + 06-
(v) g=1<p < o0, then Cy = C7, where

1
/

o] x P’ I
Cr = (/ (/ W(y)u(y)dy) V_pl(x)v@)dx) < 00.
0 0
(vi) 0 <g<1<p< oo, then
Ci~C3+ (5 < .
Proof. The part (i) follows by [18] and part (ii) by Theorem 4.1. Applying Theorem 2.1 we
reduce (4.1) to the inequality for the integral operator with Oinarov’s kernel. Then parts (iii)
and (iv) follow by using the dual version of the results of [19] or [28] and assertion of (v) is a

corollary of a well-nown result ([14], Chapter XI, §1.5, Theorem 4). Thus, we need to prove
only (vi). Applying Theorem 4.1 and dual version of ([17], Theorem 5), we get

Cl =~ Bl +Bg,

where

Tk g Th41 , ﬁ
B — sup§j< / U‘f(ask,ww(y)dy) ( / v (y)v(y)dy) |
{xk} kEZ Th—1 T

T % Th+1 , , ﬁ
By = supz (/ w(y)dy) (/ U (y, z)VF (y)v(y)dy) :
{z} kEZ Tr—1 Tk

It is clear, that

B, <Cs
Now,
xk r R / / ﬁ
B < s ([ Wit ([0 Gav )
{xk} keZ Tk—1 Tk
Tp oo ﬁ
< w3 [T Wi ([0 v o)
{ox} kcZ Y Th—1 Y
< [Twituw ([T v e
0 Yy
— o
Therefore,

Bl +BQ <K 03+CG.
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Now, let {zx} C (0,00) be a covering sequence. Denote iy = sup{i € Z : V(z;) < 2*} and
It := (ix_1, k), k € Z. Then, applying Jensen’s inequality, we find

> < / ; U%xk,y)w(y)dy) V)

kez Th—1
- ZZ( / 71, y)w <>dy) V7 ()
kEZ iy,
_kr i a
< yriy / a0} )
keZ i€l Ti-1
_r [ [T !
< > 2w (/ Uq(wik,y)w(y)dy)
kezZ Fig g
_2kr Tiak ‘
kezZ Tigk—2
_ (2ktD)r Tigky1 ‘
+ Y 27 ( / Uq(xi%wy)w(y)dy)
keZ Tigp—1
Tigy . Tiggy2 , i
< Z( / Uq<xm,y>w<y>dy) ( [ <y>v<y>dy>
keZ Tigk—2 Tigk
Tigg iy . Tiok43 / v
+ Z( / U"(xim,y)w(y)dy> ( / VP (y)v(y)dy>
kez Tigp—1 Tigk+1
< By
Hence,
Cs < Bi.

Now, let {z} C (0,00) be such a sequence that 28 = [ w. We have

= W ) ( / Uy s 7 dy
<<%2q (/OO (2, 2)V 7 (2 )v(z)dz);/
_%%(Z/ ”kvw)()d)

r

~ Y 2% (Z / o Up/(z,:cl-)vpl(z)v(z)dz> '

keZ i=k @



20 AMIRAN GOGATISHVILI AND VLADIMIR D. STEPANOV

+ 227 (ZU (x;, xx)

T

7
Ti+1 p

Vp/(z)v(z)dz>

keZ
kr Th+1 / 12 ﬁ
~ 227 </ UP (z,xp)V P (z)v(z)dz)
kEZ Tk
o [ [ " i / F
+ Z 2 Z Z U(xjy1,2;) / V7P (2)v(z)dz
keZ i=k \j=k zi
=1+11.
Then .
‘ Thtl ’ / i
I~ Z / w (/ UP (z,zx)V P (z)v(z)dz) < Bj,.
keZ Tk—1 Tk

Using Minkowski inequality, we find

1

i <Z o xj)> p’ / V’”’<z>v<z>dz) ?
Z / IZH )dz> »

i=j+1

Ti+1

[o¢]
S 5 x]+17 [L’]
=k

[
Mg T

k

.
Il

1

Uz, 2)V 7 (2541).

NE

<.
Il
o

Therefore,

I.[ < 22 a (ZU x]—‘rhxj (.T]+1)>

keZ
o\ T
= / w | U'(Tga1, 1)V 7 (Tpe1)
kEZ Tk—1
. q
<<Z</ Uq($k+17y)w(y)dy) Ve (k1)
kEZ Tk—1
<Y ([ vt ) Vi)
keZ Tk—1

T2k+1 g -
= / Ut(zars1, y)w(y)dy | Ve (won41)
cZ T2k—1
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T2k42 2 -
+ Z </ U (22k 42, y)w(y)dy) V7 (22k42)
T2k

keZ 2
<205 < Bj.
Thus,
Cs < By + By
and finally
U3+ Cs < By + Bs.
0J

Remark 5.2. Theorem 5.1 corrects the results of M.L.Goldman ([11], Theorem 1.1.) in the
cases (i), (ii) and (v).

For the case ¢ = oo we have the following.

Theorem 5.3. Let 0 < p < oo Then the inequality

(5.1) ig&g([ﬁ3ﬂ>w@)§6%(Amf%>i

holds for every f € MM if and only if
Ho<p<i,

z€(0,00) y€(0,z)

Cy := sup (esssup U(m,y)w(y)) V_%(.f) < 00.

Moreover, Cg ~ (.
(ii)) 1 <p < oo. Then

1
I

G =esssupla) ([0 oV o) <o

z€(0,00)

Remark 5.4. Analogously Theorems 5.1 and 5.3 the characterizations take place for the inequal-
ity (4.14) and (5.1) on the cone 9'. In particular, these results supplements ([12], Theorem
2.2 (ii)). We omit details.

Similarly, for the case p = oo we obtain the following.

Theorem 5.5. Let ||-||x be any quasinorm defined on M* and let T : M — IM* be a positive
operator. Then the inequality

IT()lx < Cuollfoll
holds for every f € MM if and only if

1
T
€ss Supye(O,x) v (y)

< o0
X

CH =

and CIO = CH.
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Corollary 5.6. Let || - ||x be any quasinorm defined on . Then the inequality

/:Of

holds for every f € MM if and only if

e
- esssupze(oyy)'u(z)

< Ol fo]low

X

< 00

013 = ‘
X

and 012 = 013.
Now we collect the complete characterization of (4.15).

Theorem 5.7. Let 0 < q,p < 0o. Let k(x,y) > 0 be a measurable kernel. Then the inequality
(4.15) with the best constant Cy holds for every f € M if and only if:
()0<p<1l,p<g<ox

Cy=Chs = sup (/ K9(z, min(z, y))w(y )dy)qvé(x) < 0.

z€(0,00)

(ii) g =1 < p < o0, then Cy = Cig, where

1

/

Cho = (/OOO (/Oo (/yoo k:(z,y)w(z)dz) V_l(y)u(y)dy)p/v(:v)dx> " <o

If k(x,y) is an Oinarov’s kernel, then
(i) 0 < ¢ <p <1 and k(z,y) is continuous,

r
q

_— . 1/r
Cy =~ Cy7 = supz ( Kq(y,a:k)w(y)dy) V7 (z) < 00.

{24} pez

(iv) 1<p<g<oo, 1/p :=1—1/p. Then Cy = C15+ C19 + Cy, where

Cis := sup (/ Ki(y,y)) )dy) V_%(x) < 0,

z€(0,00)

Ciy := sup W (/ K" (z,y)V ()(y)dy);l<oo,

2€(0,00)

Cho = S (/x Ky, x)w (y)dy); (/Om Up'(y)V‘p'(y)v(y)dyy < oo.
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(V) 1 <qg<p<oo,

Cop 1= (/ (/ K(y, y)w dy) Kz, x)w(x)V;(x)dx> o
Cop = (]ﬁ (]C K (y, z)w(y )dy)r X

X ( / uvy >v—p’<y>v<y>dy) 7y (« >v—P’<x>v<x>dx> - 00,

core ([t ([ o) ar) <o

and Cy = Cy; + Cag + Coas.
(vi) 0 < g <1< p<oo, then Cy = Cy + Coy + Cos < 00, where

Q

N\ /r

7

Tk+41 g T , , P
Coy 1= Supz (/ w> (/ KP (x,y)V™P (y)v(y)dy) < 00,
{xk} keZ Tk Tp—1

Th+1 g T , , #
Cos 1= ?UI;Z(/ kq(y,xk)qw(y)dy> </ ur(y)v=r (y)v(y)dy) < 0.
TkS ke Tk Tr—1

23

Proof. Part (i) and (ii) follow from [18] and ([24], Theorem 2.2), respectively, and (iii) is
Theorem 4.5. Parts (iv) and (v) were proved in ([20], Theorem 7) and (vi) follows by applying

Theorem 2.1 and ([17], Theorem 5).

The border case ¢ = 0o of the previous theorem is governed by the following.

OJ

Theorem 5.8. Let 0 < p < co. Let k(z,y) > 0 be a measurable kernel. Then the inequality

(5.2) esssup ( /0 ) k'(w?y)f(y)U(y)dy) w(r) < Cog ( /0 N f”v)é ,

holds for every f € M if and only if
Ho<p<l,

Cy := sup | esssup K (z, min(z,y))w(y) V_%(:z:) < 00.
z€(0,00) \ y€(0,00)
(ii) 1 <p < oco. Then

1
7

= csssupu(e ( ([ k<57y)u<y>v1<y>dy>”’ v<t>dt> " .

Proof. 1t follows by applying ([24], Theorem 2.2).

For the case p = oo, from Theorem 5.5 we obtain the following.
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Corollary 5.9. Let || - ||x be any quasinorm defined on M. Let k(z,y) > 0 be a measurable
function on {(z,y) : © >y > 0}, Then the inequality

/0 K, y) f(W)dy|| < Caoll folloc

X

holds for every f € MM if and only if

T k(x,y)d
Cop = / (z,y)dy .
0

€SS SUD ¢ (0,4) V(2) .

and ng = Cgo.

[1]

REFERENCES

Arino M. and Muckenhoupt B. Maximal funcrions on classical Lorentz spaces and Hardy’s inequality with
weights for non-increasing functions. Trans. Amer. Math. Soc. 320 (1990), 727-735.

Bennett G. and Grosse-Erdmann K.-G. Weighted Hardy inequality for decreasing sequences and functions.
Math. Ann. 334 (2006), 489-531.

Burenkov V.I. and Goldman M. L. Calculation of the norm of a positive operator on the cone of monotone
functions. Proc. Steklov Inst. Math. 210 (1995), 47-65.

Carro M., Gogatishvili A., Martin J. and Pick L. Weighted inequalities involving two Hardy operators
with applications to embeddings of function spaces, J. Operator Theory. 59 (2008), 309-332.

Carro M., Pick L., Soria J. and Stepanov V.D. On embeddings between clasical Lorentz spaces, Math.
Inequal. Appl. 4 (2001), 397-428.

Carro M. and Soria J. Boundedness of some inegral operators, Canad. J. Math. 45 (1993), 1155-1166.
Gogatishvili A., Johansson M., Okpoti C.A. and Persson L.E. Characterisation of embeddings in Lorentz
spaces. Bull. Austral. Math. Soc. 76 (2007), 69-92.

Gogatishvili A., Opic B. and Pick L., Weighted inequalities for Hardy-type operators involving suprema.
Collect. Math. 57 (2006), 227-255.

Gogatishvili A. and Pick L. A reduction theorem for supremum operators. J. Comp. Appl. Math. 208
(2007), 270-279.

Gogatishvili A. and Pick L. Duality principles and reduction theorems. Math. Ineq. Appl. 3 (2000), 539-
558.

Goldman M. L. Sharp estimates for the norms of Hardy-type operators on cones of quasimonotone func-
tions. Proc. Steklov Inst. Math. 232 (2001), 109-137.

Heinig H.P. and Stepanov V. D. Weighted Hardy inequalities for increasing functions. Canad. J. Math. 45
(1993), 104-116.

Johansson M., Stepanov V. D. and Ushakova E.P. Hardy inequality with three measures on monotone
functions. Math. Inequal. Appl. 11 (2008), 393—413.

Kantorovich L. V. and Akilov G. P. Functional Analysis, Pergamon, Oxford, 1982.

Kufner A., Maligranda L. and Persson L.-E. The Hardy inequality. About its history and some related
results, Vydavatelsky Servis, Pilsen, 2007.

Kufner A. and Persson L.-E. Weighted inequalities of Hardy type, World Scientific, New Jersey, 2003.
Lai Q. Weighted modular inequalities for Hardy-type operators. Proc. London Math. Soc. 79 (1999),
649-672.

Myasnikov E. A., Persson L.-E. and Stepanov V. D. On the best constants in certain integral inequalities
for monotone functions. Acta Sci. Math. (Szeged). 59 (1994), 613—-624.

Oinarov R. Two-sided estimates of the norm of some classes of integral operators. Proc. Steklov Inst.
Math. 204 (3) (1994), 205-214.

Popova O.V. Inequalities of Hardy type on the cones of monotone functions. Siberian Math. J. 53, N 1
(2012), to appear.

Sawyer E. Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96 (1990), 145-158.
Sinnamon G. and Stepanov V. D. The weighted Hardy inequality: new proofs and the case p=1. J. London
Math. Soc. 54 (1996), 89-101.

Sinnamon G. Transferring monotonicity in weighted norm inequalities, Collect. Math. 54 (2003), 181-216.



REDUCTION THEOREMS 25

[24] Sinnamon G. Hardy’s inequality and monotonocity. In: Function Spaces and Nonlinear Analysis (Eds.:
P. Drébec and J. Rékosnik), Mathematical Institute of the Academy of Sciences of the Czech Republic,
Prague, 2005, 292-310.

[25] Stepanov V. D. The weighted Hardy’s inequality for nonincreasing functions. Trans. Amer. Math. Soc.
338 (1993), 173-186.

[26] Stepanov V. D. Integral operators on the cone of monotone functions. J. London Math. Soc. 48 (1993),
465—487.

[27] Stepanov V.D. On a supremum operator. Spectral Theory, Function Spaces and Inequalities. New Tech-
nique and Recent Trends, Operator Theory: Advances and Applications. Birkhduser. Basel. 2012, 233-242.

[28] Stepanov V. D. Weighted norm inequalities of Hardy type for a class of integral operators. J. London
Math. Soc. 50 (1994), 105-120.

INSITUTE OF MATHEMATICS OF THE ACADEMY OF SCIENCES OF THE CZECH REPUBLIC, ZITNA 25, 11567
PraHA 1, CZECH REPUBLIC
E-mail address: gogatish@math.caz.cz

PeEopPLES FRIENDSHIP UNIVERSITY, MIKLUCHO MAKLAI 6, 117198 Moscow, Russia
E-mail address: vstepanov@sci.pfu.edu.ru



