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Contents and Motivation

Contents:
e Free vibration problem
e Resonant ultrasound spectroscopy (RUS)
e Finite element method - formulation
e Choice of shape functions satisfied stress-free boundary conditions
e Isogeometric analysis (B-spline, NURBS shape functions)
e Comparison of convergence rates for different shape functions

Motivation:

e Validation and verification of IGA in free vibration and elastodynamics problems

e RUS - free vibration of anisotropic specimens (cylinder, sphere,...)
- utilization of eigen-vibration modes

- determination of structure orientation
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Resonant ultrasound spectroscopy

Determination of all independent elastic moduli
from knowledge of frequency spectrum.
Generally, all 21 components of the elastic tensor could be determined.
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Plesek J., Kolman R., Landa M.: Using finite element method for the determination of elastic

moduli by resonant ultrasound spectroscopy. Journal of the Acoustical Society of America,
116, 282-287, 2004.
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Formulation of elastodynamics problem
- strong form

Equations of motion
Oij5 = PUjtt in x € ()X (O,T)
Hooke's law
055 = Uijkl€kl
Infinitesimal strain tensor i
&ij = 5 (ij +uji)
Stress-zero boundary conditions

Oy = 0 on I'x (O,T),F = 0}

u; - the ith component of the displacement vector u, o;; - Cauchy stress tensor,
€;; - infinitesimal strain, Cjj;; - elastic tensor, p - mass density, n; - the ¢th com-
ponent of outward normal
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Formulation of elastodynamics problem
- weak form

Find u € S; (space of trial solutions) such that for all w € W (space of weighting

functions)
(w, pu) + a(w,u) =0

where

(w, pu) :/pwiidQ
0

a(w,u) = / w; i Ciirrtg, A2
QO
Separation of variables - free vibration
uj = u;(x) e,
then the eigenproblem is obtained

—w?(w, pu) + a(w,u) =0

i - imaginary unit, w - angular velocity, f = w/27 - frequency
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Free vibration of elastic objects

Rayleigh-Ritz method: the actual motion in the form ue! is given by such
a displacement function u that renders integral

1
/ 7 (Wi + ) Cigrt (ug + ) d€2
Q

an extremum under the normalization condition
/ Y upd=1
€y

and the extremum given pw?.
In practice,

N
u= E apcbp
p

where functions ®,,p = 1,..., N should satisfied the boundary conditions.
Eigenvalue problem

(pg — Apg) apg =0, p,g=1,...,N.
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Free vibration of elastic objects

Galerkin continuous formulation of FEM method:
Find u” € S such that for all w" € W"
(w", pii") + a(w",u") =0

Representations of u, wh

u? = Z NA(X)dZ’A
A

wi = Z Ny(x)cia,
A

where N 4(x) are shape functions.

By separation of variables, eigenproblem is obtained
—wA(w", pu") + a(w",u") =0

Rayleigh quotient
h 1yh
o alulu)
(u”, pu”)
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Finite element method

Discretized eigenvalue problem
—wMu" +Ku" =0

Element (local) mass and stiffness matrices are given by

M = /QNTN dve, K* = /BTCB dve
h h

Global matrices

l l
M=A’" M, K=A K"
Normalization of eigenvectors:

UMU=1I = UKU=A

U=[uy,...,unpor], A =diag(wi,...,wipor)
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Free vibration of elastic solids

Exact solution of free vibration of solid with the arbitrary shape is not possible
to find in the close form.

Historical background:

e sphere - [Love, 1927] (analytical solution by Bessel functions), [Frazer, 1964]

e block, parallelepiped rectangle - [Holland, 1968] (trigonometric functions),
[Demarest, 1971] (Legendre’s polynomials), [Ohno, 1976], [Visscher, 1991] (ba-

sis functions in the form z'y™2")

e laminated spheres and cylinders - [Yoneda, 2000]

e cylinder - [Love, 1927], [Ostrovsky, 1998] (combination of Bessel functions and

FEM)

e potato, ellipsoid - [Visscher, 1991] (base functions in the form z!y™2")

e arbitrary shape of specimen - FEM or IGA (exact description)
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B-spline curve

Piegl, L., Tiller, W. The NURBS Book, 2nd Edition. Springer-Verlag, 1997.

B-spline curve - a parametric described piecewise polynomial curve of degree p.

Degree p = 3, number of control points n = 10, uniformly-spaced control points.

NURBS curve - a generalization of B-spline curve by introducing weights
of control points.
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B-spline curve

Piegl, L., Tiller, W. The NURBS Book, 2nd Edition. Springer-Verlag, 1997.

B-spline curve of degree p is expressed by
C(&) =) Nip ()P
i=1

where P;, i = 1,...,n are coordinates of control points and NV;,({) are basic
functions of degree p, for example £ is parameter, £ € [0,1] .

Possibilities of control of the B-spline curves:
e by coordinates of control points P;,, 2 =1,2,....,n
e by degree p

e by knot vector = = {1, &, ..., Enpi )
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B-spline curve - basis functions

Piegl, L., Tiller, W. The NURBS Book, 2nd Edition. Springer-Verlag, 1997.

For a given knot vector = = {1, &y, ..., & ipr1}, the B-spline basis functions are
defined recursively starting with piecewise constants (p = 0)

Lif & <E&< &g,
0 otherwise.

Nip (§) = {

For p=1,2,3, ..., they are defined by the Cox-de Boor formula

S8y
§z+p ‘SZ

Remark. A efficient algorithm for the numerical evaluation of B-spline basis func-

Sivpr1 — §

§i+p+1 — &it1

Nz‘,p (5) zp 1(§)+

Nit1p-1 ().

tions is necessary to employ.
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B-spline curve - basis functions

Degree p = 3, n = 10 control points, uniform knot vector:

1

0.8

0.6

N, (©

0.41

0.2

Basic properties:
e A partition of unity, that is, > | V; ,(§) =1
e The support of each NN, is compact and contained in the interval [&;, &4 pt1]
e B-spline basis functions are non-negative: N; (&) > 0VE

e CP* continuous piecewice polynomials, k is order of multiplicity of knot.
The continuity can be controlled by the multiplicity of knot in the knot vector =.
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Dispersion errors in 1D, frequency
errors in vibration of fixed-fixed bar

Hughes T.J.R., Reali A., Sangalli G. Duality and Unified Analysis of Discrete Approximations
in Structural Dynamics and Wave Propagation: Comparison of p-method Finite Elements with
k-method NURBS. Comput. Methods Appl. Mech. Engrg., 197, 4104-4124, 2008.

i 8 classical FE 18 B-spline based FE — homogeneous sh. f.
' — p=1 ’ — p= 1
— p=-2 — p=2
1.6 — p=3 1 1.6f — p=3
o — p=5 — p=5
2 1.4 /\ 14
_CO // _CO
N
1.2} /4\ 1.2¢
—_ N
e B 1,
09 ! . i i
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0 k" h/p 3 0 K" h/p

Existing of optical modes for classical FEs. The attenuation solutions are appearing.
h is an edge length of a classical FE. h/p is a distance of nodes.
h is a distance of control points.



INSTITUTE OF THERMOMECHANICS AS CR, v. v.i.

B-spline surface and solid

A tensor product B-spline surface of degree p, q is defined by
= Z Z Nip(n) Mjq(§) Pij,
i=1 j=1

where N;, (1), M, (§) are univariate B-spline functions of order p and ¢ corre-
sponding to knot = and H, respectively. P;;, i =1,...,n,7 = 1,...,m are
coordinates of control points.

A tensor product B-spline solid of degree p, g, r is expressed by

<£7 777 7 y: Nl p ) Lk‘ A (C) Piajak

Note: global refinement, local refinement by subdivision, hierarchically B-spline
(NURBS, T-spline)
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NURBS curve, surface and solid

NURBS - Non-Uniform Rational B-spline

A NURBS curve of degree p is defined by

=) R(OP
i=1
where NURBS basis is given by

Nip (€) w;
RP () = — Vi
i (5) Z?:l NE)p (77> w;

and wj is referred to as the i-th weight corresponding to i-th control point.
For surfaces and solids, respectively

Rij (€,m) =

Nip (§) M4 (n) wiy
ZHZN ()qu(m
NZP( ) (”)Lkr<<)w23k
Zz 123 12/{: 1 2p<£) qu(n) Lkr(g)wi,j’,l%

RVIC(€,m,C) =
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surface and shape function

B-spline surface B-spline shape function
NURBS surface NURBS shape function

<o
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Evaluation of shape functions
and their derivatives

1. Direct evaluation B-spline basic functions B by the Cox-de Boor formula [Piegl,
Tiller, 1997] — inefficient process, check of division by zero

2. Evaluation by B-spline basic functions B by [Piegl, Tiller, 1997] — very efficient
process, CAD

3. Expression of B-spline basic functions B by Bernstein polynomials IN' [Bor-
den, 2010] — evaluation of extraction operator C defined by a knot vector, B = CN

4. Extraction NURBS description to the Bezier's description [Borden, 2010]
— the same structure as standard FEM
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Numerical test - an elastic block

e Dimensions

a = 2.333 [mm]
b = 2.889 [mm]
c = 3.914 [mm]

e Mass density
p = 2459.9 [kg/m?]

e Elastic moduli - isotropic case
C1 = 82.0407 [GPa]

012 = 23.5666 [GPa]
044 = 29.2371 [GPa]

Plesek J., Kolman R., Landa M.: Using finite element method for the determination of elastic

moduli by resonant ultrasound spectroscopy. Journal of the Acoustical Society of America,
116, 282-287, 2004.



IGA - Linear versus non-linear
parameterization

Non-linear parameterization - uniform knot vector, uniformly spaced control points

Linear parameterization - uniform knot vector, positions of control points given
by Greville abscissa; x; = W [Greville, 1967]
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Numerical test - an elastic block

Freq. Ritz Linear || Serend. || Quadr. || Quadr. || Cubic || Cubic || Experim.
number || method FEM quadr. NP LP NP LP data
order 10, FEM IGA IGA IGA IGA
T 1000 1000 1000 1000 1000 1000
1 389154 || 390170 || 389158 || 390229 || 389192 | 389719 | 389143 || 390195
2 483641 || 485224 || 483680 || 484405 || 483756 | 484094 | 483641 482385
3 523541 || 525046 || 523580 || 524444 || 523654 || 524065 || 523541 521235
4 643221 || 644500 || 643253 || 644381 || 643328 || 643770 || 643218 || 640560
5 669073 || 669420 || 669079 || 669711 || 669088 || 669346 || 669073 || 664640
6 684101 || 686523 || 684109 || 686157 || 684196 | 685197 | 684068 || 684450
7 714654 || 717079 || 714716 || 715894 || 714873 || 715267 | 714648 || 712135
8 723969 || 727324 || 723784 || 726522 || 723928 || 725292 || 723718 || 723825
9 742704 || 744788 || 742760 || 744294 || 742881 || 743613 || 742697 || 741780
10 805803 || 808032 || 805840 || 807347 || 805930 | 806649 | 805791 803200
11 813858 || 816768 || 813875 || 815119 || 813931 || 814471 | 813844 || 809640
12 829406 || 831475 || 829346 || 831343 || 829466 | 830332 || 829292 || 825390
13 831333 || 833803 || 831275 || 833022 || 831372 || 832224 || 831226 || 831760
14 856984 || 860732 || 856580 || 860164 || 856798 || 858498 || 856489 || 854790
15 912615 || 913178 || 912624 || 913542 || 912640 || 913011 || 912615 || 906720

LP - linear parameterization

LP - non-linear parameterization by Greville abscissa
1y = S [Greville, 1967]
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Numerical test - convergence rates

Convergence rates of the first eigen—frequency

Legendre’s polynomials
—6—Linear FEM
—e— Serendipity quadratic FEM
Quadratic IGA - nonlin. param.
Quadratic IGA - lin. param.

—6— Cubic IGA - nonlin. param.

Convergence rates of the 6th eigen—-frequency

Legendre’s polynomials
—©-Linear FEM
—6- Serendipity quadratic FEM
Quadratic IGA - nonlin.param.

Quadratic IGA - lin. param.

—©- Cubic IGA - nonlin. param.

h —
W /coref) 1
4

—*—Cubic IGA - lin. param. —*— Cubic IGA - lin. param.

N _97
(@)]
-11 o 11+
-13 -13
15 6 8 14 16 18 15 6 8 14 16 18

10 12 10 12
log (NDOF) log (NDOF)

Reference state - serendipity quadratic FEM, mesh 20x20x20 elements (PMD)

Error estimation [Strang, Fix, 2008, 2nd edition]:

eigen-values: \(;) < )\Z) < Ap + O h2(k+1=m) ) (k+1)/m

_ . h k+1—m)\ (k+1)/2m
eigen-vectors: ||u(l) —ug)||m < Ch*+1 ))‘(z)
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Conclusions and summary

e The classical C” continuity FE produces the optical modes and spurious oscil-
lations, considerable band gaps and cut-off frequency ranges.

e The high mode behaviour of B-spline based FE is convergent with order of ap-
proximation. B-spline based FEM appears a smoothing effect for the dispersion
curves.

e Good convergence properties of higher order |GA

e Future work: NURBS, T-splines for vibration, wave propagation and impact
problems in solids and shells, mass matrix lumping, temporal-spatial disper-
sion analysis for direct time integration methods, stability analysis of explicit
methods. Numerical solution of Radial Dirac equation.

Thank you for your attention!



